

Charm(ing) meson physics from lattice QCD

RTG Strong and Weak Interactions — from Hadrons to Dark Matter Inauguration Retreat @ Heidehotel Waldhütte, Telgte, November 24 – 26, 2015

Jochen Heitger

November 24, 2015

RG Heitger: Particle Physics Theory & Lattice QCD

Group members

- Ph.D. students:
 Christian Wittemeier, Kevin Eckert (∈ *SGRK 2149*)
- M.Sc. students:

Carl Chr. Köster, Fabian Joswig, Alexander Hock, Matthias Post

ALPHA Collaboration Dased

WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER

RG Heitger: Particle Physics Theory & Lattice QCD

Group members

- Ph.D. students: Christian Wittemeier, Kevin Eckert (∈ 𝔜GRK 2149)
- M.Sc. students:

Carl Chr. Köster, Fabian Joswig, Alexander Hock, Matthias Post

Main research topics

- Determinations of QCD/SM parameters via LQCD: $\alpha_s(\mu), m_{quark}$
- Non-perturbative renormalization and O(a) improvement
- Lattice hadron and (heavy) flavour physics phenomenology: (semi-)leptonic D- & B-meson decays, spectroscopy, HQET, ...

 $\rightarrow \overline{A_{LPHA}}, \underline{CLS}_{\text{based}}$

RG Heitger: Particle Physics Theory & Lattice QCD

Group members

Ph.D. students:

Christian Wittemeier, Kevin Eckert ($\in \text{SGRK 2149}$)

• M.Sc. students:

Carl Chr. Köster, Fabian Joswig, Alexander Hock, Matthias Post

Main research topics

- Determinations of QCD/SM parameters via LQCD: $\alpha_s(\mu), m_{quark}$
- Non-perturbative renormalization and O(*a*) improvement
- Lattice hadron and (heavy) flavour physics phenomenology: (semi-)leptonic D- & B-meson decays, spectroscopy, HQET, ...

Planned projects/activities within SGRK 2149 \rightarrow RG Khoukaz

- Computation of decay constants f_D , f_{D_s} in 3–flavour LQCD
- Decoupling of charm (sea) quarks and its physical effects
- $\bullet~D_{(s)}\mbox{-meson spectroscopy, exotics, hybrids, ... through LQCD$

 $\rightarrow \overline{ALPHA}_{\text{Collaboration}}, \underline{CLS}_{\text{based}}$

RG Heitger: Particle Physics Theory & Lattice QCD

Group members

Ph.D. students:

Christian Wittemeier, Kevin Eckert ($\in \text{SGRK 2149}$)

M.Sc. students:

Carl Chr. Köster, Fabian Joswig, Alexander Hock, Matthias Post

Main research topics

- Determinations of QCD/SM parameters via LQCD: $\alpha_s(\mu), m_{quark}$
- Non-perturbative renormalization and O(*a*) improvement
- Lattice hadron and (heavy) flavour physics phenomenology: (semi-)leptonic D- & B-meson decays, spectroscopy, HQET, ...

Planned projects/activities within SGRK 2149 \rightarrow RG Khoukaz

- Computation of decay constants f_D , f_{D_s} in 3–flavour LQCD
- Decoupling of charm (sea) quarks and its physical effects
- $D_{(s)}$ -meson spectroscopy, exotics, hybrids, ... through LQCD

WESTFÄLISCHE WILHELMS-UNVERSITÄT MONSTER

Motivation: Precision heavy flavour physics

New Physics effects expected in the quark flavour sector, because most extensions of the Standard Model (SM) contain ...

- ... new CP-violating phases
- ... new quark flavour-changing interactions

WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÖNSTER

Motivation: Precision heavy flavour physics

New Physics effects expected in the quark flavour sector, because most extensions of the Standard Model (SM) contain ...

