
 1

 

Electricity and fuel consumption in Europe: a panel error correction 

model for residential demand elasticities. 

 

Jan Duerinck 1 

VITO (Belgium) 

Draft : 22 October 2009 

 

Abstract  

Our objective is to derive robust long term demand elasticities for energy in different 

end-use sectors.  These can be used as a reference for developing long term energy 

scenario’s based on  bottom-up, technology oriented, models such as Markal and TIMES.  

This paper focuses on the residential sector.  Panel data from 13 EU member states have 

been used to derive elasticities,  based on the error-correction (ECM) specification 

following Engle and Granger (1987).  OLS standard deviations are likely to be biased in 

heterogeneous panels. A circular bootstrap methodology has been used to derive standard 

deviations and these has bee compared with OLS estimates.  The long term income 

elasticity for electricity is 0.83 and a price elasticity of -.19. The short term price 

elasticity appears to be higher than the long term price elasticity.  The long term income 

elasticity for fuels is 0.28 and the price elasticity -.16.  Bootstrapped standard errors are 

twice as large as OLS estimates, but point estimates are still statistically significant.   

Key words:  residential electricity; residential fuel; co-integration, error correction     

 

 

Introduction  

According to the IPCC fourth assessment report, (IPCC 2007), CO2 emissions will have 

to be reduced by 50% to 80% in 2050 compared to 2000, in order to limit the increase in 

global mean temperature to 2.0-2.4 °C.  This target is very challenging and is putting a lot 

of pressure on the energy sector as this is the most important source of GHG emissions.  
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Bottom-up, technology oriented, optimisations models like Markal and TIMES2 are used 

in many countries to develop scenario’s and analyse different types of policies to reduce 

GHG emissions.  These models focus on evaluating different technology options which 

are represented in a partial equilibrium framework. The demand for energy is represented 

in a semi-endogenous way, i.e. demand is exogenous in a reference simulation but price 

elasticities allow for the evaluation of price induced demand shifts in alternative 

simulations, thus allowing for quantification of the welfare aspects of a policy. Typical 

scenario’s cover a  period of  20 to 50 years.  Developing scenario’s and evaluating 

policies requires assumptions on income and price elasticities.    

This study focuses on the long term nature of the elasticities as this aspect is often 

ambiguous. Deriving long term price elasticities should be based on time series, as cross 

section data do not have the time dimension. But analysing time series also gives rise to 

particular problems, such as dealing with autocorrelation and choosing the appropriate 

historical period.  Increasing the length of the time series might have a positive effect on 

the standard deviations.  But it remains a study of historical data and still raises questions 

on the validity for the future, in particular for the very long horizon. We can consider two 

cases.  First, elasticities being constant over time, implying that an extending the period 

will only affect the standard errors and not the point estimates. Second, elasticities 

changing over time in which case it becomes likely that we would be better off to rely on 

more recent data. So for energy scenario building, more recent data can be used.  

A panel approach has the advantage that we have more variation in the prices and the 

quantities,  a precondition for successful econometrics.  In a way it, also covers aspects of 

the time dimension, as different countries have different per capita income, different 

cultural and political situations, different tax regimes and many other aspects that may 

change in time. Another advantage is that we avoid the discussion of getting different 

results for different countries. 

 

Literature review  

We have limited our study of literature to some recent publications.  Reiss and White 

(2001) is the only study we have found that uses cross section data and incorporates 

                                                   
2  See www.etsap.org  for an extensive explanation of  Markal and TIMES  
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detailed household appliance data.  They estimate the mean annual electricity price 

elasticity for California households to be -0.39.  Boonekamp (2007) uses a bottom-up 

technology driven simulation model for the Netherlands.  This methodology considers a 

constant level of utility and focuses on price induced technology shifts.  He derives a 

derives a price elasticity of -0.12 for electricity and -0.14 for gas.  Dergiades and 

Tsoulfidis (2008) used the Autoregressive Distributed Lag approach to cointegration. 

