

Measuring the neutrino mass with KATRIN

Annual Retreat of RTG 2149 "Strong and Weak Interactions – From Hadrons to Dark Matter" WWU Münster / Telgte, 24-26 November 2015

Kathrin Valerius (KIT Center Elementary Particle and Astroparticle Physics, KCETA)

Outline

brief motivation

direct v-mass measurement

- I. Why study massive neutrinos?
- II. How does neutrino mass measurement with KATRIN work?

status & outlook III. What are current steps to prepare the start of measurements with KATRIN?

puzzling

neutrinos

challenging neutrinos

I. Motivation: Massive neutrinos

I an wassing ;

Complementary paths towards v masses

ΤοοΙ	Cosmology CMB + LSS +	Neutrinoless double β-decay	β-decay endpoint and EC
Observable	$\sum m_{ u} = \sum_{i=1}^{3} m_i$	$\langle m_{etaeta} angle = \left \sum_{j=1}^3 U_{ej} ^2 m_j e^{ilpha_j} ight $	$m_eta^2 = \sum_{i=1}^3 U_{ei}^2 m_i^2$
Present upper limit	0.2 – 1 eV	0.2-0.4 eV	2 eV
Potential	20 – 50 meV	20 – 50 meV	200 meV
Model dependence	Multi-parameter cosmological model	Majorana vs. Diracnucl. matrix elements	 Direct, only kinematics; agnostic to Dirac/ Majorana nature

Complementary paths towards v masses

ΤοοΙ	Cosmology CMB + LSS +	Neutrinoless double β-decay	β-decay endpoint and EC
Observable	$\sum m_{ u} = \sum_{i=1}^{3} m_i$	$\langle m_{etaeta} angle = \left \sum_{j=1}^3 U_{ej} ^2 m_j e^{i lpha_j} ight $	$m_eta^2 = \sum_{i=1}^3 U_{ei}^2 m_i^2$
Present upper limit	0.2 – 1 eV	0.2-0.4 eV	2 eV
Potential	20 – 50 meV	20 – 50 meV	200 meV
Model dependence	Multi-parameter cosmological model	Majorana vs. Diracnucl. matrix elements	 Direct, only kinematics; agnostic to Dirac/ Majorana nature
	S. Hannestad	M. Lindner	

Complementary paths towards v masses

ΤοοΙ	Cosmology CMB + LSS +	Neutrinoless double β-decay	β-decay endpoint and EC
Observable	$\sum m_{ u} = \sum_{i=1}^{3} m_i$	$\langle m_{etaeta} angle = \left \sum_{j=1}^3 U_{ej} ^2 m_j e^{ilpha_j} ight $	$m_eta^2 = \sum_{i=1}^3 U_{ei}^2 m_i^2$
Present upper limit	0.2 – 1 eV	0.2 – 0.4 eV	2 eV
Potential	20 – 50 meV	20 – 50 meV	200 meV
Model dependence	Multi-parameter cosmological model	Majorana vs. Diracnucl. matrix elements	 Direct, only kinematics; agnostic to Dirac/ Majorana nature
	S. Hannestad	M. Lindner	

II. Method: Direct neutrino mass measurement in the laboratory

Direct neutrino mass measurement

Imprint of m_v on endpoint region of β spectrum (similar for EC):

$$\frac{\mathrm{d} N}{\mathrm{d} E} = C \cdot F(Z, E) \cdot p \cdot (E + m_e) \cdot (E_0 - E) \cdot \sqrt{(E_0 - E)^2 - (m^2(v_e))} \qquad m^2(v_e) = \sum |U_{ei}|^2 m_i^2$$

observable: effective squared mass

Key requirements

- Source isotope:
 - Low spectral endpoint Q
 - Large decay rate (short T_{1/2})
- Instrument:
 - Excellent energy resolution
 - Very low background

Spectroscopic technique for β decay

4	VALUE (eV)	CL%	DOCUMENT	ID	
20	< 2 OUR EVA	LUATION	1		Troitsk exp
Ū	< 2.05	95	¹ ASEEV	11	nonsk exp.
2	< 2.3	95	² KRAUS	05	Mainz exp.

