Full QCD on fine lattices

Stefan Schaefer
John von Neumann Institute for Computing DESY

Telgte, November 24th, 2015

Lattice QCD

Goal

Computations in QCD of

- particle spectrum
\rightarrow charmed meson and baryon masses
- matrix elements (decay constants, pdfs,...)
$\rightarrow f_{\mathrm{D}_{\mathrm{s}}}$
- running coupling
- quark masses
$\rightarrow c$ and b quark mass
- ...

Method

Formulate theory on discrete Euclidean space-time
Numerical evaluation of path integral

Lattice QCD

Advantages

Non-perturbative method

QCD calculations also at low energies
Possiblity to vary parameters of QCD

Quark masses

\rightarrow many simulations at non-physical masses

Flavor content

Simulations with $N_{\mathrm{f}}=2,2+1,2+1+1,8,12$ flavors
n.b. 2=two degenerate flavors (up and down have the same mass)

Gauge group

Use $\operatorname{SU}(2), \mathrm{SU}(3), \mathrm{SU}(4)$, etc \rightarrow large N limit?

Disadvantages

Very expensive \rightarrow need large computer resources \& human effort
Statistical method, Euclidean time
\rightarrow limited set of observables accessible.

Lattice computations

Formulate theory on lattice

Four dimensional lattice with finite lattice spacing a

Evaluate path integral

Markov Chain Monte Carlo: integration points \rightarrow gauge fields
Necessily in finite volume $T \times L^{3}$
Continuum limit
Repeat calculation at several values of the lattice spacing a extrapolate to $a=0$

Finite volume

Control of finite volume effects
Requires simulation at larger-than-physical quark masses

Path integral

Computation of path integral

$$
\langle A\rangle=\frac{1}{Z} \int \prod_{x, \mu} d U_{x, \mu} e^{-S[U]} A[U]
$$

with

$$
Z=\prod_{x, \mu} d U_{x, \mu} e^{-S[U]}
$$

Fermions have been integrated out. One $\mathrm{SU}(3)$ integration variable for each link.

Path integral

$$
\langle A\rangle=\frac{1}{Z} \int \prod_{x, \mu} d U_{x, \mu} e^{-S[U]} A[U]
$$

One $\operatorname{SU}(3)$ integration variable for each link.
128×64^{3} lattice $\rightarrow 1.3 \cdot 10^{8}$ links
Classical numerical quadrature would need $N^{\text {\#variables }}$ function evaluations

Evaluation of the path integral

Monte Carlo

Replace integral by sum over measurements on field configurations

$$
\langle A\rangle=\frac{1}{Z} \int \prod_{x, \mu} d U_{x, \mu} e^{-S[U]} A[U]=\frac{1}{N_{\mathrm{conf}}} \sum_{i=1}^{N_{\mathrm{conf}}} A\left[U_{i}\right] \times\{1+\mathrm{O}(1 / \sqrt{N})\}
$$

Markov Chain Monte Carlo

These gauge configurations are produced by a Markov process with propability $P[U] \propto e^{-S[U]}$

$$
U_{1} \rightarrow U_{2} \rightarrow U_{3} \rightarrow \cdots \rightarrow U_{N}
$$

The generation of the gauge configurations takes a large fraction of the computer time, a full set several 100M core hours

Use configurations in many projects \rightarrow joint effort

Continuum limit

Repeat calculation at several values of the lattice spacing a
Extrapolate to the continuum $a=0 \mathrm{fm}$
Expensive since in 4-dim box

$$
\text { cost } \propto \text { number of points } \propto a^{-4}
$$

Factor of 2 in lattice spacing $\Rightarrow 16 \times \operatorname{cost}$

Systematic effects I

Discretization effects

Lattice spacing a
Pseudoscalar decay constant f_{π} in units of scale parameter $t_{0} \approx 0.42 \mathrm{fm}$.
$m_{\pi} \approx 420 \mathrm{MeV}$

Major obstacle: Topological freezing

$$
Q=-\frac{1}{32 \pi^{2}} \int d x \epsilon_{\mu \nu \rho \sigma} \operatorname{tr} F_{\mu \nu} F_{\rho \sigma}
$$

In continuum limit, disconnected topological sectors emerge.
The probability of configurations "in between" sectors drops rapidly. M. LÜSCHER, ' 10

Simulations get stuck in one sector.

