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Abstract

Our objective is to derive robust long term demeladticities for energy in different
end-use sectors. These can be used as a refévenexeloping long term energy
scenario’s based on bottom-up, technology oriemexiels such as Markal and TIMES.
This paper focuses on the residential sector. IRmta@ from 13 EU member states have
been used to derive elasticities, based on tloe-eorrection (ECM) specification
following Engle and Granger (1987). OLS standaediations are likely to be biased in
heterogeneous panels. A circular bootstrap metloggdias been used to derive standard
deviations and these has bee compared with OL®a&sts. The long term income
elasticity for electricity is 0.83 and a price ¢iasy of -.19. The short term price
elasticity appears to be higher than the long terioe elasticity. The long term income
elasticity for fuels is 0.28 and the price elasficil6. Bootstrapped standard errors are
twice as large as OLS estimates, but point estsrate still statistically significant.
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Introduction

According to the IPCC fourth assessment reporC@R2007), CQemissions will have

to be reduced by 50% to 80% in 2050 compared t®,200order to limit the increase in
global mean temperature to 2.0-2.4 °C. This tagyeéry challenging and is putting a lot

of pressure on the energy sector as this is the impertant source of GHG emissions.
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Bottom-up, technology oriented, optimisations medike Markal and TIMESare used

in many countries to develop scenario’s and analyéerent types of policies to reduce
GHG emissions. These models focus on evaluatiifereint technology options which
are represented in a partial equilibrium framewdike demand for energy is represented
in a semi-endogenous way, i.e. demand is exoganauseference simulation but price
elasticities allow for the evaluation of price iméd demand shifts in alternative
simulations, thus allowing for quantification oktlwelfare aspects of a policy. Typical
scenario’s cover a period of 20 to 50 years. dh@yng scenario’s and evaluating
policies requires assumptions on income and ptasieities.

This study focuses on the long term nature of thstieities as this aspect is often
ambiguous. Deriving long term price elasticitiesudd be based on time series, as cross
section data do not have the time dimension. Balyaing time series also gives rise to
particular problems, such as dealing with autodatic; and choosing the appropriate
historical period. Increasing the length of thediseries might have a positive effect on
the standard deviations. But it remains a studyistbrical data and still raises questions
on the validity for the future, in particular fdrd very long horizon. We can consider two
cases. First, elasticities being constant ovee timplying that an extending the period
will only affect the standard errors and not thépestimates. Second, elasticities
changing over time in which case it becomes likkeft we would be better off to rely on
more recent data. So for energy scenario buildmgge recent data can be used.

A panel approach has the advantage that we havwe vaoation in the prices and the
guantities, a precondition for successful econaoget In a way it, also covers aspects of
the time dimension, as different countries havietght per capita income, different
cultural and political situations, different taxgnmes and many other aspects that may
change in time. Another advantage is that we athmdliscussion of getting different
results for different countries.

Literature review
We have limited our study of literature to somesrgqublications. Reiss and White

(2001) is the only study we have found that usesscsection data and incorporates

2 Seewww.etsap.orgfor an extensive explanation of Markal and TIMES



detailed household appliance data. They estirhatenean annual electricity price
elasticity for California households to be -0.3bonekamp (2007) uses a bottom-up
technology driven simulation model for the Netheds. This methodology considers a
constant level of utility and focuses on price ioeld technology shifts. He derives a
derives a price elasticity of -0.12 for electricatyd -0.14 for gas. Dergiades and
Tsoulfidis (2008) used the Autoregressive Distrdoutag approach to cointegration.
They have found a long term income elasticity 0270and a long term price elasticity of
-1. for residential electricity demand in the USondroyiannis (2004) also used a
cointegration framework to analyse the residemfiettricity demand in Greece. His
findings are a long term income elasticity of 1a6f8l a price elasticity -.41. Narayan et
all. used a panel cointegration analysis for regideelectricity demand elasticities in G7
countries. The have found a long term income ielasbf 0.31 and a price elasticity -
1.45. Finally, we would like to drawn attention ¥da et all. (2007). They explored
different functional specifications to study in Uidential electricity demand and found
that the (one- equation) AIDS specification outperfs the translog or log-lineair model

specifications.

Methodology

The dataset

Historical data for 13 EU member states coveringgurl historical periods between
1990 and 2005 were used. The data for BE, DKIFR\L,ES and UK are covering the
whole period. For DE (1991-2005), FI, IE, PT (198H05), AT(1996-2005) and SW
(1997-2005) we have less observations. Data has dletained from EUROSTAT,
except data for residential fuel consumption wvies obtained from UNFCCC GHG
National inventory submissiohsResidential fuel covers liquid (mainly fuel oijaseous
(mainly natural gas) and solid fuels (mainly caalyd biomass. Biomass is important in

some countries, but mostly covers only a smalltioacof domestic fuel consumption.