4	VALUE (eV)	CL%	DOCUMENT I	D	
20	< 2 OUR EVALUA	TION		11	Troitsk exp.
Ö	< 2.05	95	2 KDALIS	11	Melon exp
<u> </u>	< 2.3	95	- KRAUS	05	iviainz exp.

Sensitivity on m(v_e):

2 eV → 0.2 eV (90% CL, 3 net years)

- → Requires x100 improvement on $m^2(v_e)$
- → Use expertise and infrastructure at KIT (Tritium Laboratory Karlsruhe, TLK)

2014 VALUE (eV) < 2 OUR EVA PDG < 2.05 < 2.3

CL%	DOCUMENT ID
LUATION	
95	¹ ASEEV
95	² KRAUS

SEEV 11 RAUS 05

Troitsk exp. Mainz exp.

Sensitivity on $m(v_e)$:

 $2 \text{ eV} \rightarrow 0.2 \text{ eV}$ (90% CL, 3 net years)

- \rightarrow Requires x100 improvement on $m^2(v_{a})$
- → Use expertise and infrastructure at KIT (Tritium Laboratory Karlsruhe, TLK)

KATRIN: spectral fit & v-mass sensitivity

Relative **shape** measurement of **integrated β spectrum**:

KATRIN overview: 70 m beamline

Factor of 10 in sensitivity seems easy on paper, but ...

Eggenstein near Karlsruhe, Nov. 25, 2006

0000

Alastralle

Factor of 10 in sensitivity seems easy on paper, but ...

Source and Transport Section

- Windowless gaseous tritium source
 - Intensity (10¹¹ decays/s)
 - Stability (10⁻³ h⁻¹)
 - Isotopic purity (> 95%)
- Tritium retention (factor > 10^{14})
- Adiabatic transport of electrons

Spectrometer and Detector Section

- Spectrometer UHV (p < 10⁻¹¹ mbar)
- Energy resolution (<1 eV at 18.6 keV)
- High voltage stability (sub-ppm/month)
- High detection efficiency (10⁻³-10³ cps)
- Low background rate (10⁻² cps)

III. Status of KATRIN

& route towards start of measurements

System integration and commissioning

Spectrometer & detector commissioning

Characterisation of spectrometer transmission

using precision electron source: energy- & angle-selective, point-like

Radial dependence of retardation potential as expected (precision mapping by e-gun)

K. Valerius | KATRIN

19

Spectrometer & detector commissioning

Characterisation of backgrounds

- Very efficient magnetic & electrostatic shielding, but only for charged particles (e⁻ and H⁻)
- Neutral, unstable atoms (^{219, 220}Rn, H*) can penetrate into inner flux tube
 further measures required, e.g. passive shieldir

 \rightarrow further measures required, e.g. passive shielding against Rn-induced secondaries

4.5 T Rn eyclotron eyclotron eyclotron baffle vacuum system pump

Spectrometer & detector commissioning

Characterisation of backgrounds

- Very efficient magnetic & electrostatic shielding, but only for charged particles (e⁻ and H⁻)
- Neutral, unstable atoms (^{219, 220}Rn, H*) can penetrate into inner flux tube

 \rightarrow further measures required, e.g. passive shielding against Rn-induced secondaries

LN₂-cooled baffles

Spectrometer & detector commissioning

warm baffle

cold baffle

Characterisation of backgrounds

- Very efficient magnetic & electrostatic shielding, but only for charged particles (e⁻ and H⁻)
- Neutral, unstable atoms (^{219, 220}Rn, H*) can penetrate into inner flux tube

prelim

 \rightarrow further measures required, e.g. passive shielding against Rn-induced secondaries

 1.0
 2.0
 3.0
 4.0

 radius in analyzing plane (m)
 retiminary 477 ± 3 mcps background level achieved

LN₂-cooled baffles

2.0

.6

1.2

0.8

0.4

0.0^L

0.0

normalized rate (mcps/m³)

System integration and commissioning

K. Valerius | KATRIN

Summer 2015: Arrival of last two major system components on site

Sept. 2015: Major milestone achieved full Source and Transport Section in place

KATRIN's systematic uncertainty "budget"