- ... new CP-violating phases
- ... new quark flavour-changing interactions

- Quark flavour change in hadrons = weak interaction process
- Associated decays exploited in accelerator experiments, however, always involve hadrons as initial states
 - \Rightarrow QCD corrections enter the decay rates & can be significant

WESTFÄLISCHE WILHELMS-UNIVERSIT MÜNSTUP

Charm(ing) meson physics from lattice QCD

In the Standard Model, the couplings of these flavour-changing (weak) interactions are encoded by elements of the CKM matrix / Unitarity Triangle (UT)

$$\underbrace{\begin{pmatrix} d'\\ s'\\ b' \end{pmatrix}}_{\text{weak int.}} = V_{\text{CKM}} \underbrace{\begin{pmatrix} d\\ s\\ b \end{pmatrix}}_{\text{strong int.}} , V_{\text{CKM}} = \begin{bmatrix} d\\ d\\ d\\ d\\ d \end{bmatrix}$$

$$\begin{pmatrix} \mathbf{V_{ud}} & \mathbf{V_{us}} & \mathbf{V_{ub}} \\ \pi \to \ell \nu & K \to \ell & B \to \ell \nu \\ K \to \pi \ell \nu & B \to \pi \ell \nu \\ \mathbf{V_{cd}} & \mathbf{V_{cs}} & \mathbf{V_{cb}} \\ D \to \ell \nu & D_s \to \ell \nu & B \to D \ell \nu \\ D \to \pi \ell \nu & D \to K \ell \nu & B \to D^* \ell \nu \\ \mathbf{V_{td}} & \mathbf{V_{ts}} & \mathbf{V_{tb}} \\ B_d \leftrightarrow \overline{B}_d & B_s \leftrightarrow \overline{B}_s \end{cases}$$

living knowledge WWU Münster

Jochen Heitger

WESTFÄLISCHE WILHELMS-UNIVERSITÄ MÜNSTPR

In the Standard Model, the couplings of these flavour-changing (weak) interactions are encoded by elements of the CKM matrix / Unitarity Triangle (UT)

$$\underbrace{\begin{pmatrix} d'\\ s'\\ b' \end{pmatrix}}_{\text{weak int.}} = V_{\text{CKM}} \underbrace{\begin{pmatrix} d\\ s\\ b \end{pmatrix}}_{\text{strong int.}} , V_{\text{CKM}} =$$

Unitarity of *V*_{CKM} implies a useful *triangle representation:*

$$V_{\mathsf{CKM}}^{\dagger}V_{\mathsf{CKM}}=\mathbf{1}$$
 \Rightarrow

- $ightarrow\,$ SM quark flavour dynamics neatly encoded in the CKM matrix
- → CKM analyses relevant for phenomenology involve crucial inputs both from *experiment and theory*

iving knowledg

5

No ser me disconcervity

Impact of weak decays of hadrons on CKM analyses is generically based (via the *OPE*) on schematic relations such as

living knowledge WWU Münster

Impact of weak decays of hadrons on CKM analyses is generically based (via the *OPE*) on schematic relations such as

E.g. for the leptonic decay of $D_{(s)}$ -mesons of interest here:

Corresponding SM expression for the partial width:

$$\begin{split} \Gamma\left(\mathsf{D}_{(\mathsf{s})} \to \ell \,\nu_{\ell}\right) & \stackrel{\frown}{=} & \mathcal{B}\left(\mathsf{D}_{(\mathsf{s})} \to \ell \,\nu_{\ell}\right) / \tau_{\mathsf{D}_{(\mathsf{s})}} \\ & = & \frac{G_{\mathsf{F}}^2}{8\pi} \,m_{\mathsf{D}_{(\mathsf{s})}} \,m_{\ell}^2 \left(1 - \frac{m_{\ell}^2}{m_{\mathsf{D}_{(\mathsf{s})}}^2}\right) f_{\mathsf{D}_{(\mathsf{s})}}^2 \,|V_{\mathsf{cq}}|^2 \,, \; \mathsf{q} = \mathsf{d},\mathsf{s} \end{split}$$

Charm(ing) meson physics from lattice QCD 7

\Rightarrow Required inputs from ...

... Experiment

• Measurement of the decay rate $\,\Gamma\,$

\Rightarrow Required inputs from ...

... Experiment

• Measurement of the decay rate $\,\Gamma\,$

... Theory

(note: due to confinement, significant QCD corrections to $\boldsymbol{\Gamma})$

- Computation of the decay constant f_{D(s)}, which is a hadronic matrix element absorbing the low-energy, *non-perturbative* QCD effects
 - ightarrow a task for lattice QCD (LQCD)

\Rightarrow Required inputs from ...