They have found a long term income elasticity of -0.27 and a long term price elasticity of 

-1. for residential electricity demand in the US.  Hondroyiannis (2004) also used a 

cointegration framework to analyse the residential electricity demand in Greece.  His 

findings are a long term income elasticity of 1.56 and a price elasticity -.41.  Narayan et 

all. used a panel cointegration analysis for residential electricity demand elasticities in G7 

countries.  The have found a long term income elasticity of 0.31 and a price elasticity -

1.45.  Finally, we would like to drawn attention to  Xia et all. (2007). They explored 

different functional specifications to study in US residential electricity demand and found 

that the (one- equation) AIDS specification outperforms the translog or log-lineair model 

specifications.     

         

 

Methodology  

The dataset    

Historical data for 13 EU member states covering unequal historical periods between 

1990 and 2005 were used.  The data for  BE, DK,FR, IT, NL,ES and UK are covering the 

whole period. For DE (1991-2005),  FI, IE, PT (1995-2005), AT(1996-2005) and SW 

(1997-2005) we have less observations.  Data has been obtained from EUROSTAT, 

except data for residential fuel consumption which was obtained from UNFCCC GHG 

National inventory submissions3.  Residential fuel covers liquid (mainly fuel oil), gaseous 

(mainly natural gas) and solid fuels (mainly coal) and biomass.  Biomass is important in 

some countries, but mostly covers only a small fraction of domestic fuel consumption.          

                                                   
3 In EUROSTAT,  some inconsistencies in fuel consumption data have been found.  For the remaining 
UNFCC data are very similar to EUROSTAT data. 
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An aggregated residential fuel price was constructed from residential gas and fuel oil 

statistics. Solid fuels and biomass were ignored because of lack of data. All prices  

include taxes.     

Private consumption expenditure, expressed in constant prices, was used as a proxy for 

real income and all prices were deflated by the consumer price index. Heating degree-

days express the annual need for space heating, taking into account the year to year 

fluctuations in outside temperatures.  They are constructed as the integrated difference 

between the building base temperature and the outside temperature when the outside 

temperature is below the base temperature.  We used degree-days 18-18 because these 

data are readily available. Nevertheless we are aware that this might not be appropriate 

for all countries.               

 

Model specification  

A singular price shock may have different effects when measured over a short  period or 

over a number of years (Figure 1). The short term price elasticity measures the 

immediate effect of a price shock.  In the long run it converges to some new equilibrium 

situation, which might be higher or lower.  It is often argued that long term effects are 

higher than short term elasticities. This is due to increased substitution possibilities as 

flexibility increases over time while energy consuming appliances need replacement.  

This view has inspired many econometricians for many years in specifying their model 

structure.  It has been common practise to solve the problem of autocorrelation in the 

error term by introducing a lagged dependent variable in the RHS. This ‘solution’ also 

introduces an identification problem of  the time dependent nature of the price elasticities.  

Indeed,  introducing lagged dependent variables in (log) linear equations tend to 

overestimate the long term price effect in simulations.  Denoting y as the logarithm of  

the dependent variable in (1) and x as the vector of the logarithm of independent 

variables, the simulated long term elasticities are given by  α / (1-δ).  With 0 < δ< 1 long 

term elasticities always exceed the short term elasticities.           

 yt  = α’ x t  + δ yt-1 + εt   (1)         

To solve this problem we used the two steps ECM specification, following Engle and 

Granger (1987).  This model specification makes a distinction between the long term and 
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short term elasticity and does not impose any a-priory constraints.  For the reader who is 

unfamiliar with the theory and for the purpose of further discussions, we briefly 

summarize the basic ideas behind this model specification.4  A stationary time series xt is 

said to be integrated of order zero, indicated as I(0).  In stationary time series past values 

have no permanent effect on future values. In contrast to this for the random walk 

model5.  A time series behaving like a random walk model is said to be integrated of 

order one, indicated as I(1).  For a time series I(1), the first difference ∆xt =  xt-xt-1 is I(0).  

A time series I(1) is also said to have a unit root. Granger and Newbold (1974) warned 

about the risk of obtaining spurious regressions with equations of type (2) when the 

dependent variables and the independent variables are I(1). This view changed 

dramatically in Engle and Granger (1987). Equations of type (2) may express a 

cointegrating relationship. This leaves two options when making OLS regressions of type 

(2). Either the result is spurious, or the result expresses a cointegrating relationship. A 

cointegrating relationship expresses a long term equilibrium between the variables. The 

error term expresses the deviation from the long term equilibrium. A condition for 

cointegration is that the error term ε i,t constitutes a stationary time series.  Ordinary least 

squares provides consistent estimates of this cointegration relationship despite the fact 

that the error terms might be highly correlated.  The error term is introduced in (3) to 

obtain the error correction specification.  The value of κ in (3) expresses the speed of 

convergence to the long term cointegrating relationship. Note that the cointegrating 

relationship (2) still has little meaning if the value of κ is very small or statistical 

insignificant.     