Toplogical charge

Topological charge

$a \approx 0.08 \mathrm{fm}$
64×32^{3}
$m_{\pi} \approx 360 \mathrm{MeV}$

$a \approx 0.06 \mathrm{fm}$
64×32^{3}
$m_{\pi} \approx 460 \mathrm{MeV}$

A bad start

$a \approx 0.04 \mathrm{fm}$
128×64^{3}
$m_{\pi} \approx 480 \mathrm{MeV}$

Topological charge

Use open boundary conditions in time

\rightarrow No freezing in the continuum, but still long autocorrelations
$N_{\mathrm{f}}=2, a \approx 0.05 \mathrm{fm}$, periodic bc

DD-HMC algorithm
$N_{\mathrm{f}}=2+1, a \approx 0.05 \mathrm{fm}$, open bc

Mass precond. HMC algorithm

Systematic effects II

Finite volume

Simulations necessarily in finite box
QCD has a mass gap (pions are lightest particle)

$$
m_{\pi}(L)=m_{\pi}(\infty)\left(1+\frac{c}{N_{\mathrm{f}}} \frac{\left(m_{\pi} / F_{\pi}\right)^{2}}{\sqrt{m_{\pi} L}} \exp \left(-m_{\pi} L\right)+\ldots\right) \quad \text { for } \quad L \rightarrow \infty
$$

To get sub-percent corrections, use

$$
L>\frac{4}{m_{\pi}} \quad \rightarrow \quad \operatorname{cost} \propto m_{\pi}^{-4}
$$

Verify size effects by simulating different volumes.

Systematic effects

Discretization effects

Need to simulate at several fine lattice spacings

$$
a \ll \Lambda_{\mathrm{QCD}}^{-1} \quad \text { and } \quad a \ll m_{q}^{-1}
$$

At physical light quark masses

$$
\begin{array}{rlll}
m_{\pi} L>4 & \Rightarrow & L & >6 \mathrm{fm} \\
a=0.05 \mathrm{fm} & \Rightarrow & L / a & >120
\end{array}
$$

Charm quarks

$$
a m_{q} \approx \frac{0.05 \mathrm{fm} \cdot 1 \mathrm{GeV}}{200 \mathrm{MeV} \cdot \mathrm{fm}}=0.25
$$

Lattices of 0.05 fm and finer needed.
Need to make compromises
Simulate at larger pion masses
\rightarrow control chiral extrapolation.

CLS 2+1

Berlin, Humboldt U
CERN
DESY
Dublin, Trinity College
Mainz
Madrid, U Autonoma
Milano, U Bicocca
Münster
Odense
Regensburg
Rome, La Sapienza
Rome, Tor Vergata
Valencia
Wuppertal

Based on blanc map ©Fobos92

Non-perturbatively improved Wilson fermions
$N_{f}=2+1$ dynamical flavors

CLS 2+1

Unique features of the CLS simulations
Open boundary conditions
Lüscher'10,Lüscher,S.S.' 11
Solution of topological freezing problem
Twisted mass reweighting
Lüscher, Palombi'08
Safe simulations with Wilson fermions at small quark masses
Deflated solver for Dirac equation
Lüscher'07
Eliminates most of rising cost as $m_{q} \rightarrow 0$.
Monitoring of slow observables
Tuning strategy and statistics based on flow observables
Use of publically available code
Lüscher, S.S.' 12
open QCD published before first large scale use by collaboration

CLS 2+1 configurations

Status 2014

Comparable statistics in $N_{\mathrm{f}}=2$ and $N_{\mathrm{f}}=2+1$ project.
$N_{\mathrm{f}}=2$ production 2007-2012
$N_{\mathrm{f}}=2+1$ one year production \rightarrow 100ТВ, $25^{\prime} 000$ configs
...now we have 50'000 configs
M. Bruno et al, JHEP 1502 (2015) 043

Scale setting

Use light pseudoscalar decay constants

$$
f_{\pi \mathrm{K}}=\frac{2}{3}\left[f_{\mathrm{K}}+\frac{1}{2} f_{\pi}\right]
$$

5% correction between coarsest lattice with $a \approx 0.086 \mathrm{fm}$ and continuum.

Chiral corrections

Decay constants

$$
f_{\pi \mathrm{K}}=f\left[1+\frac{16 B \operatorname{tr}(M)}{3 f^{2}}\left(L_{5}+3 L_{4}\right)+\operatorname{logs}\right]
$$

In NLO ChPT combination const up to known log corrections.
$\phi_{2} \propto m_{\text {ud }}, \operatorname{tr}(M)=$ cons \dagger
NLO SU(3) ChPT prediction: no free parameters works within 20% of the chiral effect

Lattice spacing

Measurements shifted to chiral trajectories which go through

$$
y_{\pi}=\frac{m_{\pi}^{2}}{\left(4 \pi f_{\pi \mathrm{K}}\right)^{2}}=y_{\pi}^{\text {phys }} \quad \text { and } \quad y_{\mathrm{K}}=\frac{m_{\mathrm{K}}^{2}}{\left(4 \pi f_{\pi \mathrm{K}}\right)^{2}}=y_{\mathrm{K}}^{\text {phys }}
$$

Increased uncertainties with current data sets
\rightarrow lattice spacings at 2% level

Conclusions

Lattice QCD has made a lot of progress:
Reliable simulations at small lattice spacing and small quark masses.
CLS 2+1 has generated a standard set of gauge configurations
\rightarrow still in course of being expanded

Finer lattices, smalle pion masses and different volumes will become available.

Scale setting in advanced stage.

Now ready for all kinds of physics projects
RTG comes just at the right time.

