Mathematical Physics

Raimar Wulkenhaar

Mathematisches Institut, Westfälische Wilhelms-Universität Münster

A difficult problem

Strong and weak interactions are mathematically incorrect.

More precisely: their rigorous construction is one of the most difficult problems of mathematics:

A difficult problem

Strong and weak interactions are mathematically incorrect.

More precisely: their rigorous construction is one of the most difficult problems of mathematics:

Clay Mathematics Institute Millennium Prize [10⁶\$] Problem

5. Yang-Mills Existence and Mass Gap

Prove that for any compact simple gauge group *G*, a non-trivial quantum Yang-Mills theory exists on \mathbb{R}^4 and has a mass gap $\Delta > 0$. Existence includes establishing axiomatic properties at least as strong as those of [Wightman, Osterwalder-Schrader].

A difficult problem

Strong and weak interactions are mathematically incorrect.

More precisely: their rigorous construction is one of the most difficult problems of mathematics:

Clay Mathematics Institute Millennium Prize [10⁶\$] Problem

5. Yang-Mills Existence and Mass Gap

Prove that for any compact simple gauge group *G*, a non-trivial quantum Yang-Mills theory exists on \mathbb{R}^4 and has a mass gap $\Delta > 0$. Existence includes establishing axiomatic properties at least as strong as those of [Wightman, Osterwalder-Schrader].

There is not even a toy model of a 4D QFT!

Argument due to Wheeler (1950s), made precise by Doplicher-Fredenhagen-Roberts (1995):

Can we measure, in principle, structures of the size 10^{-60} cm?

Argument due to Wheeler (1950s), made precise by Doplicher-Fredenhagen-Roberts (1995):

Can we measure, in principle, structures of the size 10^{-60} cm? NO!

- Need test particles of Compton wavelength $\lambda \approx 10^{-60}$ cm.
- These carry enormous energy, so large that they create a black hole with Schwarzschild horizon $\gg \lambda!$

Argument due to Wheeler (1950s), made precise by Doplicher-Fredenhagen-Roberts (1995):

Can we measure, in principle, structures of the size 10^{-60} cm? NO!

- Need test particles of Compton wavelength $\lambda \approx 10^{-60}$ cm.
- These carry enormous energy, so large that they create a black hole with Schwarzschild horizon $\gg \lambda!$

Lesson from quantum physics: Never use unobservables!

Argument due to Wheeler (1950s), made precise by Doplicher-Fredenhagen-Roberts (1995):

Can we measure, in principle, structures of the size 10^{-60} cm? NO!

- Need test particles of Compton wavelength $\lambda \approx 10^{-60}$ cm.
- These carry enormous energy, so large that they create a black hole with Schwarzschild horizon $\gg \lambda!$

Lesson from quantum physics: Never use unobservables!

Our standard QFT violates this principle (admits arbitrarily small distances).

Need to develop QFT on quantum geometries.

First success stories

Take toy quantum geometry which admits computation.

Theorem (H. Grosse+RW, 2004)

- 4D scalar fields exist perturbatively in finite volume.
- At one-loop there is no Landau ghost.

First success stories

Take toy quantum geometry which admits computation.

Theorem (H. Grosse+RW, 2004)

- 4D scalar fields exist perturbatively in finite volume.
- At one-loop there is no Landau ghost.

Theorem (Disertori-Gurau-Magnen-Rivasseau, 2006)

Assume Planck volume = volume of universe. Then the β -function is zero to all orders in perturbation theory.

This is a precious result!

Immediate question: Can we construct the model?

Inside an atom of geometry

- Take toy quantum geometry
- Adjust V = volume of universe = volume of Planck cell

Quantum fields are infinite matrices (i.e. ∞ -many colours).

Inside an atom of geometry

- Take toy quantum geometry
- Adjust V = volume of universe = volume of Planck cell

Quantum fields are infinite matrices (i.e. ∞ -many colours).

Theorem (H. Grosse+RW, 2012–2014)

- The limit $V \to \infty$ of the 4D scalar Euclidean QFT is exactly solvable for any coupling constant $> -\frac{1}{\pi}$.
- All correlation functions (which depend on continuous coulour) are expressed in terms of the solution of a fixed point problem.

Inside an atom of geometry

- Take toy quantum geometry
- Adjust V = volume of universe = volume of Planck cell

Quantum fields are infinite matrices (i.e. ∞ -many colours).

Theorem (H. Grosse+RW, 2012–2014)

- The limit $V \to \infty$ of the 4D scalar Euclidean QFT is exactly solvable for any coupling constant $> -\frac{1}{\pi}$.
- All correlation functions (which depend on continuous coulour) are expressed in terms of the solution of a fixed point problem.
- Diagonal correlation functions have interpretation as Schwinger functions in position space.
 - They have full Euclidean symmetry (of standard, not quantum!) 4D space.
 - They are blind to colour (confinement/darkness).

Work in progress: Time Quantum gravity

- QFT on space-time arises if Schwinger functions are reflection-positive.
 - Overwhelming numerical evidence and partial analytic proof that 2-point function is reflection positive.
 - Higher functions and non-triviality with Jan Schlemmer [SFB 878].

Work in progress: Time Quantum gravity

- QFT on space-time arises if Schwinger functions are reflection-positive.
 - Overwhelming numerical evidence and partial analytic proof that 2-point function is reflection positive.
 - Higher functions and non-triviality with Jan Schlemmer [SFB 878].
- This subject has inspired enormous progress with combinatorial quantum gravity. Breakthrough by Razvan Gurau (2011), many followers
 - Jins de Jong [SFB 878]: construction of a quartic analogue of the Kontsevich model
 - Carlos Pérez-Sánchez [DAAD]: Schwinger-Dyson equations in coloured tensor models

Supplement: Reflection positivity

- Right: positive measure ρ supported on]1,∞[
- Left: red curve is auxiliary function $G_{x0} = \int_0^\infty \frac{dt \rho(t)}{t+x}$ which solves fixed point problem up to 10^{-8}

Supplement: Reflection positivity

- Right: positive measure ρ supported on]1,∞[
- Left: red curve is auxiliary function $G_{x0} = \int_0^\infty \frac{dt \rho(t)}{t+x}$ which solves fixed point problem up to 10^{-8}
- Defines diagonal function G_{x x} (Schwinger function).
- Reflection positivity is existence on a blue positive function ρ on the right (the Källen-Lehmann mass spectrum) such that $G_{\frac{x}{2}\frac{x}{2}} = \int_{0}^{\infty} \frac{dt \,\rho(t)}{t + \frac{x}{2}}$