®In EUROSTAT, some inconsistencies in fuel constimnpdata have been found. For the remaining
UNFCC data are very similar to EUROSTAT data.



An aggregated residential fuel price was construfrtam residential gas and fuel oil
statistics. Solid fuels and biomass were ignorexhbge of lack of data. All prices
include taxes.

Private consumption expenditure, expressed in aahgrices, was used as a proxy for
real income and all prices were deflated by thesagarer price index. Heating degree-
days express the annual need for space heatingg tako account the year to year
fluctuations in outside temperatures. They aresttanted as the integrated difference
between the building base temperature and thedeutsmperature when the outside
temperature is below the base temperature. Wedesgee-days 18-18 because these
data are readily available. Nevertheless we areeathat this might not be appropriate

for all countries.

Model specification

A singular price shock may have different effecleew measured over a short period or
over a number of year&igure 1). The short term price elasticity measures the
immediate effect of a price shock. In the longitwwonverges to some new equilibrium
situation, which might be higher or lower. It ifem argued that long term effects are
higher than short term elasticities. This is duetmeased substitution possibilities as
flexibility increases over time while energy consagiappliances need replacement.
This view has inspired many econometricians for yngears in specifying their model
structure. It has been common practise to sokle@tbblem of autocorrelation in the
error term by introducing a lagged dependent véiabthe RHS. This ‘solution’ also
introduces an identification problem of the tinepdndent nature of the price elasticities.
Indeed, introducing lagged dependent variabl€®g) linear equations tend to
overestimate the long term price effect in simoladi Denoting y as the logarithm of
the dependent variable in (1) and x as the vedttreologarithm of independent
variables, the simulated long term elasticitiesgaven by a / (1-5). With 0 <6< 1 long
term elasticities always exceed the short terntielass.

Vi =o' Xt +OYrate (1)

To solve this problem we used the two steps ECMifipation, following Engle and

Granger (1987). This model specification makessaingttion between the long term and



short term elasticity and does not impose any @rpgonstraints. For the reader who is
unfamiliar with the theory and for the purpose wtlier discussions, we briefly
summarize the basic ideas behind this model spatiifin? A stationary time series is
said to be integrated of order zero, indicated@s IIn stationary time series past values
have no permanent effect on future values. In esthto this for the random walk
modef. A time series behaving like a random walk masielaid to be integrated of
order one, indicated as I(1). For a time serig} the first differencé\x; = %-X:.1 is 1(0).
A time series I(1) is also said to have a unit r@anger and Newbold (1974) warned
about the risk of obtaining spurious regressiorth wguations of type (2) when the
dependent variables and the independent variat#e$1g. This view changed
dramatically in Engle and Granger (1987). Equatimitype (2) may express a
cointegrating relationship. This leaves two optiartnen making OLS regressions of type
(2). Either the result is spurious, or the resufiresses a cointegrating relationship. A
cointegrating relationship expresses a long temilibgum between the variables. The
error term expresses the deviation from the long equilibrium. A condition for
cointegration is that the error tegn) constitutes a stationary time series. Ordinaagte
squares provides consistent estimates of thisexgriation relationship despite the fact
that the error terms might be highly correlatedhe Error term is introduced in (3) to
obtain the error correction specification. Theueabfi in (3) expresses the speed of
convergence to the long term cointegrating relatigqm Note that the cointegrating
relationship (2) still has little meaning if thelwa ofx is very small or statistical

insignificant.

Ot = oqi +P1Yie + v1 pe +61 hdd +ei; (2)

AGt = B2 AYix + y2A P +02Ahdd + ke + W (3)

g : log (electricity or fuel consumption)

* This expresses the interpretation of the author.

® The relationship with the random walk and theniablogy used are easily established. Assume a one-
dimensional random walk along the X axig.refers to the position on time t and; is a random step
length. The sequence of steps constitute a stéatidime series. At any time the positiarex.; + Ax

and does not constitute a stationary time seriea kime series of order one I(1).



y : log (real income approximated by total privatdgsumption expenditure)
p : log (price electricity or fuel / consumptionga index)

hdd : log (heating degree days)

i : country

A : difference operator

B1,v1,0: long term elasticities

B2,v2,02 short term elasticities

aj country specific regression constant

&ir error term in the cointegrating relationship

Ui error term in the ECM equation

The long term price elasticiy and the long term income elasticitigsare the central
objects of this analysis. However, as just arguediso have to analyse the error
correction specification (3) to make sure thatdbmtegrating relationship is meaningful.
After having analysed the stationary characteheffanel data, we will continue with a

discussion some methodological issues.