... Experiment

• Measurement of the decay rate $\,\Gamma\,$

... Theory

(note: due to confinement, significant QCD corrections to $\boldsymbol{\Gamma})$

- Computation of the decay constant f_{D(s)}, which is a hadronic matrix element absorbing the low-energy, *non-perturbative* QCD effects
 - ightarrow a task for lattice QCD (LQCD)

CKM analysis of $D_{(s)}$ -meson decays allows:

- 1.) determining the CKM matrix element $|V_{cq}|$ to (over)constrain the UT
- 2.) comparing $f_{D_{(s)}}|V_{cq}|$ from experiment with LQCD results of $f_{D_{(s)}}$, if $|V_{cq}|$ is known (e.g. via CKM unitarity, semi-leptonic decays)

Status of results

VESTERUSCHE

Compilation of lattice results by the ...

• ... FLAG Working Group (FLAG-2 2013: Aoki et al., arXiv:1310.8555)

• ... super-imposed with new lattice results

- Towards 1% accuracy: "raw" potential of lattice methods
- Experiments: BES-III, CLEO-c, BaBar, Belle; ... PANDA @ FAIR

- Stringent tests of self-consistency of the SM & extensions
- Deviation between experimental and lattice results for f_{D(s)} could hint at New Physics in the quark flavour sector, complementing direct searches

WESTERISCHE

WILHELMS-UNIVERSITÄT MONSTER

- Stringent tests of self-consistency of the SM & extensions
- Deviation between experimental and lattice results for f_{D(s)} could hint at New Physics in the quark flavour sector, complementing direct searches
- Current "tensions": [Rosner & Stone for PDG 2016, arXiv:1509.02220]
 - ► f_{D_s} from lattice QCD ~ 2σ below estimate with experim. inputs
 - > 2nd row of V_{CKM} conflicts 3–generation unitarity at 2σ level

Jochen Heitger

WESTERISCHE

MOMENTAL AND ADDRESS OF ADDRESS ADDRES

Lattice QCD — 'Ab initio' tool based on FIs & MC $\mathcal{L}_{\text{QCD}}\left[g_{\text{o}}, m_{f}\right] = -\frac{1}{2g_{\text{o}}^{2}} \operatorname{Tr}\left\{F_{\mu\nu}F_{\mu\nu}\right\} + \sum_{f=\text{u.d.s...}} \overline{\psi}_{f}\left\{\gamma_{\mu}\left(\partial_{\mu} + g_{\text{o}}A_{\mu}\right) + m_{f}\right\}\psi_{f}$ $\begin{bmatrix} \Lambda_{\rm QCD} \\ M_{\rm u}, M_{\rm d} \\ M_{\rm s} \end{bmatrix}$ ΓD ƒ_B **B**_K, **B**_B ξ $\begin{array}{c|c} m_{\pi} \\ m_{K} \\ m_{D} \end{array} \begin{array}{c} \mathcal{L}_{QCD} \left[g_{0}, m_{f} \right] \\ \xrightarrow{\mathcal{L}_{TTTTA}} \end{array}$ Mc Mh Experiment QCD parameters (RGIs) Predictions

Main sources of systematic uncertainties in LQCD computations:

- Part of the vacuum polarization effects is missed, as long as u, d, s (and ideally also c) sea quarks are not incorporated
 - ightarrow today's LQCD computations use $N_{\rm f}=$ 2, 2 + 1 and even 2 + 1 + 1

Main sources of systematic uncertainties in LQCD computations:

- Extrapolations to $m_{u,d}$ guided by χPT to connect to physical world
- Discretization errors, notably from heavy quarks: $O[(am_Q)^n]$ effects $\rightarrow \# \gtrsim 3$ lattice spacings needed to take continuum limit, $a \rightarrow o$
- Perturbative vs. non-perturbative renormalization

Challenges of treating heavy quarks on the lattice

Predictivity in a quantum field theory relies upon a large scale ratio

interaction range \ll physical length scales momentum cutoff \gg physical mass scales : $\Lambda_{cut} \sim a^{-1} \gg E_i, m_i$

Challenges of treating heavy quarks on the lattice

Predictivity in a quantum field theory relies upon a large scale ratio

interaction range \ll physical length scales momentum cutoff \gg physical mass scales : $\Lambda_{cut} \sim a^{-1} \gg E_i, m_i$

Hierarchy of disparate physical scales difficult to cover simultaneously:

$$\Lambda_{\rm IR} = L^{-1} \ll m_{\pi} , \dots , m_{\rm D} , m_{\rm B} \ll a^{-1} = \Lambda_{\rm UV}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\left\{ O(e^{-Lm_{\pi}}) \Rightarrow L \gtrsim \frac{4}{m_{\pi}} \sim 6 \, {\rm fm} \right\} \quad \curvearrowright \quad L/a \gtrsim 120 \quad \curvearrowleft \quad \left\{ am_{\rm D} \lesssim \frac{1}{2} \Rightarrow a \approx 0.05 \, {\rm fm} \right\}$$

