
FULL QCD ON FINE LATTICES

Stefan Schaefer

John von Neumann Institute for Computing

DESY

Telgte, November 24th, 2015

1 / 22



Lattice QCD

Goal

Computations in QCD of

• particle spectrum → charmed meson and baryon masses

•matrix elements (decay constants, pdfs, . . . ) → fDs

• running coupling

• quark masses → c and b quark mass

• . . .

Method

Formulate theory on discrete Euclidean space-time

Numerical evaluation of path integral
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Lattice QCD

Advantages

Non-perturbative method
QCD calculations also at low energies

Possiblity to vary parameters of QCD

Quark masses
→many simulations at non-physical masses

Flavor content
Simulations with Nf =2, 2+1,2+1+1, 8, 12 flavors
n.b. 2=two degenerate flavors (up and down have the same mass)

Gauge group
Use SU(2), SU(3), SU(4), etc→ large N limit?

Disadvantages

Very expensive→ need large computer resources & human effort

Statistical method, Euclidean time
→ limited set of observables accessible.
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Lattice computations

Formulate theory on lattice

Four dimensional lattice with finite lattice spacing a

Evaluate path integral

Markov Chain Monte Carlo: integration points→ gauge fields

Necessily in finite volume T × L3

Continuum limit

Repeat calculation at several values of the lattice spacing a
extrapolate to a = 0

Finite volume

Control of finite volume effects
Requires simulation at larger-than-physical quark masses
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Path integral

µU  (x)x

a

q(  )

Computation of path integral

〈A〉 =
1
Z

∫ ∏
x,µ

dUx,µe−S[U] A[U]

with
Z =

∏
x,µ

dUx,µe−S[U]

Fermions have been integrated out.
One SU(3) integration variable for each link.
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Path integral

µU  (x)x

a

q(  )

〈A〉 =
1
Z

∫ ∏
x,µ

dUx,µe−S[U] A[U]

One SU(3) integration variable for each link.

128× 643 lattice→ 1.3 · 108 links

Classical numerical quadrature would need
N#variables function evaluations
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Evaluation of the path integral

Monte Carlo
Replace integral by sum over measurements on field configurations

〈A〉 =
1
Z

∫ ∏
x,µ

dUx,µe−S[U] A[U] =
1

Nconf

Nconf∑
i=1

A[Ui]× {1 + O(1/
√

N)}

Markov Chain Monte Carlo
These gauge configurations are produced by a Markov process with
propability P[U] ∝ e−S[U]

U1 → U2 → U3 → · · · → UN

The generation of the gauge configurations takes a large fraction of
the computer time, a full set several 100M core hours

Use configurations in many projects→ joint effort
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Continuum limit

Repeat calculation at several values of the lattice spacing a

Extrapolate to the continuum a = 0 fm

Expensive since in 4-dim box

cost ∝ number of points ∝ a−4

Factor of 2 in lattice spacing⇒ 16× cost
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Systematic effects I

Discretization effects
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Lattice spacing a

Pseudoscalar decay constant fπ in units of scale parameter
t0 ≈ 0.42 fm.

mπ ≈ 420 MeV
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Major obstacle: Topological freezing

Q = − 1
32π2

∫
d x εµνρσtr FµνFρσ

In continuum limit, disconnected topological sectors emerge.

The probability of configurations “in between” sectors drops rapidly.
M. LÜSCHER, ’10

Simulations get stuck in one sector.

Q=−1

Q=0

Q=1

Q=2

10 / 22



Toplogical charge

Topological charge
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A bad start
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Topological charge

Use open boundary conditions in time
→No freezing in the continuum, but still long autocorrelations

Nf = 2, a ≈ 0.05 fm, periodic bc

-6

-4

-2

 0

 2

 4

 6

 1000  1500  2000  2500  3000  3500  4000  4500  5000

Q

τ

DD-HMC algorithm

Nf = 2 + 1, a ≈ 0.05 fm, open bc
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Systematic effects II

Finite volume

Simulations necessarily in finite box

QCD has a mass gap (pions are lightest particle)

mπ(L) = mπ(∞)(1 +
c

Nf

(mπ/Fπ)2
√

mπL
exp(−mπL) + . . . ) for L→∞

To get sub-percent corrections, use

L >
4

mπ
→ cost ∝ m−4

π

Verify size effects by simulating different volumes.
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Systematic effects

Discretization effects

Need to simulate at several fine lattice spacings

a� Λ−1
QCD and a� m−1

q

At physical light quark masses

mπL > 4 ⇒ L > 6 fm
a = 0.05 fm ⇒ L/a > 120

Charm quarks

amq ≈
0.05 fm · 1 GeV
200MeV · fm = 0.25

Lattices of 0.05 fm and finer needed.

Need to make compromises

Simulate at larger pion masses

→ control chiral extrapolation.
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CLS 2+1

Berlin, Humboldt U
CERN
DESY
Dublin, Trinity College
Mainz
Madrid, U Autonoma
Milano, U Bicocca
Münster
Odense
Regensburg
Rome, La Sapienza
Rome, Tor Vergata
Valencia
Wuppertal

Based on blanc map ©Fobos92

Non-perturbatively improved Wilson fermions

Nf = 2 + 1 dynamical flavors
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CLS 2+1

Unique features of the CLS simulations

Open boundary conditions Lüscher’10,Lüscher,S.S.’11

Solution of topological freezing problem

Twisted mass reweighting Lüscher, Palombi’08

Safe simulations with Wilson fermions at small quark masses

Deflated solver for Dirac equation Lüscher’07

Eliminates most of rising cost as mq → 0.

Monitoring of slow observables

Tuning strategy and statistics based on flow observables

Use of publically available code Lüscher, S.S.’12

openQCD published before first large scale use by collaboration
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CLS 2+1 configurations

Status 2014
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Nf = 2 production 2007-2012

Nf = 2 + 1 one year production→ 100TB, 25’000 configs

...now we have 50’000 configs

M. Bruno et al, JHEP 1502 (2015) 043
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Scale setting
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Use light pseudoscalar decay constants

fπK =
2
3
[
fK +

1
2

fπ
]

5% correction between coarsest lattice with a ≈ 0.086 fm and
continuum.
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Chiral corrections

Decay constants
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]

In NLO ChPT combination const up to known log corrections.

φ2 ∝ mud, tr(M) =const

NLO SU(3) ChPT prediction: no free parameters
works within 20% of the chiral effect 20 / 22



Lattice spacing
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Measurements shifted to chiral trajectories which go through
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(4πfπK)2 = yphys
π and yK =
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K

(4πfπK)2 = yphys
K

Increased uncertainties with current data sets
→ lattice spacings at 2% level
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Conclusions

Lattice QCD has made a lot of progress:

Reliable simulations at small lattice spacing and small quark masses.

CLS 2+1 has generated a standard set of gauge configurations
→ still in course of being expanded

Finer lattices, smalle pion masses and different volumes will become
available.

Scale setting in advanced stage.

Now ready for all kinds of physics projects

RTG comes just at the right time.
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