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Abstract: We introduce a universal method to optically induce mul-
tiperiodic photonic complex superstructures bearing two-dimensional
(2D) refractive index modulations over several centimeters of elongation.
These superstructures result from the accomplished superposition of 2D
fundamental periodic structures. To find the specific sets of fundamentals,
we combine particular spatial frequencies of the respective Fourier series
expansions, which enables us to use nondiffracting beams in the experi-
ment showing periodic 2D intensity modulation in order to successively
develop the desired multiperiodic structures. We present the generation
of 2D photonic staircase, hexagonal wire mesh and ratchet structures,
whose succeeded generation is confirmed by phase resolving methods
using digital-holographic techniques to detect the induced refractive index
pattern.
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1. Introduction

Inspired by numerous prototypes in nature, photonic structures have become a captivating re-
search subject of great demand and luminous future perspective. Due to excellent theoretical
as well as experimental results in the last decades, this field already educed many basic mod-
ules for the future technology as to telecommunication and information industry, all-optical
computing as well as displaying devices.

The groundbreaking fundamental insight is the existence of structure-specific band struc-
tures [1], for instance providing complete band gaps that allow for particular Bloch modes to
explicitly be reflected. In analogy to charge carrier propagation processes in condensed matter,
many new effects of light propagation in refractive-index modulated photonic structures besides
Bragg diffraction [2] were discovered, e.g. Bloch oscillation, Zener tunneling, and Anderson
localization in the linear [3–5], as well as spatial discrete bright, dark, and vortex solitons in the
nonlinear regime [6–12].

Up to now, relatively simple systems were investigated, however the scientific interest as-
pires at the investigation of more complex systems such as quasiperiodic [13, 14], curvilin-
ear including Bessel and Mathieu lattices [15–19] where already solitary structures have been
found, as well as randomized photonic structures [20]. One of the most interesting field of
highly promising systems regarding spectacular propagation effects are multiperiodic photonic
structures, as especially in these systems intriguing analogies of quantum mechanics such as
Klein Tunneling or Zitterbewegung could be predicted theoretically as well as demonstrated
experimentally [21–23], not disregarding distinct solitary solutions [24].

In addition to direct-laserwritten [25] or holographic-lithographically [26] generated pho-
tonic structures, photorefractive materials represent a highly appropriate system to carry out lin-
ear as well as nonlinear light propagation experiments [7,8,27,28]. The main advantage here is
the reconfigurable and dynamically manipulable induction of complex two-dimensional refrac-
tive index modulations and thus, the optical induction of periodic, quasiperiodic and curvilinear
two-dimensional [29] as well as three-dimensional photonic structures could be presented [30].
Additionally, probing of the generated structures is feasible in one and the same setup and no
further treatment of the sample is needed.

The implementation of all the mentioned photonic structures were limited to one individ-
ual structure-inducing wave field, that is generated by interferometry, diffraction on artificial
holograms, or via wave field moulding per spatial light modulators. As it is advantageous to
implement wide-elongated photonic structures offering a longer interplay length which offers
an analogue of long distance propatation to temporal behavior, one is constricted to use writ-
ing wave fields that are translation invariant in the direction of propagation, represented by the
class of nondiffracting beams [31–33]. Though, designing wave fields of multiple transverse
periodic lengths by coherently summing up various nondiffracting wave fields each showing
different structural sizes, the translation invariance of the intensity distribution of each wave is
no longer conserved due to occuring longitudinal interference modulations. Anyhow, to imple-
ment multiperiodic structures by optical induction using nondiffracting beams, one has to care
for an incoherent superposition of several writing beams of various structural sizes, for instance
by holographic multiplexing techniques that are well known from the field of holographic data
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storage [34,35]. The technique of incremental multiplexing to modulate the refractive index of
a photosensitive medium was presented earlier [36, 37] where the former publication already
presented the multiplexing method using 2D square lattices with different lattice periods as a
proof of principle, and the latter demonstrates the generation of a one-dimensional (1D) pho-
tonic ratchet structure.