 

qi,t   =   α1i  + β1 yi,t  +  γ1  pi,t  + θ1  hddt + ε i,t   (2)         

 

∆ qi,t   =   β2  ∆ yi,t  +  γ2 ∆ pi,t  + θ2 ∆ hddt +  κ ε i,t-1  +  uit  (3) 

 

q : log (electricity or fuel consumption) 

                                                   
4 This expresses the interpretation of the author.   
5  The relationship with the random walk and the terminology used are easily established. Assume a one-
dimensional random walk along the X axis.  xt refers to the position on time t and ∆xt is a random step 
length.  The sequence of steps constitute a stationary time series.  At any time the position xt = xt-1 + ∆xt 
and does not constitute a stationary time series but a time series of order one I(1).          
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y :  log (real income approximated by total private consumption expenditure)  

p : log (price electricity or fuel / consumption price index)  

hdd : log (heating degree days)      

i :  country     

∆ : difference operator  

β1, γ1, θ1 long term elasticities   

β2, γ2, θ2 short term elasticities    

αi  country specific regression constant  

εi,t  error term in the cointegrating relationship  

uit  error term in the ECM equation  

 

The long term price elasticity γ1 and the long term income elasticities β1 are the central 

objects of this analysis. However, as just argued we also have to analyse the error 

correction specification (3) to make sure that the cointegrating relationship is meaningful. 

After having analysed the stationary character of the panel data, we will continue with a  

discussion some methodological issues.           

 

Unit root tests  

By imposing homogenous slope coefficients in (2) and (3) and by allowing only the 

constant to vary between different countries, we in fact ignore the cross-section 

dimension in the data. Analysis of the order of integration of the variables is consistent 

with this approach. We use a specification of the Augmented Dickey Fuller (4) with 

homogenous slope coefficients ρ and σ and a constant τi for each country.  The number of 

lagged variables in the ADF-test has been fixed to one because of the short length of the 

time series. The relevant parameter is the t statistic of ρ.       

 

∆ yi,t   =   ρ  yi,t-1  +   σ  ∆ yi,t-1  +  τi  +  ε i,t     (4) 

 

Table 1 : Augmented Dickey-Fuller unit root tests 

 

Variable –Y 

 

ADF-t 
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Private consumption -0.699 

Residential electricity consumption -0.725 

Real electricity price -0.727 

Fuel consumption -2.925 

Real fuel price -2.451 

Degree days -6.714 

Note: The 5 % critical value is -1.95 

 

The ADF-t statistics in 

Table 1 suggests that consumption, residential electricity consumption and the real 

electricity price are non-stationary I(1) whereas fuel consumption,  the real fuel price and 

degree days are stationary.  The test statistic for degree days suggests a high stationary 

character 6.  The non-stationary character for residential electricity consumption and total 

private consumption are intuitively comprehensible but the result for the real electricity 

price might be somewhat surprising. In the dataset, real electricity prices in almost all 

countries decreased in the period observed. This might be the result of technological 

improvements, in the production of electricity 7.  

 

Some other methodological issues 

With the unit root test in mind we arrive at two points of discussion.  The first one is 

whether the ECM modelling, formalised in equations (2) and (3), is valid for fuels.  The 

basic idea of cointegrating is to find a stationary linear combination of non–stationary 

time series.  Clearly, one cannot argue about a cointegrating relationship if the time series 

are stationary.  But the absence of non-stationary data does not violate (2) the conditions 

for a valid model specification, as it is not a spurious regression either.  So we feel that, 

as a criterion to accept the ECM, it is far more important to demonstrate the stationary 

character of the error terms ε i,t in (2) as well as the point estimate and statistical 

significance of the error correction component κ in (3). Some other authors suggest that 

                                                   
6 This result conflicts  with the idea of global warming.  But this result is based on relative short time series 
whereas global warming  is a process of several decades.   
7 In this period growth in central production was mainly in CCGT plants with improved efficiencies up 55 
% compared to 39 % for a classical gas fired plant and in the same period new technologies such as 
Combined Heat and Power became popular.    
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the ECM can still be valid for stationary processes (Keele and Deboef  2004), but some 

loss of efficiency in estimating the parameters cannot be ignored.  