Challenges of treating heavy quarks on the lattice

Predictivity in a quantum field theory relies upon a large scale ratio

interaction range \ll physical length scales momentum cutoff \gg physical mass scales : $\Lambda_{cut} \sim a^{-1} \gg E_i, m_i$

As a consequence of this *multi-scale problem*, heavy quarks are challenging to simulate

⇒ a proper treatment of the heavy quark with a competitive control on the systematic uncertainties involved is difficult

Light quarks: too light

- Widely spread objects
- Finite-volume errors via light π 's

b-quark: too heavy

- Extremely localized object
- B-mesons with a propagating b need fine resolutions $(am_b \ll 1)$:
 - ♦ large discretization errors
 - ◊ "they fall through the lattice"

Light quarks: too light

- Widely spread objects
- Finite-volume errors via light π 's
- b-quark: too heavy
 - Extremely localized object
 - B-mesons with a propagating b need fine resolutions $(am_b \ll 1)$:
 - \diamond large discretization errors
 - ♦ "they fall through the lattice"
- Bottom physics (dominated by scales $\sim m_{\rm b}$):
 - including b-quarks in LQCD computations requires $am_b \ll 1$
 - ► a fully relativistic b not yet feasible with today's CPU resources → adopt effective field theories: NRQCD, HQET

Light quarks: too light

- ► Widely spread objects
- Finite-volume errors via light π 's
- b-quark: too heavy
 - Extremely localized object
 - B-mesons with a propagating b need fine resolutions $(am_b \ll 1)$:
 - \diamond large discretization errors
 - ♦ "they fall through the lattice"
- Bottom physics (dominated by scales $\sim m_{\rm b}$):
 - including b-quarks in LQCD computations requires $am_b \ll 1$
 - ► a fully relativistic b not yet feasible with today's CPU resources → adopt effective field theories: NRQCD, HQET
- Charm physics (dominated by $\sim m_{
 m c}$) directly accessible, but ...
 - ... needs $am_c < 1$ to keep discretization effects under control
 - ... sufficiently large # of sites to minimize finite-volume effects

Illustration: Cutoff effects in the charm sector

High-precision computation of F_{D_s} in quenched QCD ($N_f = o$)

- Scaling study down to very fine lattices: $a \approx (0.09 0.03)$ fm
- O(*a*, *am*_{q,c}) cutoff effects relevant & removed NP'ly

Warning: Large lattice artefacts

[H. & Jüttner, JHEP0905(2009)101]

Illustration: Cutoff effects in the charm sector

High-precision computation of F_{D_s} in quenched QCD ($N_f = o$)

- Scaling study down to very fine lattices: $a \approx (0.09 0.03)$ fm
- O(*a*, *am*_{q,c}) cutoff effects relevant & removed NP'ly

Warning: Large lattice artefacts

[H. & Jüttner, JHEP0905(2009)101]

⇒ Small lattice spacings $a \leq 0.08$ fm seem mandatory to control the continuum limit for charm (note: challenging for $N_f > 0$!)

iving knowledge WWU Münster

Leptonic D_(s)-meson decay constants from LQCD

Starting point of the lattice QCD computation: Low-energy $D_{(s)}$ -meson-to-vacuum QCD matrix elements

 $\langle o | A_{\mu} | D_{q}(p) \rangle = i f_{Dq} p_{\mu}$ $A_{\mu}(x) = \overline{q}(x) \gamma_{\mu} \gamma_{5} c(x) : \text{axial vector current } (q = d, s)$

Leptonic D_(s)-meson decay constants from LQCD

Starting point of the lattice QCD computation: Low-energy $D_{(s)}$ -meson-to-vacuum QCD matrix elements

 $\langle o | A_{\mu} | D_{q}(p) \rangle = i f_{Dq} p_{\mu}$ $A_{\mu}(x) = \overline{q}(x) \gamma_{\mu} \gamma_{5} c(x) : \text{axial vector current } (q = d, s)$

Goal:

Precise computation of $f_{D_{(s)}}$ from $N_f = 2 + 1$ flavour lattice QCD simulations with controlled statistical and systematic errors