In this contribution, we propose an approach for the optical induction of two-dimensional
multiperiodic photonic structures by incremental multiplexing techniques. The outline of the
paper is as follows. After this first introductory section, Section 2 discusses theoretically the
specification to create three representative multiperiodic structures. We respond to the proper
incoherent combination of fundamental periodic lattices of different structural size to expand
the desired superlattices. Recapitulatory, the mathematical considerations of each structure are
summarized graphically. The experimental implementation of the developed series expansion is
subject of Section 3, where the experimental setup is presented and details of the optical incre-
mental multiplexing method are specified. In Section 4 the analysis of the generated photonic
superstructures and the results are detailed.

2. Multiperiodic structures and set of their fundamentals

This Section addresses the derivations of the 2D superlattices in terms of Fourier series expan-
sions, which can be later applied for the experimental part of optical induction. Therefore, we
design the multiperiodic refractive index distribution by a stepwise and incremental induction of
single index expansion terms using periodic nondiffracting beams (NDBs) with varying period-
icity as the fundamentals. The usage of NDBs is essential, and thus we exclusively concentrate
on this class of light waves as lattice-inducing wave fields and on their transverse intensity dis-
tributions in particular. Although there is a wide spectrum of different intensity modulations
among the four families of nondiffracting beams, we solely operate during the induction pro-
cess with periodic discrete NDBs [38, 39] to preserve the periodic character of our photonic
structures of inquiry.

An intuitive approach to generate 2D structures with multiperiodic character is to use an
optical Fourier series expansions via 1D basis lattices in different orientations and varying
periodic length. In this context, a 2D multiperiodic structureM is designed by combining 1D
lattice structures of equal modulation frequency resulting in a set of 2D fundaments of varying
periodicity, which accounts for a series expansion of the desired structure. This procedure will
for all of our examples end up in different sets of ten 2D basis lattice beams, where the series
expansion is symbolically written as

M(r) =
10

∑
m=1

amI(k j
mr). (1)

Here,am is the weighting coefficient of themth order term andI describes a 2D basis intensity.
Further, the vectorr= (x,y)T characterizes a point in 2D space andk j

m with j = 1,2 (or depend-
ing on the rotational symmetry of the structurej = 1,2,3, respectively) represents a modulation
vector in the corresponding 2D Fourier space. In general, all following field distributions and
their intensities are specified as 2D functions exclusively in a transverse plane. The thereto or-
thogonal directionz can be identified with the direction of propagation. The field evolution in
this direction as well as the temporal development are consequently neglected in the following
considerations, as these behaviors can be examined by a multiplication of the field distribution
of interest with the term exp(i(k‖z−ωt)), wherek‖ = (k2

3D−k2)1/2 is the coordinate of the 3D
wave vectork3D in the direction of propagation andk describes the modulation in transverse
direction.
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Fig. 1. Schematics describing a multiperiodic 2D staircase lattice; (a): surface plot of the
effective intensity calculated by series expansion up to an order of ten, (b): presentation
of the relevant spatial frequencies, (c) periodic square lattice as the basis structure of each
expansion term.

In the following, we introduce three representative multiperiodic structures with inherently
different properties. Thereby, we concentrate on considerations of intensity distributions since
with our technique exclusively the intensity is relevant for refractive index changes caused by
the photorefractive effect. To achieve particular intensity distributions, we design corresponding
light wave distributions showing nondiffracting properties as they can be very flexibly imple-
mented experimentally [29,39]. Since the presented structures are only representative examples,
various combinations of rotational symmetry (even quasiperiodic) and expansion rules for arbi-
trary periodic functions are implementable and, moreover, combinations of different expansion
rules for unequal transverse directions are possible. In principle, all 2D intensity distributions
are implementable that can be resembled in a series expansion of harmonic functions. Nonethe-
less, an additional constant offset contribution can occur that might limit the resulting contrast
of the structure in some cases.

2.1. Staircase superlattice

The first structure we consider is a 2D staircase refractive index superlattice. This unique struc-
ture offers steep slopes and flat plateaus, involving high spatial frequencies of nonnegligible
significance. For that reason, a successful implementation of such a challenging structure proofs
the high functionality and flexibility of the presented technique.

Figure 1(a) represents graphically the desired 2D Fourier series expansion. In the illustrations
of the relevant Fourier components sketched in Fig. 1(b), equally colored spots of a certain
brightness represent the sine or cosine functions of one of the orientations. The first expansion
orders are represented in gray boxes. Especially in these schematics, the multiperiodic character
becomes obvious due to the higher order harmonics. Combinations of all contributions of one
orderm lead to the derived series expansions with 2D basis sets consisting of nondiffracting
beam intensities.

