MULTIPLE PARTON SCATTERING AND ITS RELEVANCE FOR LHC PHENOMENOLOGY

Supervisors: Jun. Prof. Dr. Anna Kulesza Prof. Dr. Ch. Klein-Bösing

Oleh Fedkevych

November 24, 2015

Outline

1 History of my studies

2 Multiple Parton Scattering

3 Backup

1 History of my studies

- 2 Multiple Parton Scattering
- 3 Backup

My studies

Brief history of my education

- 2008-2012 Bachelor in Physics at Taras Shevchenko National University of Kyiv
- 2012 present Master in Physics at Taras Shevchenko National University of Kyiv
- 2013 2015 Master in Physics at Ecole Polytechnique, Paris
- 1st of October 2015 present PhD at WWU Supervisors: Dr. Anna Kulesza, Dr. Ch. Klein-Bösing

Research expierence

Research expierence

- HBT Correlations (Bachelor thesis): The role of HBT correlations in the final for nucleus-nucleus collisions
- Quantum Transport Subject:
 Equilibrium current through the quantum dot
- Quantum Chemistry Subject: Ab initial calculations spectra of molecules which belong to family of Phthalocyanines
- Particle Phenomenology (Master thesis): Minimal Supersymmetric Standard Model and its phenomenological relevance for dark matter annihilation, (group of Prof. Dr. Klasen)

Dark Matter Problem

WIMPs

Visible matter is only small fraction of the Universe (only about 5%) Neutralinos are good candidates for WIMPs (weakly interacting massive particles) Phenomenology of Neutralinos is crucial for understanding true nature of Dark Matter

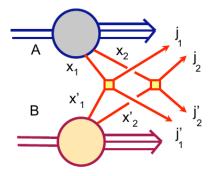
The goal of my internship

Study of neutralino annihilation in a pair of gluons

- In order to compute the relic density the neutralino annihilation cross section is needed
- The precision of measurements (WMAP and Planck satellite experiments) is about 1% now!
- The Next to Leading Order Corrections can give rise a significant contribution to the relic density¹
- The goal of my internship was to implement all corresponding matrix elements squared (about 100 elements) into a DM@NLO code

7/24

Björn Herrmann, Michael Klasen, Karol Kovařík, arXiv:0907.0030v2 [hep-ph] 🛛 🔍 🗖 🕨 🗸


Outline

1 History of my studies

2 Multiple Parton Scattering

3 Backup

Multiple Parton Scattering

What it's all about

MPI cross sections are suppressed by a factor $\left(\Lambda_{QCD}^2/Q^2\right)^{n-1}$ But this suppression factor is absent for the differential cross section

What it's all about

Multiple parton scattering is a process when two or more interactions between proton (nucleon) constituents occur at the same time (during one collision) An important background for High-Precision SM (BSM)

Multiple Parton Scattering: Factorization

The "pocket"	formula
$\sigma_{AB}^{D} = \frac{m}{2} \frac{\sigma_{A} \sigma_{B}}{\sigma_{eff}}$	

10/24

The cross section is given by:

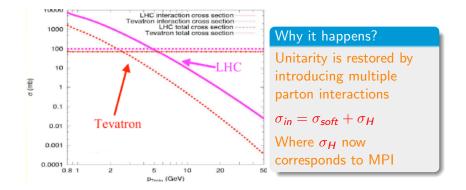
$$\begin{aligned} \sigma_{AB}^{D} &= \frac{m}{2} \sum_{i,j,k,l} \int D_{ij} \hat{\sigma}_{ik}^{A} \hat{\sigma}_{jl}^{B} D_{kl} \\ D_{ij} \left(x_{1}, x_{2}; b \right) &\simeq D_{i} \left(x_{1} \right) D_{j} \left(x_{2} \right) F \left(b \right) \implies \sigma_{AB}^{D} &= \frac{m}{2} \frac{\sigma_{A} \sigma_{B}}{\sigma_{eff}} \end{aligned}$$

Research plan

Research plan:

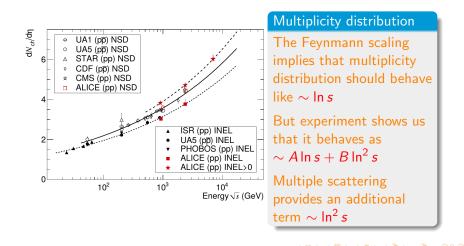
- Investigation of theoretical assumptions (factorization) and its impact on LHC phenomenology
- Study of DPS in pp + pA collisions
- Feasible study of DPS measurements with ALICE detector

Outline


1 History of my studies

2 Multiple Parton Scattering

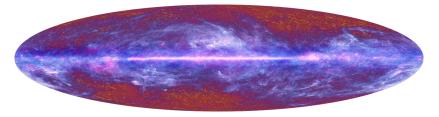
Oleh Fedkevych — MULTIPLE PARTON SCATTERING AND ITS RELEVANCE FOR LHC PHENOMENOLOGY 12/24

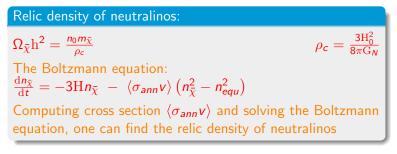

Multiple Parton Scattering: Unitarity violation

² T. Sjöstrand, P. Skands, arXiv:hep-ph/0402078v2 [hep-ph]

