DARWIN: Science Opportunities with a multi-ton Xenon Dark Matter Detector

Marc Schumann AEC, Universität Bern

Inauguration Retreat GRK 2149, Telgte, November 25, 2015

marc.schumann@lhep.unibe.ch
www.lhep.unibe.ch/darkmatter

UNIVERSITÄT BERN

ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

Dark Matter: (indirect) Evidence

Particle Dark Matter Candidates:

- WIMP → "WIMP miracle"
- Axion
- SuperWIMPs
- sterile neutrinos
- WIMPless dark matter
- Gravitino

Direct Detection

Direct WIMP Search

→ electronic recoil

Direct WIMP Search

Direct WIMP Search

Diff. rate [events/(kg d keV)] 렇 Summary: tiny rate R < 0.1 evt/kg/yrlow energy $E_{\rm p} < 50 \text{ keV}$ How to build a WIMP detector? large total mass, high A ✓ low energy threshold ultra low background -41 -46 good background rejection ✓ $\log(\sigma_p^{SI}(cm^2))$ -51 We are dealing with -56 • extremely **low rates** (1 – 1000 Hz) extremely low thresholds (2 keV) • extremely low radioactive backgrounds -61

1000

Argon

Xenon

 $m_{\gamma} = 100 \text{ GeV/c}^2$

 $= 4 \times 10^{-43} \text{ cm}^2$

60

70 Recoil energy [keVr]

event/kt/1000v

1000

m_{χ10} (GeV)

Strege et al. (2014)

50

form factor

← A²

10

0

10

10

XENON100

LUX

20

30

100

40

Background Sources

muons

muon-

Electronic Recoils (gamma, beta)

Nuclear Recoils (neutron, WIMPs)

only single scatters

Image from C. Levy (U Münster)

Dual Phase TPC

Dolgoshein, Lebedenko, Rodionov, JETP Lett. 11, 513 (1970)

TPC = time projection chamber

Dual Phase TPC

Figures from XENON100

Dual Phase TPC

ER Rejection	NR Acceptance	
99.50%	~50%	
99.75%	~40%	
99.90%	~30%	
	XENON100 achieved	

Improve rejection (at a given acceptance) \rightarrow need more S1 light!

 \rightarrow rejection levels of 99.98% are in reach!

M. Schumann (AEC Bern) – DARWIN: Science Opportunities

Figures from XENON100

The current WIMP Landscape

XENON1T @ LNGS

The XENON Future

The XENON Future

M. Schumann (AEC Bern) – DARWIN: Science Opportunities

Dark Matter Project

Cosmic Neutrino Sources

muons

The DARWIN goal

M. Schumann (AEC Bern) – DARWIN: Science Opportunities

DARWIN

DARWIN The ultimate WIMP Detector

www.darwin-observatory.org

- aim at sensitivity of a few 10⁻⁴⁹ cm², limited by **irreducible v-backgrounds**
- international consortium, 21 groups
- R&D ongoing
 - challenges include background rejection HV stability (–150..200 kV) target purity, electron drift intrinsic radiactivity (⁸⁵Kr, ²²²Rn) calibration, stability
- DARWIN is on the European astroparticle physics APPEC roadmap and endorsed by the Swiss State Secretariat (SERI)
- Timescale: start after XENONnT

DARWIN: Science Opportunities with a multi-ton Xenon Dark Matter Detector

muons

pp-Neutrinos in DARWIN

a new physics channel!

JCAP 01, 044 (2014)

- pp-neutrinos dominate low E spectrum
- main ER spectrum from $2\nu\beta\beta$ of ¹³⁶Xe
- ⁸⁵Kr (0.1 ppt ^{nat}Kr) and ²²²Rn (0.1 μBq) small, detector materials irrelevant

Neutrino interactions

 30t target mass, 2-30 keV window
 → 2850 neutrinos per year (89% pp)
 → achieve 0.8% statistical precision on pp-flux (→ Pee) in 5 years

¹³⁶Xe: 0ν double-β decay

JCAP 01, 044 (2014)

also accessible: ¹³⁴Xe, ¹²⁶Xe, ¹²⁴Xe N. Barros et al., J. Phys. G 41, 115105 (2014)

no ¹³⁶Xe enrichment!