To derive the correct intensity distribution of each set of 2D fundamentals, we first analyze
the expansion rule for a 2D rectangular functionΠ2D with respect to 1D fundamentals. To keep
the intensity non-negative, we adjoin an offset term:

Π2D(r) =
10

∑
m=1

1
2m−1

[

2+ sin
(

k1
mr

)

+ sin
(

k2
mr

)]

, (2)
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wherem determines the order of the expansion term. Thus, for every expansion termm two
sin-modulations with orthogonal modulation vectorsk1

m andk2
m contribute to the total 2D dis-

tribution Π2D. The length of the modulation vectors are given by the arbitrarily chosen lattice
period of the first orderg1 and the orderm, hence:

k j
m = (2m−1)

2π
g1

e j = km e j with j = 1,2, e1 = (1,1), e2 = (1,−1). (3)

In the next step we will combine the 1D intensity contributions of a particular value ofm.
These terms reveal modulation vectorsk j

m which are transverse components of wave vectors
with mutual equal projection length parallel to the direction of propagation and thus restrain
any modulation of intensity in this direction which is characteristic for NDBs. The sum of the
two sinusoidal intensity contributions for a fixedm in Eq. (2) can be rewritten as

[2+ sin(2φ1)+ sin(2φ2)]

=
1
2

[

4+ei(2φ1−π/2)+e−i(2φ1−π/2)+ei(2φ2−π/2)+e−i(2φ2−π/2)
]

=
1
2

∣

∣

∣
ei(φ1−π/4)+e−i(φ1−π/4)+ iei(φ2−π/4)+ ie−i(φ2−π/4)

∣

∣

∣

2
,

(4)

where we introduced the phase functionφ j for a particularm with j = 1,2 using 2φ j ,m = k j
mr

and dropping the indexm. Now it becomes obvious that the wave field whose absolute square
value appears in Eq. (4) equals the intensity of a field distribution consisting of four interfering
plane waves. This field belongs to the four-fold discrete NDBs, whose transverse intensity
distribution is presented in Fig. 1(c) and which is referred asΨ4,1(r) in Ref. [39]. In the case
here, every plane wave carries an additional phase shift of±π/4, where plane waves of opposite
spatial frequency have opposite sign, resulting in a real space translation of the structure in
transverse direction (cf. Ref. [39]).

Hence, we can transcribe Eq. (2) to

Π2D(r) =
10

∑
m=1

1
2(2m−1)

|Ψ4,1(r,km)|
2 (5)

and receive a series expansion of a multiperiodic 2D staircase structure incorporating transverse
intensities of a nondiffracting wave field as the fundamental structures.

2.2. Hexagonal wire mesh superlattice

In this Subsection we derive an expression for the set of basis lattices creating a hexagonal
multiperiodic structure. Due to their hexagonal property such systems are of particular impor-
tance and coveted subject of many investigations for instance in graphene physics [40]. Basi-
cally, a more general interest in hexagonal structures arises from its non-separable character
which implies the impossibility to generate a hexagonal lattice by a sum of two orthogonal
one-dimensional lattices.

In analogy to the considerations of Subsection 2.1, we start with the sum of 1D cosine lattices,
resembling the hexagonal superstructure illustrated in Fig. 2(a):

X2D(r) =
10

∑
m=1

1
m

[

3
2
+ cos

(

k1
mr

)

+ cos
(

k2
mr

)

+ cos
(

k3
mr

)

]

. (6)

In this case, we need a hexagonal basis set of modulation vectors, which becomes apparent in
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Fig. 2. Schematics describing a multiperiodic 2D wire mesh lattice; (a): surface plot of the
effective intensity calculated by series expansion up to an order of ten, (b): presentation of
the relevant spatial frequencies, (c) periodic hexagonal lattice as the basis structure of each
expansion term.

the illustration of the relevant Fourier components in Fig. 2(b):

k j
m = m

2π
g1

e j = km e j with j = 1,2,3

and

e1 = (cos(π/6),sin(π/6)),

e2 = (0,−1),

e3 = (−cos(π/6),sin(π/6)).