Leptonic $D_{(s)}$ -meson decay constants from LQCD

Starting point of the lattice QCD computation: Low-energy D_(s)-meson-to-vacuum QCD matrix elements

 $\langle o | A_{\mu} | D_{q}(p) \rangle = i f_{D_{q}} p_{\mu}$ $A_{\mu}(x) = \overline{q}(x) \gamma_{\mu} \gamma_{5} c(x) : \text{ axial vector current } (q = d, s)$

Goal:

Precise computation of $f_{D_{(s)}}$ from $N_f = 2 + 1$ flavour lattice QCD simulations with controlled statistical and systematic errors

Ingredients of the lattice calculation:

1.) Extraction of $f_{D(s)}$ from asymptotics of correlation functions in the pseudoscalar channel at large Euclidean times & PCAC:

$$\begin{split} \mathcal{C}(x_{o}) &= a^{3} \sum_{\vec{x}} \left\langle \mathcal{P}(x) \mathcal{P}(o) \right\rangle \quad \stackrel{x_{o} \to \infty}{\sim} \quad p \times e^{-m_{\mathsf{D}(s)} x_{o}} , \ \mathcal{P}(x) = \overline{q} \gamma_{5} c \\ & \int_{\mathsf{D}_{(s)}} \quad \propto \quad Z_{\mathsf{A}} \sqrt{p} \ m_{\mathsf{PCAC}} \ m_{\mathsf{D}_{(s)}}^{-3/2} \end{split}$$

Leptonic $D_{(s)}$ -meson decay constants from LQCD

Starting point of the lattice QCD computation: Low-energy D_(s)-meson-to-vacuum QCD matrix elements

 $\langle o | A_{\mu} | D_{q}(p) \rangle = i f_{D_{q}} p_{\mu}$ $A_{\mu}(x) = \overline{q}(x) \gamma_{\mu} \gamma_{5} c(x) : \text{ axial vector current } (q = d, s)$

Goal:

Precise computation of $f_{D_{(s)}}$ from $N_f = 2 + 1$ flavour lattice QCD simulations with controlled statistical and systematic errors

Ingredients of the lattice calculation:

- 2.) Amongst others, prior determination of ...
 - \blacktriangleright ... renormalization factors, such as Z_A
 - ... improvement coefficients, such as c_A, to remove the leading discretization errors in the lattice axial current (entering m_{PCAC})

Prerequisites

Computing strategies developed and successfully applied in ...

- ... the quenched approximation ($N_{\rm f}={\rm o}$)
- ... two-flavour QCD ($N_{\rm f} = 2$)

Prerequisites

TO SET ME-HADDERETTE

Computing strategies developed and successfully applied in ...

- ... the quenched approximation ($N_{\rm f} = 0$)
- ... two-flavour QCD ($N_{\rm f}=2$)

ALPHA Collaboration

Joint chiral and continuum extrapolations to the physical point of f_D and f_{D_s} in $N_f = 2$ QCD: [H., von Hippel, Schaefer & Virotta, arXiv:1312.7693]

Preliminary work & Configuration ensemble basis

Non-perturbative determination of c_A and Z_A in $N_f = 3$ QCD:

[Bulava, Della Morte, H. & Wittemeier, NPB896 (2015) 555, arXiv:1502.04999; in progress]

Preliminary work & Configuration ensemble basis

Non-perturbative determination of c_A and Z_A in $N_f = 3$ QCD:

[Bulava, Della Morte, H. & Wittemeier, NPB896 (2015) 555, arXiv:1502.04999; in progress]

• A reliable, accurate evaluation of $f_{D_{(s)}}$ requires to generate (computationally demanding) large-volume $N_f = 2 + 1$ QCD configurations at small lattice resolutions and close-to-physical sea quark masses

Preliminary work & Configuration ensemble basis

Non-perturbative determination of c_A and Z_A in $N_f = 3$ QCD:

[Bulava, Della Morte, H. & Wittemeier, NPB896 (2015) 555, arXiv:1502.04999; in progress]

- A reliable, accurate evaluation of $f_{D_{(s)}}$ requires to generate (computationally demanding) large-volume $N_f = 2 + 1$ QCD configurations at small lattice resolutions and close-to-physical sea quark masses
- Coordinated Lattice Simulations (CLS) team effort: based (0.05 $\leq a \leq$ 0.09) fm, m_{π} 's \geq 140 MeV \rightarrow talk by Stefan Schaefer