- Careful, conservative evaluation in KATRIN Design Report (2004)
- Dominant contributions by source-related effects

KATRIN's systematic uncertainty "budget"

- Careful, conservative evaluation in KATRIN Design Report (2004)
- Dominant contributions by source-related effects

Helmholtz-University Young Investigators Group (est. 2014):

"Analysis of KATRIN data to measure the neutrino mass and search for New Physics"

Group members

Former group members

M. Babutzka postdoc *R. Combe*

Master's student

J. Antoni Diploma student

Example: Energy loss function

18.6 keV electrons undergo energy loss when scattering in gaseous T_2 source

Example: Energy loss function

18.6 keV electrons undergo energy loss when scattering in gaseous T_2 source

model based on H_2/D_2 data \rightarrow improved measurement for T_2 necessary

Energy loss function: measurement

- Work (with V. Hannen) on setting up detailed measurement proposal
- Deconvolution technique accurate enough for KATRIN
- Remaining uncertainties (e.g. column density setting) to be evaluated
- First test with D₂ suggested to train procedures

Example: Column density model

- Temperature, pressure, tritium purity to be stabilized at 10⁻³ level
- Small variations of op. parameters lead to fluctuations of column density → syst. influence on m²(v)

Example: Column density model

- Temperature, pressure, tritium purity to be stabilized at 10⁻³ level
- Small variations of op. parameters lead to fluctuations of column density → syst. influence on m²(v)

Column density monitoring:

- Small detector in forward direction
- Regular control meas. with e-Gun

Example: Column density model

Gas dynamical model: longitudinal profile + 2d slices → pseudo-3d model

- Temperature, pressure, tritium purity to be stabilized at 10⁻³ level
- Small variations of op. parameters lead to fluctuations of column density → syst. influence on m²(v)

Column density monitoring:

- Small detector in forward direction
- Regular control meas. with e-Gun

┢

- Detailed modeling of gas dynamics and resulting spectrum
- Temporal and spatial variations of operational parameters -> sensors

Example: Sensitivity and background level

100 10 **Development of** - 5σ C.L. (MC) MC-based tools for 500 500 -90% C.L. (MC) sensitivity estimates and senstivity on m_v (meV) meas. time optimization 400 400 preliminary 300 300 Illustration: proposal for first month of running KATRIN 3 200 200 measuring time [days] min. time per bin: 6 h, smearing: 0.25 eV 10 100 2 background rate (mcps) preliminary 1 0 -15 -10 -5 5 0 retarding energy $qU-E_0$ [eV]

[M. Kleesiek, in prep.]

K. Valerius | KATRIN

Further projects

Source-related systematics

- Descriptions of el. potential in source
- Plasma effects?

28

Efficient retention of tritium ions?

Space charges and el. potential inhomogeneities probed by dispersing ^{83m}Kr in tritium gas

→ simulation study ongoing

Technical/Analysis

- Development of high- and mediumlevel analysis tools
- Planning of commissioning tests during system integration
- ... towards first physics runs with KATRIN!

Extra:

Exploring KATRIN's physics potential beyond neutrino masses

KATRIN: v-mass sensitivity ... and more:

Explore physics potential

close to the spectral endpoint E₀:

and further away from E₀:

search for keV-mass scale sterile v as WDM candidates

Mertens et al. (2015); Steinbrink et al. (2014)

non-standard operation, novel detector concepts

Imprint of sterile neutrinos on β spectrum

Shape modification below E_0 by active $(m_a)^2$ and sterile $(m_s)^2$ neutrinos: additional kink in β spectrum $\frac{\mathrm{d}N}{\mathrm{d}E} = \cos^2\theta_s \frac{\mathrm{d}N}{\mathrm{d}E}(m_a^2) + \sin^2\theta_s \frac{\mathrm{d}N}{\mathrm{d}E}(m_s^2)$ at $E = E_0 - m_s$ 4×10⁻²⁰ example: 200 meV m =light sterile v $m_s = 3,000 \text{ meV}$ differential rate $(e^{-1} - 1)^{-50}$ 3×10^{-50} 1×10^{-50} $m_s = 3 \text{ eV}$ mixing with $\sin^2 \theta = 0.5$ 1×10^{-20} 0