 

The second point of discussion relates to the use of some stationary variables in the 

cointegrating relationship. We discuss the example of hdd days in (2). From the thermal 

characteristics of buildings it follows that heating degree days should have an immediate 

effect when using yearly data 8 and valid elasticities are in the range [0-1].  Any delayed 

effect should be considered as spurious.  Assuming ∆ yi,t = 0 and  ∆ pi,t  = 0, deriving 

steady state properties by substituting (2) in (3) and taking lim κ -> -1,we obtain (4) which 

equals (2) in the limit if θ1 = θ2 . If on the contrary θ1 = 0 and θ2 > 0, then qit is a function 

of ∆ hddt, conflicting with thermal characteristics of buildings. Empirically, we have also 

found marginally improving statistical results when including hdd in the long term 

equation.  

 

 qi,t   =   θ2 hddt  +  α1i   + β1 yi,t-1  +  γ1  pi,t-1  +  (θ1- θ2)   hddt-1   (4) 

 

A third issue is the use of substitute energies as explanatory variables in the RHS of (2) 

and (3).  Different authors have included a substitute energy price in the equations, 

although with varying success (Nararyan et all. (2007),  Derigiades and Tsoulfidis 

(2008)).  In our analysis of this issue, the fuel price was positive in the electricity 

equation (4), consistent with economic theory, but the electricity price was negative in 

the fuel equation (4).  A possible reason for this failure is a correlation between the 

electricity price and the fuel price.  Some correlation could be expected as fuels are the 

main input to electricity production. However, many other factors like tariffs and 

distribution costs have an impact on the residential electricity and fuel prices and the 

correlation turned out to be 0.41 on average, a value that should not rose problems given 

the sample size.  Another possible reason could be found in the specific nature of fuel-

electricity substitutions?  Electricity is used for mechanically driven applications, 

lighting, cooling, electronic devices, space heating, hot water production and cooking.  

                                                   
8 Only when using daily data some delayed effect can be possible due to the heat mass stored in the 
building.    
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For the latter three functions, fuels and electricity are almost perfect substitutes. Observed 

substitution is limited due to the large price difference and the lifetime of equipment. But 

sometimes, the capital cost outweighs the price difference, like with second houses, small 

vacation apartments or passive houses. Surprisingly, the fact that electricity and fuels are 

almost perfect substitutes  complicates the modelling. The reason for this is that a linear 

logarithmic model specification may not be appropriate when dealing with perfect 

substitutes. Indeed, people are more likely to be motivated by absolute price differences 

instead of relative prices. Just a simple example to demonstrate the problem. Consider a 

price of fuels 15 € /GJ and electricity 45 € /GJ.  If both prices increase by, say 10%, then 

the absolute price does not change but the price difference increases by 10 %. This idea 

has been visualised in Figure 2, expressing the relationship between the logarithmic and 

absolute price differences in our sample.  The correlation is only 0.46. Consequently, by 

using a logarithmic model specification, we are suffering from a considerable information 

loss.  Model formulations that explicitly consider characteristics of technologies will be 

more suitable to analyse fuel-electricity substitution.       

   

Bootstrapping standard deviations    

One disadvantage of panel data is that problems related to cross section data and time 

series are accumulated.  Heteroscedasticity is a typical problem in cross section data and 

autoregression in the error terms is inherent to time series.  OLS still provides unbiased 

point estimates but standard errors are no longer valid. 

To overcome this problem a circular block bootstrap methodology has been used. The 

bootstrapping is organised in the following way. Out of  N (N = 179) for (1) and 166 for 

(2)) observations we randomly draw new samples of equal length.  The first observation 

xi,t of each block is chosen randomly with replacement and a block Xl ={  xi,t, xi,t+1,… 

xi,t+k } is selected, k representing the block length.  If  t + k exceeds 2005, we continue 

with the first observation for country i.   l  blocks are selected with l = integer(N/k). One 

additional block of length N- l*k is added to match the original size.  OLS is used to 

derive point estimates on the new sample.  This is repeated 1000 times and bootstrapped 

standard deviations are calculated based point estimates.  Note that the number of 

constants α1i  in equation (2) changes in the bootstrapping. In running new samples, it 
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frequently happened that not all countries were represented, and the corresponding 

constant was left out.   