(7)

Again we use the abbreviationφ j with in this caseφ j ,m= k j
mr and j = 1,2,3 valid for all orders

m. The term in square brackets appearing in Eq. (6) and representing the unweighted intensity
of every expansion orderm can be rewritten to
[

3
2
+ cos(φ1)+ cos(φ2)+ cos(φ3)

]

=
1
2

[

3+eiφ1 +e−iφ1 +eiφ2 +e−iφ2 +eiφ3 +e−iφ3
]

. (8)

Now we have to find a 2D basis for the expansion, for instance given by the intensity of a
hexagonal nondiffracting beam, which consists of three plane waves conforming the spatial
frequency conditions of a nondiffracting beam (cf. Ref. [39]):

|Ψ3,0(r,km)|
2 =

∣

∣

∣
eiϕ1(r,km)+eiϕ2(r,km)+eiϕ3(r,km)

∣

∣

∣

2

=3+ei(ϕ1−ϕ2)+e−i(ϕ1−ϕ2)+ei(ϕ1−ϕ3)+e−i(ϕ1−ϕ3)+ei(ϕ2−ϕ3)+e−i(ϕ2−ϕ3)
(9)

which can be identified with Eq. (8) usingφ1 = ϕ1−ϕ2,φ2 = ϕ1−ϕ3,φ3 = ϕ2−ϕ3. Now, the
arguments of the three plane waves in Eq. (9) are summations of the formerly introduced phase
functionsφ j .

Thus, the rule for the development of a multiperiodic 2D wire mesh function in hexagonal
symmetry reads as

X2D(r) =
10

∑
m=1

1
2m

|Ψ3,0(r,km)|
2 (10)
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Fig. 3. Schematics describing a multiperiodic 2D ratchet lattice; (a): surface plot of the
effective intensity calculated by series expansion up to an order of ten, (b): presentation
of the relevant spatial frequencies, (c) periodic square lattice as the basis structure of each
expansion term.

and is equivalent to Eq. (6).
In this connection, the fineness of the structure and thus the diameter of each spike is adapt-

able by broadening the spatial frequency bandwidth of the structure, which can be achieved by
increasing the number of expansion orders.

Besides the weighting of the fundamental structures, also the choice of the rotational sym-
metry brings out a parameter to vary the resulting multiperiodic structure. Thus the six-fold
periodic structure presented in Fig. 2(c) is the basement for the hexagonal multiperiodic wire
mesh structure presented in Fig. 2(a) which conserves the rotational symmetry.

2.3. Ratchet superlattice

In general, functional structures such as 2D ratchets have various intriguing applications in
research fields such as biological microscopic machinery and Bose-Einstein condensation [41],
as well as quantum mechanics in solid-state or atomic physics systems [42] due to their ability
for long-distance mass transport caused by a low-amplitude potential.

In analogy to the considerations regarding the two foregoing structures, we are going to
develop the rule for the optical induction of a 2D ratchet structure. Therefore, we again start
with a Fourier series expansion under the usage of a basis set of 1D fundamental lattices:

Λ2D(r) =
10

∑
m=1

1
m

[

2+ sin
(

k1
mr

)

+ sin
(

k2
mr

)]

. (11)

Figure 3(a) depicts the multiperiodic lattice in terms of the effective intensity distribution.
Analog to Fig. 1(b) the corresponding series expansion respects specific spatial frequencies
which are depicted in 3(b) for the first three orders of expansion.

The set of modulation vectors assembles for each orderm from two mutual orthogonal vec-
tors and are chosen to be

k j
m = m

2π
g1

e j = km e j with j = 1,2, e1 = (1,1), e2 = (1,−1). (12)

With the previously introduced phase functionφ j = k jr/2, wherej = 1,2, and under consider-
ation of Eq. (4), every expansion term ofΛ2D can be expressed through the earlier introduced
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Fig. 4. Schematic of experimental setup to optically induce and analyze spatial refractive
index modulations of photorefractive crystals. Green colored light path represents the lat-
tice inducing part, the probing part is colored in red. A/PSLM: amplitude/phase spatial
light modulator, BS: beam splitter, D/FSC: direct/Fourier space camera, L: lens,λ/2: half-
wave retardation plate, M: mirror, MO: microscope objective, P: polarizer, PH: pinhole,
SBN: cerium-doped strontium barium niobate. Camera picture presents a typical recorded
intensity pattern, magnification shows details of interference fringes.

wave fieldΨ4,1(r,km), which again is depicted in Fig. 3(c). Hence, the series expansion for
a multiperiodic 2D ratchet intensity distributionΛ2D composed of a 2D set of fundamental
nondiffracting beam intensities is

Λ2D(r) =
10

∑
m=1

1
2m

|Ψ4,1(r,km)|
2 , (13)

where exclusively the weighting factor 1/(2m) as well as the relation between the modulation
vectors of every orderm determines the difference between Eq. (5) and Eq. (13).