-4

-5

-3

electron energy $E-E_0$ (eV)

-2

-1

0

Search for eV-scale sterile v with KATRIN

- "Reactor antineutrino anomaly": $|\Delta m_{\rm s}^2| > 1.5 \text{ eV}^2$, $\sin^2(2\theta_{\rm s}) = 0.14 \pm 0.08$ (95% CL)
- Favoured parameter space can be probed by KATRIN:

- KATRIN sensitivity on $m(v_e)$: **200 meV** (90% CL, 3 yrs of data)
 - ultimate MAC-E type experiment with molecular T₂
 - will cover degenerate v mass regime
- Rich physics potential in addition to light neutrino mass
 - Probe for RH currents, LIV, constraints on CvB
 - Search for eV- and keV-scale sterile v

- KATRIN sensitivity on $m(v_e)$: **200 meV** (90% CL, 3 yrs of data)
 - ultimate MAC-E type experiment with molecular T₂
 - will cover degenerate v mass regime
- Rich physics potential in addition to light neutrino mass
 - Probe for RH currents, LIV, constraints on CvB
 - Search for eV- and keV-scale sterile v
- KATRIN is moving forward at fast pace towards start of data-taking in 2016:

- KATRIN sensitivity on m(v_e): **200 meV** (90% CL, 3 yrs of data)
 - ultimate MAC-E type experiment with molecular T₂
 - will cover degenerate v mass regime
- Rich physics potential in addition to light neutrino mass
 - Probe for RH currents, LIV, constraints on CvB
 - Search for eV- and keV-scale sterile \boldsymbol{v}
- KATRIN is moving forward at fast pace towards start of data-taking in 2016:

- KATRIN sensitivity on $m(v_e)$: **200 meV** (90% CL, 3 yrs of data)
 - ultimate MAC-E type experiment with molecular T₂
 - will cover degenerate v mass regime
- Rich physics potential in addition to light neutrino mass
 - Probe for RH currents, LIV, constraints on CvB
 - Search for eV- and keV-scale sterile v
- KATRIN is moving forward at fast pace towards start of data-taking in 2016:

- KATRIN sensitivity on m(v_e): 200 meV (90% CL, 3 yrs of data)
 - ultimate MAC-E type experiment with molecular T₂
 - will cover degenerate v mass regime
- Rich physics potential in addition to light neutrino mass
 - Probe for RH currents, LIV, constraints on CvB
 - Search for eV- and keV-scale sterile v
- KATRIN is moving forward at fast pace towards start of data-taking in 2016:

- KATRIN sensitivity on $m(v_e)$: **200 meV** (90% CL, 3 yrs of data)
 - ultimate MAC-E type experiment with molecular T₂
 - will cover degenerate v mass regime
- Rich physics potential in addition to light neutrino mass
 - Probe for RH currents, LIV, constraints on CvB
 - Search for eV- and keV-scale sterile v
- KATRIN is moving forward at fast pace towards start of data-taking in 2016:

- KATRIN sensitivity on m(v_e): 200 meV (90% CL, 3 yrs of data)
 - ultimate MAC-E type experiment with molecular T₂
 - will cover degenerate v mass regime
- Rich physics potential in addition to light neutrino mass
 - Probe for RH currents, LIV, constraints on CvB
 - Search for eV- and keV-scale sterile v
- KATRIN is moving forward at fast pace towards start of data-taking in 2016:

- KATRIN sensitivity on m(v_e): **200 meV** (90% CL, 3 yrs of data)
 - ultimate MAC-E type experiment with molecular T₂
 - will cover degenerate v mass regime
- Rich physics potential in addition to light neutrino mass
 - Probe for RH currents, LIV, constraints on CvB
 - Search for eV- and keV-scale sterile v
- KATRIN is moving forward at fast pace towards start of data-taking in 2016:

•

- KATRIN sensitivity on m(v_e): 200 meV (90% CL, 3 yrs of data)
 - ultimate MAC-E type experiment with molecular T₂
 - will cover degenerate v mass regime
- Rich physics potential in addition to light neutrino mass
 - Probe for RH currents, LIV, constraints on CvB
 - Search for eV- and keV-scale sterile v
- KATRIN is moving forward at fast pace towards start of data-taking in 2016:

Thank you!