Defining the optimal block length k is still problematic.  The existing literature provides 

some guidance on defining the block length in time series (Politis and White (2003), 

Carlstein et all. (1998), Berkowitz and Kilian (1996). To our knowledge there are no 

references for panel data.  If  we choose k = 1, the time dependence of the data is ignored 

and the block size should be a fraction of the original time length, thus limiting the 

possible choices to the interval [2-9].  We have run experiments using different block 

length and have observed some asymptotic behaviour in the results.  For k > 4  only 

marginal increasing standard error estimates (changes of 10 % between k = 4 and k = 9) 

were observed, suggesting that with k = 4, standard errors are not underestimated.   

 

Results 

The results  for the long term cointegrating equation (2) are presented in Table 2 The 

ADF-t statistic results relate to the residuals of the long term cointegrating relationship 

(2). As before it includes one lagged variable.  The results suggests that the residuals are 

stationary both for electricity and fuels.  The long term price elasticity equals  -0.186 for 

electricity and  -0.157  for fuels.  Income elasticities are 0.83 and 0.28 respectively.   

Bootstrapped standard errors are significantly higher compared to traditional OLS 

estimates, but nevertheless the results remain statistically significant for income, price 

and heating degree days. Heating degree days have more impact on fuel consumption 

than on electricity.  This is consistent as fuels are mostly used for heating.   

Table 3 presents the result for the error correction model (3).  The bootstrapped standard 

errors for block size k  > 1 are identical to those obtained for k = 1, indicating that we are 

no longer dealing with autocorrelation in the error terms. The error correction coefficients 

are above 0.33 and are statistically significant.  Approximately 80 % of the deviations of 

the long run equilibrium are absorbed in the short run ECM equation in a period of  4 

years.   

Let us analyse how these adjustments take place.  Note first that this error correction 

mechanism is only relevant when the elasticities in (2) and (3) are different.  We observe 

that θ1 being equal to  θ2, for fuels, consistent with the thermodynamic nature of this 



 11

relationship as discussed in equation (4).  For electricity, the point estimates and the 

standard errors show that P (β1 > β2)  = .93  and P ( | γ1  |  <  | γ2 |  ) = .92.  The long term 

income elasticity is higher than the short term income elasticity and the long term price 

elasticity is smaller (in absolute values) than the short term price elasticity.  Both results 

are significant at the 10% level. Similarly,  for fuels, P (β1 > β2)  = .85  and P ( | γ1  |  >  | γ2 

|  ) = 0.93.  The long term price elasticity for fuels is higher than the short term, significant 

above 10%, whereas short and long term income effects are not significantly different 

above 10%.   

Silk and Joutz (1997) also found that the short term price elasticity in the US was 

numerically larger than the long term price elasticity, although not significantly different.  

Immediate and delayed price effects are related to the existence of alternatives, lifetime 

of appliances and the time required to take action.  Often a first reaction to a price shock 

is to consume less and accept the welfare loss. As a second reaction one will look for 

alternatives.  The more of that exist, the more sustainable that the price effect will be. For 

many electrical appliances hardly any alternatives exist. This is quite different for fuels.  

Improving insulation is realistic opportunity to compensate the original welfare loss and 

reduce fuel consumption permanently.  The energy efficiency of many electrical 

applications has improved, but to a much smaller extent.        

