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Entanglement beating in free space through spin-orbit coupling
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It is well known that the entanglement of a quantum state is invariant under local
unitary transformations. This rule dictates, for example, that the entanglement of
internal degrees of freedom of a photon remain invariant during free-space propagation.
Here, we outline a scenario in which this paradigm does not hold. Using local Bell states
engineered from classical vector vortex beams with non-separable degrees of freedom,
so-called classically entangled states, we demonstrate that the entanglement evolves
during propagation, oscillating between maximally entangled (purely vector) and
product states (purely scalar). We outline the spin-orbit interaction behind these novel
propagation dynamics and confirm the results experimentally, demonstrating spin-
orbit coupling in paraxial beams. This demonstration highlights a hitherto unnoticed
property of classical entanglement and simultaneously offers a device for the on-demand
delivery of vector states to targets, e.g., for dynamic laser materials processing,
switchable resolution within STED systems, and a tractor beam for entanglement.
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INTRODUCTION

Under local unitary operations, e.g., when propagating
through a unitary channel, the degree of entanglement
does not change. This finding is true for both non-local
entanglement, i.e., light fields (including single photon,
multi-photons, or coherent light) that simultaneously
exist in physically separated locations, and for local
entanglement, i.e., between the internal degrees of freedom
of a single photon. Recently, it has become of interest to
study the latter and to mimic the former using vector states
of classical light''® This approach is possible because the
central feature of entanglement, non-separability, is not
limited to quantum systems: classical vector beams are
likewise non-separable, e.g., in their polarization and
spatial modes. However, whether such fields can be called
"classically entangled” is an open question'’, in practice,
this property has been exploited for real-time quantum
error correction communication'z'l(’, laser materials
processing'”"’, and metrology’**. Additionally, in
imaging™°, where tightly focused radially polarized
fields are known to produce the narrowest spot size?’>°,
classically entangled light fields allow super resolution
microscopy techniques’" 2.

Here, we demonstrate that entanglement can evolve
during propagation in free space using classically
entangled vector vortex beams, which are non-separable
in orbital and spin angular momentum. We engineer
superpositions of these beams to prove the dynamic
change of entanglement upon propagation through spin-
orbit (SO) coupling. Such SO coupling® has been
observed through the spin-Hall effect of light at planar
interfaces, by non-paraxial light (tightly focused by
high-numerical aperture lenses), and with paraxial light
in anisotropic and inhomogeneous structures, for
example, using geometric phase®®. Here, we show that it
is possible with paraxial light in free-space. Through
this SO coupling, we demonstrate entanglement beating
from fully entangled (completely non-separable) to no

entanglement (fully separable), and by a phase
adjustment, we evince the possible transport of
entanglement, which is reminiscent of tractor beams for
particle transport’>®. This realization may open new
avenues in quantum and classical communication as
well as in improved materials processing (where vector
beams and scalar polarized beams are crucial) and
enhanced switchable imaging in STED microscopy.

MATERIALSAND METHODS

Concept. Consider a vector beam that is composed of a
super-position of two orthogonally polarized Laguerre-

Gaussian modes| LG f) (X, y)> given by’

L>) eiikzz

ey

4=

t) = 5 (e|Lay )Ry +e LG

H

where we assume a propagation in the * Z -direction,

+ik,z

approximated by the factor ¢ ,  where

|2 = (kx,ky, kz) is the wave vector expressed in terms
of the wavelength A cask=2x/ A. The kets | R> and

|L> represent the unit vector of right- and left-handed

circular polarization states, respectively, and & defines

the phase relation between the two states. The indices £
and P denote the azimuthal and radial degrees of

freedom, respectively, the former being related to the
orbital angular momentum (OAM) of the Laguerre-
Gaussian beam. In the following description, we will

restrict ourselves to the case in which/, =—/, = { and

P, = P, = P, but it can be extended to other cases.
Equation (1) can be conveniently written as™
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where|LG;>~ei(i“ikzz) =|LGé>-eigR'L are represented
by the ket |uR’L> and the relative weightings of |UR>

and |U|_> by @ . Moreover, |UR’L> satisfies the

normalization condition <u,_’R | UR’L> =0.
The degree of non-separability (classical entanglement)
E(I ‘P>)E [0,1]of a vector field as defined by Eq. (2)

can be computed using tools from quantum mechanics.
Here, we consider the entanglement entropy, originally
derived for quantum states'™*' and later extended to
classical non-separable states® as

E(\¥))=-la-log,(@)+(1-a)-log,(1-a)]  (3)

Consequently, if we analyze a vector beam |‘P$B>

under a unitary transformation, i.e., propagation in free
space along the £ Z -direction (Eq. (1)), where a=1/2
for all Zvalues, we observe a spatially invariant degree

of entanglement Eq Yoo >)= 1.