Oleh Fedkevych — MULTIPLE PARTON SCATTERING AND ITS RELEVANCE FOR LHC PHENOMENOLOGY 13/24

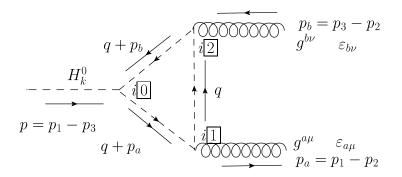
Multiple Parton Scattering: Scaling violation



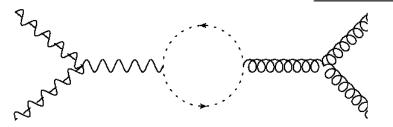

Oleh Fedkevych — MULTIPLE PARTON SCATTERING AND ITS RELEVANCE FOR LHC PHENOMENOLOGY

14/24

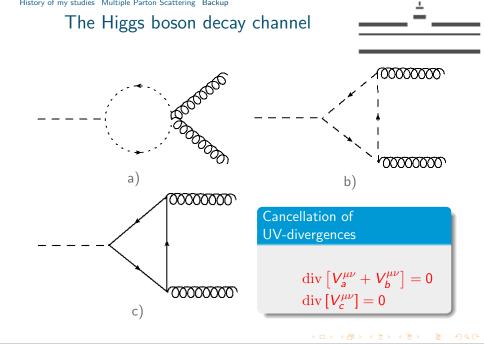
Relic density


Computational strategy

- Generate all possible one-loop diagrams for $\bar{\chi}\bar{\chi} \rightarrow gg$.
- Group all possible one-loop diagrams (about 60 diagrams) by topological classes (19 different topologies).
- Eliminate all topologies with zero contribution (9 topologies).
- Compute the rest (10 topologies) using Passarino-Veltman decomposition.
- Implement obtained results into DM@NLO code, compute the cross section numerically.



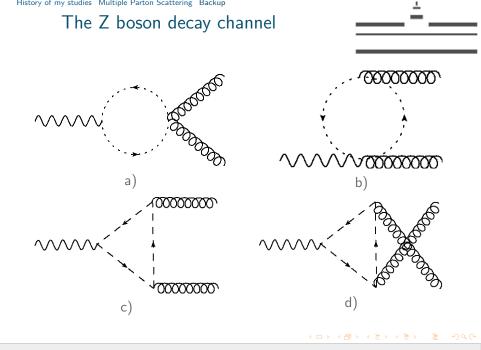
The Higgs boson decay and the corresponding vertex correction


$$V_2^{\mu
u} \sim \int_q rac{q^\mu q^
u}{D_0 D_1 D_2} \sim C^{\mu
u} = g^{\mu
u} C_{00} + \sum_{i,j=a,b} p_i^\mu p_j^
u C_{ij}$$

The topologies with zero contribution

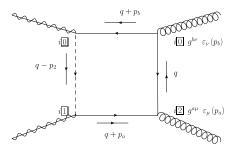
SU(3) gauge invariance

- In this process all diagrams with intermediate gluon will give a zero contribution
- It is not possible to decompose SU(3) octet into a SU(3) singlet!
- The corresponding color factor tr (T^a) = 0 ensures us that the gauge invariance will be preserved



The Z boson decay channel

- Landau-Yang theorem does not work for off-shell particles³
- The Furry theorem claims that we cannot attach an odd number of "vector" legs to closed fermion loop
- As a consequence the massive off-shell spin one particle with an axial coupling can decay into two a pair of photons (gluons)


³ S.Moretti, Variations on a Higgs theme, arXiv:1407.3511v1 [hep-ph]

Oleh Fedkevych — MULTIPLE PARTON SCATTERING AND ITS RELEVANCE FOR LHC PHENOMENOLOGY 21/24

The box-like diagrams

All box-like diagrams are UV-convergent

$$\frac{\left[\not{q}+\not{p}_{a}+m_{f}\right]\gamma^{\mu}\left[\not{q}+m_{f}\right]\gamma^{\nu}\left[\not{q}+\not{p}_{b}+m_{f}\right]}{\left[q^{2}-m_{f}^{2}\right]\left[(p_{a}+q)^{2}-m_{f}^{2}\right]\left[(p_{b}+q)^{2}-m_{f}^{2}\right]\left[(q-p_{2})^{2}-m_{q}^{2}\right]}$$

Oleh Fedkevych — MULTIPLE PARTON SCATTERING AND ITS RELEVANCE FOR LHC PHENOMENOLOGY

Conclusions

Conclusions and further steps

- I have computed set of general topologies for $\bar{\chi}\bar{\chi}
 ightarrow gg$
- Sum of all topologies is UV-finite
- I have learned how to use Passarino-Veltman technique and also how to use LoopTools, FernCalc and FORM packages for analytical and numerical one-loop computations
- Currently I am working on implementation of matrix elements squared into the DM@NLO code
- General form of computation allows to apply the obtained results for inverse process $gg \rightarrow \bar{\chi}\bar{\chi}$ and also to use them for processes which have common topologies
- As an extension the inverse process can be implemented into RESUMMINO (LHC phenomenology) code