Henning Gerber

Research Training Group: Strong and Weak Interactions - from Hadrons to Dark Matter

24.11.2015

Henning Gerber Research Training Group: Strong and Weak Interactions - from Hadrons to Dark Matter

Curriculum Vitae ●	Master thesis 00000	Non-perturbative QFT on the lattice \circ
 Bielefel 	d:	
 20 20 ho 20 	09: Abitur (Fr v. Bodelschwi 09-2010: Civil Service at Boys me for the elderly) 10-2013: B. Sc. in Physics at	ingh Gymnasium) enhaus, Bielefeld (Nursing Bielefeld University
	Thesis: Topological insulator	in a Zeeman-field
2 0	13-2015: M. Sc. in Physics at	Bielefeld University
 Stays a 	broad:	
 20 20 20 EF 	06-2007: New Mexico, USA: H onth) 13-2014: King's College, Lond ASMUS)	High school exchange (10 on, UK (one academic year,
 Münste 	r:	
■ 01 ■ Gr lat	.11.15: Ph.D. student at Uni I oup of Prof. Dr. Münster: No tice	Münster n perturbative QFT on the

Henning Gerber

Research Training Group: Strong and Weak Interactions - from Hadrons to Dark Matter

イロト イヨト イヨト イヨト

æ

Gravity-improved hydrodynamics of heavy ion collisions

 ${\sf G}.$ Qin - Anisotropic Flow and Jet Quenching in Relativistic Nuclear Collisions

- Ideal relativistic hydrodynamics works well after $\approx 1 \frac{\rm fm}{c}$, breaks down for earlier times
 - \Rightarrow Non-hydrodynamic modes
- AdS/CFT correspondence provides toy model of strongly interacting theory: N = 4 SYM

Curricu∣um Vitae	Master thesis	Non-perturbative QFT on the lattice
⊙	○●○○○	O
The AdS/CFT correspondence		

$$\{\mathcal{N}=4 \text{ SU}(N)\} \equiv \{\text{Type IIB String Theory in } AdS_5 \times S_5\}$$

- For $\lambda = gN \gg 1$ IIB string theory simplifies to classical supergravity
- SYM at finite temperature T Collapse a black hole of Hawking temperature T in AdS₅
- $\mathcal{T}^{\mu\nu} \cong g^{\mu\nu}$

 \Rightarrow Can use Einstein equations to calculate excitations of stress energy

- Vanishing boundary condition at $r o \infty$
- incoming boundary condition at the black hole horizon
- Quasinormal modes ω_i

- 4 伊 ト - 4 日 ト - 4 日

Curricu∣um Vitae	Master thesis	Non-perturbative QFT on the ∣attice
⊙	○○○●○	⊙
Hydro + QNMs		

Relativistic Hydrodynamics:

$$\begin{split} \mathcal{T}^{\mu\nu} &= \mathcal{T}^{\mu\nu}_{\text{ideal}} + \Pi^{\mu\nu}_{\text{MIS}} + \Pi^{\mu\nu}_{\text{QNM}} \\ \mathbf{0} &= \nabla_{\mu}\mathcal{T}^{\mu\nu} \end{split}$$

+ Müller-Israel-Stewart

$$\left(au_{\pi} \frac{1}{T} \mathcal{D} + 1\right) \Pi_{\mathsf{MIS}}^{\mu \nu} = -\eta \sigma^{\mu \nu}$$

+ QNMs

$$0 = \left(\frac{1}{T}\mathcal{D}\right)^2 \Pi^{\mu\nu}_{\mathsf{QNM}} + 2\omega_I \frac{1}{T}\mathcal{D}\Pi^{\mu\nu}_{\mathsf{QNM}} + |\omega|^2 \Pi^{\mu\nu}_{\mathsf{QNM}}$$

Henning Gerber

Research Training Group: Strong and Weak Interactions - from Hadrons to Dark Matter

Heller, Janik, Spalinski, Witaszczyik (2014)

Gray: numerical AdS/CFT, Blue: improved Müller-Israel-Stewart, Magenta: Müller-Israel-Stewart, Green: ideal hydrodynamics

- AdS/CFT: Non-hydrodynamic modes should be included for the description of early times
- For better precision would need to include higher QNMs
- A dual theory for QCD has not been found, yet

Henning Gerber

- Group of Prof. Dr. Münster
- Second supervisor: Prof. Dr. Wulkenhaar
- $\mathcal{N} = 1$ Super Yang-Mills theory with gauge group SU(2) \Rightarrow SU(3)
- Technicolor models
- Data analysis
- Implementation of new observables