Remarkably, we can engineer a light field |‘P(X, Y, Z)>
with a Z-dependent degree of entanglement E(I ‘P>, Z)
by combining two orthogonal vector beams "Pc,Bl > and

|‘I‘\;B2 > , coaxially propagating in opposite directions, as

illustrated in Fig. 1(a). For example, these orthogonal

fields can be generated by setting Xy, =0 and
Oyg, = 7£/2 in Eq. (1), namely,

1
+ [ —
[¥i)=
1

|‘P;Bz > ~h (eim 2[ LG, >’ R)+ e_i’”z| LG, >| |_>) oz

(L)) R +[Le, L))o @

and

(%)
with a phase distribution as a function of Z as shown in
Fig. 1(b), top and bottom, respectively, for the case

/=1, P=0. The normalized field that results from
such a superposition takes the form

“PJBI > = %(e'ikzz + ieikzzl LGé>| R)
(0)
+%(e'ikzz ~ie*? LG, L)
whose polarization evolution upon propagation for the

regarded example is shown in Figs. 1(c) and (d),
respectively. Here, (c¢) includes the change in the

relative phase between the superimposed beams, which
represents the origin of the resultant Z -variant

polarization structure. The new engineered state |‘P>
undergoes an oscillatory transition between fully vector

and fully scalar modes of light, which can be described
by the SO interaction®. The total angular momentum of

our field always satisfies J, =0 (for superposition
beams constructed from the ¢ = 1 subspace) but with
oscillatory spin and orbit components that vary as
S, o< sin(2k,z) and L, o< —|¢|sin(2k,z) . respectively.

As a result of the out-of-phase oscillation for opposite
helicities, as the OAM component increases, the spin
component decreases concomitantly to conserve the
total angular momentum = (see  Supplementary
Information).

This variation between the scalar and vector modes
manifests itself through a change in the degree of
entanglement, as defined by Eq. (3), which for the new

light ﬁeld|‘P> takes the form

E(¥),z)=1 —%[1 +sin(2k,2)]- log, [1+sin(2k, )]

—%[l—sin(ZKZZ)} log, [1-sin(2k,2)]
)

(details with respect to the calculations can be found
within the Supplementary Information). Thus, the state
undergoes a periodic variation in the degree of
entanglement as a function of Z, as illustrated in Fig.

1(d), bottom, while the intensity profile remains
constant. Full entanglement, i.e., maximal non-

separability (E(I ‘P>, Z)= 1), is achieved at z=nA/4,
ne N, whereas
(E(¥),2)=0), s
z=(2n+1)A4/8,
entanglement of the form E(I ‘I’>, Z) can be realized by

non-entanglement, i.e., complete

separability observed at

Nne N. Note that space-variant

any OAM subspace ¢ by the superposition of orthogonal
vector fields “I”;B] > and |‘P\ZBZ >, as long as they carry

the same radial order P,(VB,,)=Pp. In contrast, if

we superimpose two counter-propagating scalar modes
of opposite helicity and orthogonal polarization, the
degree of entanglement will remain constant (see
Supplementary Information).

This unique property of the ﬁeld|‘{’> provides a means

to facilitate the transport of a chosen degree of
entanglement across arbitrary distances, by simply
applying a phase adjustment ¢, which is reminiscent of
tractor beams®>®. To illustrate this approach, we can
replace the propagation factor in Eq. (1) by the factor

M) In this way, the maximum degree of

entanglement (Emax(l‘l">)=1) , for example, can be
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transported to a position Z according to the

X

expression

A 2
Zmax((”):_(m__wj) me Z. ®)
4 V.4

This means that any chosen state can be conveyed to a
specific position in space, along the propagation axis, by
simply adjusting the phase ¢. Moreover, by applying a

time-dependent phase shift (1), it is possible to impart

a time-dependent movement of a regarded maximum
with an axial velocity given by

A Jdo(t
Vmax (t) = _g% )

Experimental details. A simple method to generate a light
field |‘I’> with local entanglement beating is via an

interferometric approach. An exemplary system is sketched
in Fig. 2(a). By combining a Sagnac interferometer with a
half-wave plate (diagonally oriented), a single incident
vector beam, e.g., radially polarized, can be used for the
generation of a standing wave according to Egs. (4-6),
whose local degree of entanglement E oscillates upon
propagation. Note that in each arm of the interferometer,
counter-propagating (green arrows) vector modes of
orthogonal polarization will give rise to a classically
entangled standing wave, as indicated by a red curve in one
of the arms.

Even if this approach of counter-propagating beams is very

intuitive, the investigation of the light field |‘P> would be

challenging because any measuring device inserted in the
path would destroy the oscillatory behavior of the light field

|‘I’> . Here, we propose an alternative approach that allows

us to quantify the spatially varying degree of entanglement.
This approach is based on the engineered superposition of
co-propagating orthogonally polarized vector modes, as
visualized in Fig. 2(b). By applying digital propagation, we
can artificially counter-propagate the two modes (red
arrows), which physically co-propagate in the same
direction (green arrows), enabling us to investigate the light

field |‘P> along the beam path.