Unit root tests

By imposing homogenous slope coefficients in (2) €8) and by allowing only the
constant to vary between different countries, wiaat ignore the cross-section
dimension in the data. Analysis of the order oégmation of the variables is consistent
with this approach. We use a specification of thugented Dickey Fuller (4) with
homogenous slope coefficiemt@ndo and a constantfor each country. The number of
lagged variables in the ADF-test has been fixeoht® because of the short length of the

time series. The relevant parameter is the t §tatsp.

AYii = p Vit1+ 6 AVie1 +7i teix (4)

Table 1 : Augmented Dickey-Fuller unit root tests

Variable =Y ADF-t




Private consumption -0.699

Residential electricity consumption -0.725
Real electricity price -0.727
Fuel consumption -2.925
Real fuel price -2.451
Degree days -6.714

Note: The 5 % critical value is -1.95

The ADF-t statistics in
Table 1 suggests that consumption, residentiatretég consumption and the real
electricity price are non-stationary I(1) whereaslfconsumption, the real fuel price and
degree days are stationary. The test statistiddgree days suggests a high stationary
charactef. The non-stationary character for residentiatteigity consumption and total
private consumption are intuitively comprehenslolé the result for the real electricity
price might be somewhat surprising. In the datasat,electricity prices in almost all
countries decreased in the period observed. Thghtrbe the result of technological
improvements, in the production of electricity

Some other methodological issues

With the unit root test in mind we arrive at twoiqts of discussion. The first one is
whether the ECM modelling, formalised in equati@@sand (3), is valid for fuels. The
basic idea of cointegrating is to find a stationargar combination of non—stationary
time series. Clearly, one cannot argue aboutra@giating relationship if the time series
are stationary. But the absence of non-statiodaty does not violate (2) the conditions
for a valid model specification, as it is not a 8pus regression either. So we feel that,
as a criterion to accept the ECM, it is far mor@amant to demonstrate the stationary
character of the error terms; in (2) as well as the point estimate and statistic

significance of the error correction componeir (3). Some other authors suggest that

® This result conflicts with the idea of global wang. But this result is based on relative shianetseries
whereas global warming is a process of severaldie:

"In this period growth in central production wasimiyin CCGT plants with improved efficiencies up 5
% compared to 39 % for a classical gas fired @andtin the same period new technologies such as
Combined Heat and Power became popular.



the ECM can still be valid for stationary proces@é=ele and Deboef 2004), but some

loss of efficiency in estimating the parameterscaie ignored.

The second point of discussion relates to the tiseroe stationary variables in the
cointegrating relationship. We discuss the exampledd days in (2). From the thermal
characteristics of buildings it follows that hegtishegree days should have an immediate
effect when using yearly dafand valid elasticities are in the range [0-1].yAtelayed
effect should be considered as spurious. Assumipg= 0 andA pi; = 0, deriving
steady state properties by substituting (2) iraf8) taking lim. .- .;,we obtain (4) which
equals (2) in the limit i6, = 0,. If on the contrary; = 0 andd, > 0, then gis a function
of A hdd, conflicting with thermal characteristics of builgs. Empirically, we have also
found marginally improving statistical results whanluding hdd in the long term
eguation.

Ot = 62hdd + a1 +P1Vies + y1 Pea + 01-02) hddsy (4)

A third issue is the use of substitute energiesxpsanatory variables in the RHS of (2)
and (3). Different authors have included a sulnstienergy price in the equations,
although with varying success (Nararyan et allO20 Derigiades and Tsoulfidis
(2008)). In our analysis of this issue, the fuste@was positive in the electricity
equation (4), consistent with economic theory,thatelectricity price was negative in
the fuel equation (4). A possible reason for thikire is a correlation between the
electricity price and the fuel price. Some cottielacould be expected as fuels are the
main input to electricity production. However, mastiaer factors like tariffs and
distribution costs have an impact on the resideaketricity and fuel prices and the
correlation turned out to be 0.41 on average, aevilat should not rose problems given
the sample size. Another possible reason coufdur® in the specific nature of fuel-
electricity substitutions? Electricity is used foechanically driven applications,
lighting, cooling, electronic devices, space heagtimot water production and cooking.

& Only when using daily data some delayed effecttmapossible due to the heat mass stored in the
building.