Thank you!

Supplementing slides

Effect of RH current contributions

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}E\,\mathrm{d}t} \propto E_{\nu}\,\sqrt{E_{\nu}^2 - m_{\nu}^2}\,\left(1 + b'\,\frac{m_{\nu}}{E_{\nu}}\right) \qquad \text{[J. Bonn et al., Phys. Lett. B 703 (2011) 310]}$$
Fierz-like parameter b' enters differential rate
$$b' \approx -2\,\frac{\Re(L_V R_V^* + L_V R_S^*)|\mathcal{M}_F|^2 + \Re(L_A R_A^* + L_A R_T^*)|\mathcal{M}_{GT}|^2}{|L_V|^2|\mathcal{M}_F|^2 + |L_A|^2|\mathcal{M}_{GT}|^2}$$

Imprint on integrated spectrum:

- Only small sensitivity on b' if endpoint E₀ left free in fit
 - → good for determination of $m^2(v_e)$
- Improvement of present bounds on b' with KATRIN for small $m(v_e)$ if
 - external E₀ value with accuracy
 50 meV as input*
 - absolute energy scale in KATRIN
 U_{spec} U_{source} known to same
 accuracy of < 50 meV

37

Probing Lorentz invariance in β decay

Standard Model Extension (SME) framework:

Neutrinos satisfy Dirac-like equation

 $(i\mathbf{\Gamma}^{\alpha}\partial_{\alpha}-\mathbf{M})\,\psi=0$

with Γ , M including momentumdependent coefficients

Kostelecky & Mewes (2004, 2009)]

Experimental searches:

- Neutrino oscillations
- Neutrino velocity (ToF)
- Weak decays

probe oscillation-free parameters

Probing Lorentz invariance in β decay

Standard Model Extension (SME) framework:

Neutrinos satisfy Dirac-like equation

 $(i\mathbf{\Gamma}^{\alpha}\partial_{\alpha}-\mathbf{M})\,\psi=0$

with Γ , **M** including momentumdependent coefficients

- Modified energy dependence of decay rate
- Spectral shape dependent on sidereal time and experiment orientation
- Effective dim-3 coefficient: osc. shift of endpoint $T_{0,eff}$ with $\omega_{sidereal}$
- Effective dim-2 coefficient: osc. of m² parameter (can mimic tachyonic v)

Kostelecky & Mewes (2004, 2009)]

Constraining local CvB density with KATRIN

About every neutrino physicist goes through a phase in his or her career and asks 'There's got to be a way to measure the relic neutrino background' — Peter Fisher

0.8

0.6

0.4

Radon-induced background

Background characterization

2015:

2nd phase of commissioning measurements completed

- > Spectrometer works as MAC-E filter
- > LN2-cooled baffles eliminate Radon-induced background with efficiency of (97 ± 2)%
- > Remaining background still under investigation

 $B_{total} = S_{Rn} + C_{Rn} + R$

 $S_{Rn} = \alpha \cdot C_{Rn}$

 $B_{total} = (\alpha + 1) \cdot C_{Rn} + R$

R: Non-Radon-induced bg rate

Neutrino mixing and mass scheme

Wealth of v oscillation data:

$$\Delta m_{\text{atm}}^2 = (2.32^{+0.12}_{-0.08}) \times 10^{-3} \text{ eV}^2$$
$$\Delta m_{\text{sol}}^2 = (7.5 \pm 0.2) \times 10^{-5} \text{ eV}^2$$

Neutrino mixing and mass scheme

Wealth of v oscillation data:

 Large neutrino mixing and tiny neutrino masses m(v_i) ≠ 0 established

$$\Delta m_{\text{atm}}^2 = (2.32^{+0.12}_{-0.08}) \times 10^{-3} \,\text{eV}^2$$
$$\Delta m_{\text{sol}}^2 = (7.5 \pm 0.2) \times 10^{-5} \,\text{eV}^2$$

Neutrino mixing and mass scheme

Wealth of v oscillation data:

 Large neutrino mixing and tiny neutrino masses m(v_i) ≠ 0 established

Wealth of v oscillation data:

 Large neutrino mixing and tiny neutrino masses m(v_i) ≠ 0 established

> New! BSM physics!