3. Experimental implementation

In the previous Section, we found the rules for the generation of multiperiodic structures deriv-
ing basic structures which resemble to intensities of nondiffracting beams. With these findings,
we are able to experimentally implement corresponding photonic structures, where the induc-
tion procedure orientates on the theoretical series expansion mentioned in Eqs. (5), (10) and
(13). Here, the usage of 2D fundamentals bears an essential advantage regarding the tempo-
ral effort in comparison to 1D basic structures since for a series expansion of up to ten terms
30 1D lattice structures are needed, which differ among each other in modulation frequency
(i.e. lattice period) and orientation, as well. Using 2D fundamentals, we only need 10 different
multiplexing steps.

The setup scheme for the experimental implementation of the optical induction of multiperi-
odic photonic structures is illustrated in Fig. 4. An expanded continuous-wave solid-state laser
beam with wavelengthλ =532 nm and an output power of approximately 80 mW is phase mod-
ulated by a computer controlled spatial light modulator (PSLM, Holoeye ‘Pluto’, 1920×1080
pixels). The phase pattern given to the PSLM and the displayed pattern of the following am-
plitude modulator for spatial frequency filtering (ASLM, Holoeye ‘LC-R 2500’, 1024× 768
pixels) are chosen to implement particular nondiffracting beams according to certain expan-
sion terms. The phase distribution includes both amplitude as well as phase information about

#174830 - $15.00 USD Received 23 Aug 2012; revised 12 Oct 2012; accepted 19 Oct 2012; published 19 Nov 2012
(C) 2012 OSA 19 November 2012 / Vol. 20,  No. 24 / OPTICS EXPRESS  27339



the desired wave field which is numerically calculated beforehand. Besides phase modulation,
amplitude modulation can be achieved by an intensity weighted blazed grating to diffract the
relevant light into a certain diffraction order [43]. In this context, the diffraction efficiency can
be linearly controlled by adapting the slope of the blazed grating by means of a 2D weighting
function in accordance with the calculated intensity distribution. Experimentally, the illumina-
tion timetm is easily adaptable via a short switching time of the PSLM.

By means of further optical elements, a desired wave field – in our particular case a non-
diffracting beam – is imaged into a volume of interest. By implementing a demagnification fac-
tor of 6 we achieve an effective transverse illumination area of approximately 2.3×1.3 mm2

at the imaging plane of the PSLM, the laser power over this area is about 300µW. Into this
volume, whose longitudinal length extends several centimeters [29], a photorefractive crystal
is placed in order to modulate its refractive index. We employ a nonlinear cerium-doped stron-
tium barium niobate (SBN) crystal that, externally biased, translates the intensity modulations
into refractive index changes via the photorefractive effect. For the whole set of induction pat-
terns, the external voltage is about 800 V over a distance of 5 mm where the induction beam
propagates along a 5 mm orientation of the crystal. The polarization of each writing wave field
is chosen to be perpendicular to the symmetry axis of the crystal (c axis) in order to mini-
mize the influence of the induced refractive index change on the writing light due to a small
electro-optical coefficient [36]. Thus the refractive index of the medium can be assumed to be
approximately homogeneous for this specific perpendicular state of polarization.

As a generalized approach, the temporal development of the refractive index change in a
biased SBN crystal caused by an illumination pattern behaves exponentially [35], fades to sat-
uration with the time constantτw, and also gets exponentially erased (τe) due to illumination
with non-identical intensity distributions. This can be summarized by

∆nw(t) = ∆nsat [1−e−t/τw],

∆ne(t) = ∆n0 e−t/τe,
(14)

with ∆n0 =∆n(t = 0) and∆nsat as the saturation value of the refractive index change. In general,
a written refractive index modulation is persistent in the SBN crystal until further illuminations.