For the latter three functions, fuels and elediriare almost perfect substitutes. Observed
substitution is limited due to the large price eliéince and the lifetime of equipment. But
sometimes, the capital cost outweighs the priderdince, like with second houses, small
vacation apartments or passive houses. Surprisitigdyfact that electricity and fuels are
almost perfect substitutes complicates the maugllThe reason for this is that a linear
logarithmic model specification may not be apprataiwhen dealing with perfect
substitutes. Indeed, people are more likely to bavated by absolute price differences
instead of relative prices. Just a simple exanptéeimonstrate the problem. Consider a
price of fuels 15 € /GJ and electricity 45 € /GiJboth prices increase by, say 10%, then
the absolute price does not change but the pritereince increases by 10 %. This idea
has been visualised Figure 2, expressing the relationship between the logaritland
absolute price differences in our sample. Theedation is only 0.46. Consequently, by
using a logarithmic model specification, we ardesirig from a considerable information
loss. Model formulations that explicitly considdraracteristics of technologies will be

more suitable to analyse fuel-electricity substtoit

Bootstrapping standard deviations

One disadvantage of panel data is that problemagekto cross section data and time
series are accumulated. Heteroscedasticity ipiadlyproblem in cross section data and
autoregression in the error terms is inherente eries. OLS still provides unbiased
point estimates but standard errors are no lonajet.v

To overcome this problem a circular block bootstragthodology has been used. The
bootstrapping is organised in the following wayt@u N (N = 179) for (1) and 166 for
(2)) observations we randomly draw new samplegjofklength. The first observation
xit of each block is chosen randomly with replacenaewita block XI ={ X, Xit+1,...

Xit+k } IS selected, k representing the block lengtht + k exceeds 2005, we continue
with the first observation for country i. | bksare selected with | = integer(N/k). One
additional block of length N- I*k is added to mattie original size. OLS is used to
derive point estimates on the new sample. Thispsated 1000 times and bootstrapped
standard deviations are calculated based poimhatgs. Note that the number of

constantsi; in equation (2) changes in the bootstrappinguimmg new samples, it



frequently happened that not all countries wereesgnted, and the corresponding
constant was left out.

Defining the optimal block length k is still prolotatic. The existing literature provides
some guidance on defining the block length in tgaaes (Politis and White (2003),
Carlstein et all. (1998), Berkowitz and Kilian ()9To our knowledge there are no
references for panel data. If we choose k =d tithe dependence of the data is ignored
and the block size should be a fraction of theioaltime length, thus limiting the
possible choices to the interval [2-9]. We have enperiments using different block
length and have observed some asymptotic behawidie results. Fork >4 only
marginal increasing standard error estimates (&®0f10 % between k =4 and k = 9)

were observed, suggesting that with k = 4, standants are not underestimated.

Results

The results for the long term cointegrating eqpra(R) are presented in Table 2 The
ADF-t statistic results relate to the residualsheflong term cointegrating relationship
(2). As before it includes one lagged variable e Tésults suggests that the residuals are
stationary both for electricity and fuels. Thedderm price elasticity equals -0.186 for
electricity and -0.157 for fuels. Income elasies are 0.83 and 0.28 respectively.
Bootstrapped standard errors are significantly éigiompared to traditional OLS
estimates, but nevertheless the results remaistatally significant for income, price

and heating degree days. Heating degree days hanesimpact on fuel consumption
than on electricity. This is consistent as fueésraostly used for heating.

Table 3 presents the result for the error corraatidel (3). The bootstrapped standard
errors for block size k > 1 are identical to thobg#ained for k = 1, indicating that we are
no longer dealing with autocorrelation in the eteyms. The error correction coefficients
are above 0.33 and are statistically significasqpproximately 80 % of the deviations of
the long run equilibrium are absorbed in the shartECM equation in a period of 4
years.

Let us analyse how these adjustments take plaoge st that this error correction
mechanism is only relevant when the elasticitie@)rand (3) are different. We observe

that6, being equal td,, for fuels, consistent with the thermodynamic natf this
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relationship as discussed in equation (4). Fartedaty, the point estimates and the
standard errors show thatffL(>p2) =.93 and P (y} |<|y2|) =.92. The long term
income elasticity is higher than the short ternome elasticity and the long term price
elasticity is smaller (in absolute values) thanghert term price elasticity. Both results
are significant at the 10% level. Similarly, faefs, P§1 >p2) =.85 and P (v} |> [y2

|) =0.93. The long term price elasticity for fuedshigher than the short term, significant
above 10%, whereas short and long term incometsfége not significantly different
above 10%.