• Oscillation² = $(2.32^{+0.12}) \times 10^{-3} ev$ only interferom etric the solute values

Wealth of v oscillation data:

• Large neutrino mixing and tiny neutrino masses $m(v_i) \neq 0$ established

New! BSM physics!

- Oscillation⁴ = $(2.32^{+0.12}) \times 10^{-3} ev$ only interferometric traces only interferometric traces
- Which mass ordering (normal, inverted)?

Wealth of v oscillation data:

 Large neutrino mixing and tiny neutrino masses m(v_i) ≠ 0 established

- Oscillation² = $(2.32^{+0.12}) \times 10^{-3} ev$ only interferometric traces only interferometric traces
- Which mass ordering (normal, inverted)?
- What is the absolute v mass scale?

Wealth of v oscillation data:

 Large neutrino mixing and tiny neutrino masses m(v_i) ≠ 0 established

> New! BSM physics!

- Oscillation experiments. • Oscillation experiments. only interferom trice has suffered at the solute values
- Which mass ordering (normal, inverted)?
- What is the absolute v mass scale?

So far: only **upper** (< 2 eV) and **lower bounds** (>0.01 resp. >0.05 eV)

WGTS gas flow regimes

1D tritium density profile

1D velocity profile

Pseudo 3D density profile

Example: Energy loss function

18.6 keV electrons undergo scattering & energy loss when traversing the gaseous T_2 source:

Troitsk & Mainz experiments

Troitsk experiment

windowless gaseous tritium source

$$m^{2}(v_{e}) = (-0.67 \pm 1.89 \pm 1.68) eV^{2}$$

 $m(v_{e}) < 2.05 eV$

V.N. Aseev et al., Phys. Rev. D 84 (2011) 112003

Mainz experiment

quench condensed tritium source

 $m^{2}(v_{e}) = (-0.6 \pm 2.2 \pm 2.1) eV^{2}$

 $m(v_e) < 2.3 \, eV$

C. Kraus et al., Eur. Phys. J. C 40 (2005) 447

required: source fluctuation: $\Delta T/T < 10^{-3}$

required: HV-fluctuations: $\Delta U < 60 \text{ mV}$

KATRIN sensitivity in a nutshell

A simple sensitivity estimate from combining (conservative) **systematics** budget with **statistical** uncertainty (3 net years of data):

The challenge:

- High count rates at ~few keV below endpoint
- Tiny sterile admixture $sin^2(\theta_s)$ expected
- Best sensitivity for differential measurement (energy or ToF)
- Development of new techniques necessary!

Tritium source

The challenge:

- High count rates at ~few keV below endpoint
- Tiny sterile admixture $sin^2(\theta_s)$ expected
- Best sensitivity for differential measurement (energy or ToF)
- Development of new techniques necessary!

[Steinbrink et al. (2013), Robertson et al. (in prep.)]

Tritium source:

The challenge:

- High count rates at ~few keV below endpoint
- Tiny sterile admixture $sin^2(\theta_s)$ expected
- Best sensitivity for differential measurement (energy or ToF)
- Development of new techniques necessary!

Differential detection option: novel detector required

TRISTAN* design study:

- 10⁸ cps (> 10 000 pixels)
- FWHM 300 eV @ 20 keV
- > 20 cm diameter

[Mertens et al. (2015)]

[Steinbrink et al. (2013), Robertson et al. (in prep.)]