Background (6t out of 14t): 4.6 evts/t/y in $\pm 3\sigma$

- $\sigma/E \sim 1\%$ at Q_ββ, combined *E*-scale
- signal in plot assumes $T_{1/2}$ =1.6 x 10²⁵ y
- sensitivity: $T_{1/2}$ =5.6 x 10²⁶ y (95% CL, 6t x 5y)

WIMP Backgrounds

assume 100% effective shield

high-E neutrinos → CNNS bg → NR signature

D

<mark>Xe-intrinsic bg</mark>: ²²²Rn, ⁸⁵Kr, 2νββ

pp+⁷Be neutrinos

→ ER signature

 $/_{\gamma}$ -bg materials

neutrons from

 (α,n) and sf

(~14m diameter, 10x better than XENON1T shield)

CAP 10, 016 (2015)

Electronic Recoils (gamma, beta)

Nuclear Recoils (neutron, WIMPs)

only single scatters

Backgrounds

JCAP 10, 016 (2015)

All relevant backgrounds are considered:

Source	Rate	Spectrum	Comment	MC simulation of detector made of
	$[\mathrm{events}/(\mathrm{t}{\cdot}\mathrm{y}{\cdot}\mathrm{keVxx})]$			main components (PTFE, CU, PMTs):
γ -rays materials	0.054	flat	assumptions as discussed in text	subdominant after ~15 cm fiducial cut
$neutrons^*$	3.8×10^{-5}	exp. decrease	average of [5.0-20.5] keVnr interval	
intrinsic ⁸⁵ Kr	1.44	flat	assume 0.1 ppt of ^{nat} Kr	⁸⁵ Kr: 2x below XENON1T design
intrinsic ²²² Rn	0.35	flat	assume $0.1\mu \mathrm{Bq/kg}$ of $^{222}\mathrm{Rn}$	(0.03 ppt achieved: <i>EPJ C 74 (2014) 2746</i>)
$2\nu\beta\beta$ of $^{136}\mathrm{Xe}$	0.73	linear rise	average of [2-10] keVee interval	²²² Rn: 100x below XENON1T design
pp- and ⁷ Be ν	3.25	flat	details see [19]	¹³⁶ Xe: assume natural xenon
$CNNS^*$	0.0022	real	average of [4.0-20.5] keVnr interval	

consider all relevant neutrinos

Solar ν OVββ OVββ DARWIN WIMPS WIMPS DARWIN WIMP Sensitivity

JCAP 10, 016 (2015)

• exposure: 200 t \times y; all backgrounds included

CNNS

- likelihood analysis (~99.98% ER rejection @ 30% NR acceptance)
- S1+S2 combined energy scale, LY=8 PE/keV, 5-35 keVnr energy window

- → also sensitive to inelastic WIMP interactions
- M. Schumann (AEC Bern) DARWIN: Science Opportunities

WIMP Spectroscopy

CNNS+neutrons

CNNS solar ν 0νββ

WIMPs

Update of Newstead et al., PRD 8, 076011 (2013)

Capability to reconstruct WIMP parameters

- m_x=20, 100, 500 GeV/c²
- 1σ/2σ CI, marginalized over astrophysical parameters
- due to flat WIMP spectra, no target can reconstruct masses >500 GeV/c²

Supernova Neutrinos

Chakraborty et al., PRD 89, 013011 (2014)

- $\bullet\,\nu$ from supernovae could be detected via CNNS as well
- signal fom accretion phase of a ~18 Msun supernova
 @ 10 kpc is visible in a DARWIN-LXe detector
- signal: NRs plus precise time information
 - → complementary to water Cerenkov detectors
- challenge: theshold

Solar Axions and Galactic ALPs

CNNS solar ν 0νββ

WIMPs SN v axions

32

Conclusion: Many Science Channels!

www.darwin-observatory.org