In all multiperiodic expansions introduced in the previous section, the intensity belonging to
a particular expansion orderm is weighted by a factor depending onm. This weighting factor
is realized in the experiment by adapting the illumination timetm for each lattice-inducing
beam. Thereby, rather than controlling the external voltage or intensity of each fundamental
structure, we regulatetm to weight a specific induction term. Hence, we determine the net
illumination duration for one sequence of illumination totseq= ∑10

m=1 tm = 10 s and execute
about 20 multiplexing sequences.

The optical path of the index-modulating part in Fig. 4 is colored in green, whereas the red-
colored structure-analyzing part is subject of the next section.

4. Analysis of photonic structures

In order to analyze the optically induced photonic structures, we implement a technique to
retrieve the phase information of a probe wave field propagating through the induced photonic
structure. Therefore, we apply digital-holographic techniques in terms of superimposing the
probe beam with a reference plane wave of high spatial frequency, where a large angle enclosed
by both wave vectors enables a high phase resolution. Using a common CMOS camera to record
the phase-sensitive fringe pattern of the interference between the probe and the reference beam
at the back face of the crystal allows to determine the whole probe wave field information
rather than to merely detect the intensity distribution. In this way the phase retardation of the

#174830 - $15.00 USD Received 23 Aug 2012; revised 12 Oct 2012; accepted 19 Oct 2012; published 19 Nov 2012
(C) 2012 OSA 19 November 2012 / Vol. 20,  No. 24 / OPTICS EXPRESS  27340



Fig. 5. Analysis results of probing experiments using propagating plane wave of perpendic-
ular incidence to crystal surface to characterize generated 2D photonic superlattices: (a)–(c)
staircase structure, (d)–(f) wire mesh structure, (g)–(i) ratchet structure. Direction ofc axis
is illustrated in (g) and (i), respectively. Scale bar for all real space pictures is appended
in (h). Left column present intensity, middle column phase distribution of the plane probe
wave in real space. Insets of left column pictures illustrate far field diffraction spectrum.
Refractive index landscapes are depicted as surface plots in right column. Animated plots
for photonic staircase (Media 1), wire mesh (Media 2) as well as ratchet structure (Media
3) are available online.

probe beam gives 2D resolved information about the refractive index structure and depth [44].
In contrast to the writing process, the probe beam is polarized parallel to thec axis to operate
with a high electro-optical coefficient, which is approximately 6 times larger than the one for
the writing procedure.

To extract the phase information of the probe beam from the recorded interference pattern,
one has to treat the data in analogy to an amplitude demultiplexing operation in electric signal
processing. According to this, bandpass filtering in the vicinity of the carrier frequency followed
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Fig. 6. Time development of the rectangularly modulated refractive index structure. The
detailed illumination times are (a)t1 = 20 s, (b)t2 = 80 s, (c)t3 = 140 s, (d)t4 = 200 s.
Respective insets present corresponding intensity distributions in far field. The temporal
development of the staircase structure can be found online as a video file (Media 4).

by a frequency shift to zero provides the complex field information of the signal which is equal
to the probe wave field and includes the desired phase information [45]. In order to bandpass
filter the signal, we multiply the spatial frequency spectrum with a radial symmetric Hann
window, whose center is the carrier frequency and its radius equals the half distance between
carrier and zero frequency. In addition to a real space camera, we implemented a further camera
to detect the intensity of the probe beam in the far field by usage of the Fourier-transforming
attribute of an additional lens.

Figure 5 presents the results of the analysis of the induced photonic staircase [(a)–(c)], hexag-
onal wire mesh [(d)–(f)] as well as ratchet structures [(g)–(i)]. Intensity as well as phase dis-
tributions of the probe plane wave in real space combined with the intensity distribution in the
far field are illustrated in the lefthand and middle column, respectively. In order to determine
the refractive index change of a particular area, we first identify the phase distribution of the
homogeneous medium before the induction process was started. This distribution serves as the
reference phase and is subtracted from the measured phase distribution of the induced struc-
ture. In this manner, exclusively the refractive index change∆n caused by the optical induction
process can be extracted by carrying out∆n= ∆ϕλ/(2πd), whered is the optical path length
of the probe beam through the medium.

