Endliche Gruppen Blatt 1

Abgabe: 23.10.2025, 08:00 in Briefkasten 5

Aufgabe 1.

Sei (G, \cdot) eine Gruppe. Zeigen Sie, dass $H \subseteq G$ genau dann eine Untergruppe von G ist, wenn $H \neq \emptyset$ und für alle $u, v \in H$ gilt, dass $u^{-1} \cdot v \in H$.

Aufgabe 2.

Beweisen Sie, dass in jeder Gruppe (G, \cdot) folgendes gilt:

- (i) aus $a \cdot x = b \cdot x$ folgt a = b.
- (ii) $(a^{-1})^{-1} = a$.
- (iii) $(a \cdot b)^{-1} = b^{-1} \cdot a^{-1}$.

Aufgabe 3.

Zeigen oder widerlegen Sie die folgenden Behauptungen:

- (i) Z zusammen mit der Subtraktion als Verknüpfung ist eine Gruppe.
- (ii) Wir betrachten N mit folgender Verknüpfung.

$$a * b := ggT(a, b),$$

für $a, b \in \mathbb{N}$, wobei ggT die Abbildung bezeichnet, die zwei Zahlen auf ihren größten gemeinsamen Teiler abbildet. Dann ist $(\mathbb{N}, *)$ eine Gruppe.

(iii) Sei (G,\cdot) eine Gruppe und seien A, B Untergruppen von G. Sei

$$A \cdot B := \{ a \cdot b \mid a \in A, \ b \in B \}.$$

Dann ist $A \cdot B$ eine Untergruppe von G.

Aufgabe 4.

Sei S eine beliebige Menge. Sei $\mathcal{P}(S)$ die Menge aller Teilmengen von S (auch *Potenz-menge* von S genannt). Mit welchen der folgenden Verknüpfungen ist $\mathcal{P}(S)$ eine Gruppe?

- (i) $(A, B) \mapsto A \cup B$, für $A, B \in \mathcal{P}(S)$.
- (ii) $(A, B) \mapsto A \cap B$, für $A, B \in \mathcal{P}(S)$.
- (iii) $A\Delta B := (A \cup B) (A \cap B)$, für $A, B \in \mathcal{P}(S)$. Dabei ist $X Y = \{x \in X \mid x \notin Y\}$.

Begründen Sie ihre Antworten.

[Hinweis: Vielleicht helfen Ihnen Venn-Diagramme.]

[Weiter auf Seite 2.]

*-Aufgabe 5.

Erinnern Sie sich zuerst, was die Vokabeln injektiv, surjektiv und bijektiv bedeuten. Es sei X eine nichtleere Menge und M(X) die Menge aller Abbildungen $X \to X$. Weiter sei $f \in M(X)$. Zeigen Sie:

- (i) f ist genau dann injektiv, wenn es $a \in M(X)$ gibt mit $a \circ f = \mathrm{id}_X$.
- (ii) f ist genau dann surjektiv, wenn es $b \in M(X)$ gibt mit $f \circ b = \mathrm{id}_X$.
- (iii) f is genau dann bijektiv, wenn es $c\in M(X)$ gibt mit $c\circ f=\mathrm{id}_X=f\circ c$. [Hinweis: Betrachten Sie $a\circ f\circ b$.]