- First measurements with KATRIN "baseline" set-up at reduced source strength
- Prototyping and sensitivity studies for upgraded detector system under way

- First measurements with KATRIN "baseline" set-up at reduced source strength
- Prototyping and sensitivity studies for upgraded detector system under way

- First measurements with KATRIN "baseline" set-up at reduced source strength
- Prototyping and sensitivity studies for upgraded detector system under way

- First measurements with KATRIN "baseline" set-up at reduced source strength
- Prototyping and sensitivity studies for upgraded detector system under way

- First measurements with KATRIN "baseline" set-up at reduced source strength
- Prototyping and sensitivity studies for upgraded detector system under way

→ High-sensitivity keV sterile v search probing cosmologically allowed parameter space after the v-mass measurement with KATRIN

Rear Section – design and assembly

Karlsruhe Institute of Technology

Major importance for systematics:

 Precision e⁻ source: column density monitoring and determination of energy loss function (scattering)

Rear Section – design and assembly

Major importance for systematics:

 Precision e⁻ source: column density monitoring and determination of energy loss function (scattering)

• Rear Wall:

stable and homogeneous electrostatic potential in the source plasma

WGTS – windowless gaseous source

WGTS – windowless gaseous source

Closed-loop processing of molecular T_2 :

- isotopic purity > 90%
- $10^{11} \beta$ decays / s
- 40% no-loss electrons
- stability at level 10-3
- extensive control of systematics

novel 2-phase neon cooling concept

[S. Grohmann et al., Cryogenics 55–56 (2013) 5]

WGTS – windowless gaseous source

Closed-loop processing of molecular T_2 :

- isotopic purity > 90%
- $10^{11} \beta$ decays / s
- 40% no-loss electrons
- stability at level 10-3

T₂ pumping

- extensive control of systematics

novel 2-phase neon cooling concept

[S. Grohmann et al., Cryogenics 55-56 (2013) 5]

K. Valerius | KATRIN

Two large cryostat systems for overall tritium retention factor > 10¹⁴

Differential Pumping Section DPS

DPS site acceptance tests at KIT almost completed

Cryogenic Pumping Section CPS

LFCS low-field fine-tuning

EMCS earth field compensation

Ø = 12.7 m

2011: fully commissioned large Helmholtz coil system,

January 2012: Inner electrode system (24.000 wires in 2 layers!) completely mounted (precision: 200 µm)

Multiple

Physik Journa

January 2012: Inner electrode system (24.000 wires in 2 layers!) completely mounted (precision: 200 µm)

Bake-out at 300 (200)^oC to achieve UHV conditions p < 10⁻¹¹ mbar

teredere Mittere e

Physik

January 2012: Inner electrode system (24.000 wires in 2 layers!) completely mounted (precision: 200 µm)

Bake-out at 300 (200)^oC to achieve UHV conditions p < 10⁻¹¹ mbar

Trivia question: UHV recipient — LHC vs. KATRIN?

....

Physik

Detector system

Requirements:

- detection of β -electrons (mHz to kHz)
- high efficiency (> 90%)
- low background (< 1 mHz)
 - → passive and active shielding
 - ➔ post-acceleration (10-30 kV)
- good energy resolution (~1 keV)

Characteristics:

- 90 mm Ø Si PIN diode
- thin entry window (50 nm)
- segmented wafer (148 pixels)
 - → compensate field inhomogeneities
 - → radial-dependent background
 - → investigate systematic effects
- detector magnet 3 6 T

1st avenue: exploit differential β spectrum

Spectrometer as 24 m long "delay line"
→ very sensitive to small differences in surplus energy

TOF spectrum records full β spectrum \Rightarrow save meas. time by using only few voltage settings of MAC-E filter

Coincidence requirement → add. background suppression

Technical realization?

(a) pre-spectrometer as gated filter(b) radio frequency tagger

Idea: Cyclotron Radiation Emission Spectroscopy (CRES)

[Formaggio & Monreal, PRD 80 (2009) 051301(R)]

$$\omega(\gamma) = rac{\omega_{
m c}}{\gamma} = rac{eB}{E_{
m kin}+m_{
m e}}$$

Energy measured via **cyclotron frequency** of single electrons in B field

ROJE

Idea: Cyclotron Radiation Emission Spectroscopy (CRES)

[Formaggio & Monreal, PRD 80 (2009) 051301(R)]

$$\omega(\gamma) = rac{\omega_{
m c}}{\gamma} = rac{eB}{E_{
m kin} + m_{
m e}}$$

Energy measured via **cyclotron frequency** of single electrons in B field

single electron in trapping volume:

B ~1 T, E ~18.6 keV → ω ~27 GHz ROJEC

Idea: Cyclotron Radiation Emission Spectroscopy (CRES)

[Formaggio & Monreal, PRD 80 (2009) 051301(R)]

$$\omega(\gamma) = rac{\omega_{
m c}}{\gamma} = rac{eB}{E_{
m kin} + m_{
m e}}$$

Energy measured via **cyclotron frequency** of single electrons in B field

single electron in trapping volume:

"KATRIN"-like gaseous source: uniform B-field and low-pressure T_2 gas

ROJE

Idea: Cyclotron Radiation Emission Spectroscopy (CRES)

[Formaggio & Monreal, PRD 80 (2009) 051301(R)]

$$\omega(\gamma) = rac{\omega_{
m c}}{\gamma} = rac{eB}{E_{
m kin} + m_{
m e}}$$

Energy measured via **cyclotron frequency** of single electrons in B field

single electron in trapping volume:

"KATRIN"-like gaseous source: uniform B-field and low-pressure T_2 gas

ROJEA

Hints of eV-scale sterile neutrinos?

Hints of keV-scale sterile neutrinos?

Hints of eV-scale sterile neutrinos?

May explain anomalous oscillation results from

- Short baseline accelerator experiments
- Gallium experiments
- Reactor experiments

Hints of keV-scale sterile neutrinos?

Hints of eV-scale sterile neutrinos?

May explain anomalous oscillation results from

- Short baseline accelerator experiments
- Gallium experiments
- Reactor experiments

Hints of keV-scale sterile neutrinos?

Well motivated as natural extension of Standard Model (vMSM)

[e.g., Canetti, Drewes, Shaposhnikov (2013)]

Hints of eV-scale sterile neutrinos?

May explain anomalous oscillation results from

- Short baseline accelerator experiments
- Gallium experiments
- Reactor experiments

Hints of keV-scale sterile neutrinos?

Well motivated as natural extension of Standard Model (vMSM)

In agreement with cosmological observations from small to large scales [e.g., Shi & Fuller (1999)]

171.2 GeV

4.2 GeV

b

1.777 GeV

τ

bottom

Hints of eV-scale sterile neutrinos?

May explain anomalous oscillation results from

- Short baseline accelerator experiments
- Gallium experiments
- Reactor experiments

Hints of keV-scale sterile neutrinos?

2.4 MeV

u

4.8 MeV

d

dowr

0.511 MeV

е

< 1 eV

1.27 GeV

С

charm

104 MeV

S

strange

105.7 MeV

μ

< 1 eV

Well motivated as natural extension of Standard Model (vMSM)

In agreement with cosmological observations from small to large scales [e.g., Shi & Fuller (1999)]

Recent indirect hints from X-ray astronomy?

Hints of eV-scale sterile neutrinos?

May explain anomalous oscillation results from

- Short baseline accelerator experiments
- Gallium experiments
- Reactor experiments

Hints of keV-scale sterile neutrinos?

Well motivated as natural extension of Standard Model (vMSM)

[e.g., Canetti, Drewes, Shaposhnikov (2013)]

In agreement with cosmological observations from small to large scales [e.g., Shi & Fuller (1999)]

Recent indirect hints from X-ray astronomy?

Hints of eV-scale sterile neutrinos?

May explain anomalous oscillation results from

10

[G. Mention et al. (2011), updated in White Paper (2014)]

sin²(2θ_{new})

5 Δχ²

10

[°]10[°]

- Short baseline accelerator experiments
- Gallium experiments
- Reactor experiments

10

^**∠**X²

 10^{2}

10

10

10-4

 10^{-3}

∆m²_{new} (eV²)

2 dof As

contour

1 dof $\Delta \chi^2$ profile

່10⁻²

Hints of keV-scale sterile neutrinos?

Well motivated as natural extension of Standard Model (vMSM)

Both scales accessible in tritium β decay [e.g., Canetti, Drewes, Shaposhnikov (2013)]

> In agreement with cosmological observations from small to large scales [e.g., Shi & Fuller (1999)]

Recent indirect hints from X-ray astronomy?