Silk and Joutz (1997) also found that the shorhterice elasticity in the US was
numerically larger than the long term price elasti@lthough not significantly different.
Immediate and delayed price effects are relatede@xistence of alternatives, lifetime
of appliances and the time required to take actfoften a first reaction to a price shock
is to consume less and accept the welfare losa.gezond reaction one will look for
alternatives. The more of that exist, the moreasnigble that the price effect will be. For
many electrical appliances hardly any alternatesast. This is quite different for fuels.
Improving insulation is realistic opportunity tornpensate the original welfare loss and
reduce fuel consumption permanently. The enerysi&ficy of many electrical
applications has improved, but to a much smallésrex

Table 2 : Results for the long term equilibrium egations (3)

ADF
B1 I'y 01 ser t-stat
Electricity
0.830 -0.186 0.170 0.059 -4.09
OLS T-stat 19.12 -4.80 2.67
BS T-stat k=1 15.11 -3.45 2.44
BS T-stat k=4 8.97 -1.94 2.08
Fuels
0.277 -0.157 0.451 0.053 -4.67
T-stat OLS 8.21 -6.90 10.30
T-statBS k=1 5.85 -4.21 6.03
T-statBS k=4 3.20 -2.71 5.24

Note : ADF-t 5 % critical valie— 4.11
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Table 3: Results for the error correction model (4)

B2 v2 02 K ser
Electricity
0.558 -0.3876 0.0884 -0.332 0.043
OLS T-stat 5.16 -8.04 2.46 -5.15
BS T-stat k=1 3.56 -3.78 2.89 -3.59
Fuels
0.145 -0.059 0.456 -0.347 0.038
OLS T-stat 1.49 -2.03 14.34 -5.55
BS T-stat k=1 1.60 -2.03 8.62 -4.29

Finally the validity of model results for the difént countries in the panel are analysed.
For this purpose we have calculated the Dickeyefiatistics on the country residuals
in the long term equation (2). For electricityisttest identifies a non-stationary
relationship for Denmark, Netherlands, Portugal tredUnited Kingdom. For fuels non
stationery is observed for Ireland, Spain and Swede

It would contribute to the understanding of elaxtyiand fuels consumption to analyse
why these countries behave differently in comparigothe European average. Spain has
the highest increase in fuel consumption in theep@n40 % between 1990 and 2005),
which might be related to tourism and populatioovgh. Ireland is somewhat peculiar as
in 1990 it was one of the poorest countries in E@@&8 in 2005 one of the richest. Also a
significant number of immigrants have settled is freriod. Fuel consumption increased
by 24 %, the second highest increase in the pan&bducing population in the
equations, i.e. replacing q by g/pop and yippp in (3) improves Dickey-Fuller
statistics to -1.28 and -1.42 for Ireland and Spespectively. Sweden is somewhat
peculiar too. Fuel consumption dropped by 35 %wbeh 1997 and 2005 as a results of
different policy actions to reduce GHG emissionsatroduction in new dwellings is
now mainly (over 80 %) based on heat-pumps.

For electricity it seems hard to find reasonablgl@xations. Electricity consumption for
DK, NL, PT and UK has been plotted against the EBNi&rage irFigure 3. The curve

for DK is extremely flat in the period observed 9692005) and for PT is extremely
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steep. NL and UK do not deviate too much form therage of EU-15. Some further

research is required to explain this difference.

Table 4: Dickey fuller test on the residuals of eqation (2)

Electricity Fuels
AT -2.50 -4.01
BE -2.78 -2.95
DK -0.62 -2.21
Fl -2.14 -1.70
FR -3.03 -2.87
DE -4.71 -2.90
IE -2.96 -0.88
IT -2.27 -2.36
NL -0.63 -2.08
PT 0.19 -3.69
ES -1.98 -1.12
SE -3.17 -0.11
UK 0.32 -1.91
Conclusions

Developing long term energy scenarios requireseafee figures for income and price
elasticities. The objective of this analysis wasl¢rive income and price elasticities
from panel data. For electricity the point estienfair the long term income elasticity is
0.83 with a 90 % probability interval [0.68-0.92The point estimate for the price
elasticity is -0.186 with a 90 % probability intaf [-0.354 - -0.028]. The income
elasticity for fuels is much lower. The point esttimis 0.28 with a 90 % probability
interval [0.13-0.42]. The fuels price elasticityipt estimate equals -0.16 and the 90 %
probability interval [-0.25 - -0.06].
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Figure 2: The information loss when using logamith model specifications for nearly perfect sulbsis.
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