The righthand column of Fig. 5 visualizes in a surface plot the refractive index landscape of
an area of approximately 0.16 mm2. In addition to these illustrations, the induced structures are
presented as animated surface plots supporting an enhanced spatial impression of all refractive
index modulations (cf.Media 1, Media 2, Media 3).

Both the intensity and phase distribution of all three propagation measurements reveal the
character of the respective structures introduced in Section 2. The staircase superlattice pre-
sented in Fig. 5(a)–Fig. 5(c) is in great agreement with the simulations (cf. Fig. 1) showing
three kinds of plateaus of distinct level where the intermediate level appears most [which be-
comes apparent in the surface plot of Fig. 5(c)]. The structure is thoroughly four-fold as the
real-space results and the far field intensity distribution indicate, as well. According to this, the
diffraction orders given in the inset of Fig. 5(a) resemble a discrete diffraction pattern multi-
plied by a 2D four-foldsinc function. We note that this specific rotational symmetry particularly
results from the diamond orientation of the fundamental structures and is not the ordinary case
for photorefractive media with drift dominated charge carrier transport processes causing an
orientation anisotropy [46].

In contrast to the staircase superlattice, such a anisotropy becomes apparent for the hexagonal
wire mesh structure where intensity and phase distribution [cf. Fig. 5(d)–Fig. 5(f)] display a
stronger refractive index modulation along thec axis compared to any other direction. Thus,
vertical lines perpendicular to thec axis are more pronounced than the ones that are inclined by
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30◦ to thec axis. The far field picture presented in the inset of Fig. 5(d) and the surface plot in
Fig. 5(f) emphasize the influence of the crystal’s orientation anisotropy, additionally.

With the ratchet superlattice presented in Fig. 5(g)–Fig. 5(i), we introduce a further
anisotropy-unaffected structure besides the staircase superlattice, though this structure is not
rotational symmetric as the straightering character is inherent for the ratchet structure. In par-
ticular, the far field intensity illustrated in the inset of Fig. 5(g) manifests a preferred direction
of light diffraction (spectral quarter above center). Moreover, in contrast to the 1D ratchet struc-
ture presented in [37], the 2D ratchet superlattice can be oriented in four different ways without
disturbance by the anisotropy and can further be used to direct light parallelly as well as antipar-
allelly or perpendicularly up as well as down to thec axis, respectively. Altogether, especially
the ratchet structure is preferred to be applied as a light director and marks a throughout relevant
system for propagation experiments in the linear and in the nonlinear regime, as well.

In the setup presented in Fig. 4 we use two distinctive wavelengths – 532 nm for the induction
of the refractive index modulation (frequency doubled solid state Nd:YAG cw laser) and 633 nm
as the probe beam wavelength (He-Ne cw laser). The advantage of using red laser light in our
probing experiments is the smaller sensitivity of SBN in this wavelength regime compared to
wavelengths in the green regime around 532 nm [36].

By using a separate probe laser, we are able to timely-resolved detect the refractive index
modulation, which facilitates the development of the index change due to optical induction.
Figures 6(a)–6(d) present the developing index structure of a fixed area for four different points
in time t1 = 20 s, t2 = 80 s, t3 = 140 s, andt4 = 200 s. The formation of the staircase pho-
tonic structure becomes obvious already aftert3 = 140 s, and also the far field intensity reveals
characteristic details of the desired structure after several seconds of illumination.

5. Conclusion

In conclusion, we introduced a ubiquitous method to generate 2D photonic superstructures by
use of 2D nondiffracting beams. These writing beams serve as fundamentals of an optical se-
ries expansion to generate multiperiodic photonic structures. In such a manner, e.g. anisotropic,
graphene-like, as well as discontinuous functional structures are realizable. Although we proved
a successful induction of three representative complex superlattices in a photorefractive SBN
crystal, the technique is easily transferable to all photosensitive media, enabling the develop-
ment of photonic structures of long expansion in transverse as well as in longitudinal direction.
Also the implementation of multiperiodic optical atom or particle traps is one prospective appli-
cation of this technique. In general, our method offers a highly-functional tool for the generation
of two-dimensional multiperiodic systems, providing the basement of the investigation of so far
unexplored fascinating linear as well as nonlinear light propagation effects.
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