 

Table 2 :  Results for the long term equilibrium equations (3) 

  
β1 

 
Γ1 

 
θ1 

 
ser 

ADF  
 t-stat 

Electricity      
 0.830 -0.186 0.170 0.059 -4.09 

OLS T-stat 19.12 -4.80 2.67   
BS T-stat  k = 1 15.11 -3.45 2.44   
BS T-stat  k = 4 8.97 -1.94 2.08   

Fuels      
 0.277 -0.157 0.451 0.053 -4.67 

T-stat OLS 8.21 -6.90 10.30   
T-stat BS k = 1 5.85 -4.21 6.03   
T-stat BS k = 4 3.20 -2.71 5.24   

                  Note :  ADF-t  5 % critical value is – 4.11 
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Table 3: Results for the error correction model (4) 

  
β2 

 
γ2 

 
Θ2 

 
κ 

 
ser 

Electricity      
 0.558 -0.3876 0.0884 -0.332 0.043 

OLS T-stat 5.16 -8.04 2.46 -5.15  
BS T-stat  k = 1 3.56 -3.78 2.89 -3.59  

      
Fuels      

 0.145 -0.059 0.456 -0.347 0.038 
OLS T-stat 1.49 -2.03 14.34 -5.55  

BS T-stat  k = 1 1.60 -2.03 8.62 -4.29  

 

Finally the validity of model results for the different countries in the panel are analysed. 

For this purpose we have calculated the Dickey-Fuller statistics on the country residuals 

in the long term equation (2).  For electricity, this test identifies a non-stationary 

relationship for Denmark, Netherlands, Portugal and the United Kingdom.  For fuels non 

stationery is observed for Ireland, Spain and Sweden.  

It would contribute to the understanding of electricity and fuels consumption to analyse 

why these countries behave differently in comparison to the European average.  Spain has 

the highest increase in fuel consumption in the panel (+ 40 % between 1990 and 2005), 

which might be related to tourism and population growth. Ireland is somewhat peculiar as 

in 1990 it was one of the poorest countries in EU15 and in 2005 one of the richest. Also a 

significant number of immigrants have settled in this period.  Fuel consumption increased 

by 24 %, the second highest increase in the panel.  Introducing population in the 

equations, i.e. replacing  q  by  q/pop  and y by y/pop in (3) improves   Dickey-Fuller 

statistics to -1.28 and -1.42 for Ireland and Spain respectively.  Sweden is somewhat 

peculiar too.  Fuel consumption dropped by 35 % between 1997 and 2005 as a results of 

different policy actions to reduce GHG emissions. Heat production in new dwellings is 

now mainly (over 80 %) based on heat-pumps.   

For electricity it seems hard to find reasonable explanations. Electricity consumption for 

DK, NL, PT and UK has been plotted against the EU15 average in Figure 3. The curve 

for DK is extremely flat in the period observed (1996-2005) and for PT is extremely 
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steep. NL and UK do not deviate too much form the average of EU-15.  Some further 

research is required to explain this difference.   

 

Table 4: Dickey fuller test on the residuals of equation (2)  

 Electricity Fuels  

AT -2.50 -4.01 
BE -2.78 -2.95 
DK -0.62 -2.21 
FI -2.14 -1.70 
FR -3.03 -2.87 
DE -4.71 -2.90 
IE -2.96 -0.88 

IT -2.27 -2.36 
NL -0.63 -2.08 
PT 0.19 -3.69 
ES -1.98 -1.12 
SE -3.17 -0.11 
UK 0.32 -1.91 

  

  

Conclusions 

Developing long term energy scenarios requires reference figures for income and price 

elasticities.  The objective of this analysis was to derive income and price elasticities 

from panel data.  For electricity the point estimate for the long term income elasticity is 

0.83 with a 90 % probability interval [0.68-0.92].  The point estimate for the price 

elasticity is -0.186  with a 90 % probability interval [-0.354 - -0.028].  The income 

elasticity for fuels is much lower. The point estimate is 0.28 with a 90 % probability 

interval [0.13-0.42].  The fuels price elasticity point estimate equals -0.16 and the 90 % 

probability interval [-0.25 - -0.06].  
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Figure 1: Short and long term elasticities in one picture. 

 

-15

-10

-5

0

5

10

15

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

relative difference (%)

ab
so

lu
te

 d
iff

er
en

ce
s 

(€
/G

J)

 

Figure 2:  The information loss when using logarithmic model specifications for nearly perfect substitutes.  
On the X-axis is plotted the logarithmic differences from the country specific sample mean of the price 
difference between electricity and fuels. On the Y-axis we have the absolute differences from the sample 
mean   
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Figure 3:  Evolution of  residential electricity consumption in DK, NL, PT and UK, and EU-15 average    

 

                 