The digital propagation of a light field U(T,Z)

propagating in the Z -direction is based on the angular
spectrum >, according to which

U@, 2)=F {FIUT.0)]-e*}, where T=(xY,2)

; . -1
are the coordinates in real space, and F and F ™ are the

Fourier and inverse Fourier transforms, respectively. Next,
by the application of Fourier holograms in combination with

a phase shift £K,z, encoded on a spatial light modulator

(SLM), we were able to digitally propagate a light field in
the+ Z -direction. To independently control the phase shift
of each vector mode, to artificially generate counter-
propagating vector modes, we developed a new method that
facilitates the generation of any vector beam using a
multiplexing approach enabled by an SLM*. This method
allows not only simultaneous generation of multiple vector

modes but also their independent manipulation, such as
digital propagation.

The idea behind our method is to encode a superposition of
different holograms, each with a different spatial carrier
frequency (blazed grating), on a single SLM. Thus, each
beam is sent to different transverse positions in space,
which allows manipulation of their polarization
independently, as required for vector beam generation.
For example, to generate a radially polarized vector
beam, we multiplexed the corresponding holograms to
create two helical LG beams with opposite topological

charges (f = il) on the SLM. A half-wave plate placed

in the path of one beam changes its polarization from
horizontal to vertical. Both beams were then
recombined and passed through a quarter-wave plate to
change the horizontal and vertical polarizations into left-
and right-circular polarizations, respectively, thus
generating the desired vector beam™.

In the present case, where we realized a superposition of
two cylindrical vector beamsVB,, (see Fig.2(c), red
box, and (d)), four vortex beams were multiplexed in the
SLM (SLM,); Fourier holograms), manipulated
accordingly and (counter-) propagated digitally (Fourier
relation between SLM; and SLM, by lens L)) to

investigate the desired field |‘P> within the observation
plane (SLM,). In this way, the detection system can
remain static while the created vector beams artificially

propagate in opposite directions. Beyond this, digital
propagation, encoded on the SLM as a phase shift @,

facilitates the realization of a chosen degree of
entanglement at the observation plane, which is similar
to the case of tractor beams.

Theory of entanglement entropy. For the analysis of the
light field |‘P> , we determined the degree of classical
entanglement, i.e., the degree of non-separability, in
different (X,Y) -planes. An appropriate tool for this
concern is the quantum mechanics entanglement entropy”’

40
E= h[“—sj (10
2 b

with h(r) =—-rlog,(r)—(1—r)log,(1—r) . Here, S
is the length of the Bloch

S= (Zi <O‘i >2)1/2 with | = {1,2,3} , where <O'i> are the

expectation values of the Pauli operators. These values are
obtained by a set of 12 normalized, on-axis intensity
measurements or six identical measurements for two
different basis states > *!.

We chose circular polarization as a basis. As a consequence,
the projection measurements are given by two modes that

vector, given by

carry the OAM of topological charge / and— / , in addition

... i iy -il
to four superposition states represented by ew +ee itg

with Y = {0,71'/ 2f,7[/f,37l'/2f} (@ : azimuthal angle in

polar coordinates). In the case at hand, we investigate the
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vector modes of first order (cf. Results and Discussion
section), and hence, the projection measurements are

performed for { =1.
According to Table I, the expectation values <O'i> are

calculated from

<O'1>=(|13+|23)—(|15+|25), (1
()= + 1) = (I + 1), (12)
<O'3>=(|”+|21)—(|12+|22), (13)

To determine the entanglement entropy E experimentally,

w With

u,ve {1,2,3}, as indicated in Fig. 2(c), blue box, and (e).
Therefore, polarization projections are performed by the use
of a quarter-wave plate ( A/4 ) set to +45° in
combination with a polarization-sensitive spatial light
modulator (SLM,) and OAM projections by a phase pattern
on this modulator. The respective phase pattern carries the
information of all six OAM projections, in which each of
them is assigned to another spatial carrier frequency®. The
application of this demultiplexing hologram results in six
outputs on the CCD camera (Fig. 2(e)) positioned in Fourier
relation with the observation plane (SLM,) by a lens (L,),
which enables a single-shot measurement for each
polarization basis.

we measure the on-axis intensity values |

For the entanglement entropy analysis in different (X, Y)-
planes of the light field, artificial propagation in the Z -
direction is applied. Further, the intensities | w for different

planes are normalized by ||, +1,, +1,, + |, for left- and
right-circular polarization basis.

RESULTSAND DISCUSSION

To verify that the field |‘I—’> follows the entanglement

dynamics predicted by Eq. (7), we experimentally generated
and superimposed two orthogonal vector beams (according
to Egs. (4) and (5)), using the setup shown in Fig. 2(c), as
indicated by the red box. For simplicity but without the loss
of generality, we chose first-order radially and azimuthally

polarized modes with ¢ =1and P =0. Magnifications of
the different sections of the generation process are shown in
(d). The desired light ﬁeld|\P> for a specific Z -position is
realized in the Fourier plane (SLM,, observation plane) of
SLM,.

The artificially generated field |‘I’> can be separated into its

’R> and |L> parts, with each including two counter-

propagating LG modes of the same helicity. For each
polarization, one mode propagates in the + Z-direction, and
the other propagates in the — Z-direction, which is achieved
through digital propagation enabled by SLM,. The digital

+i(k,z+¢)

propagation was encoded as€ , in which we chose

@ to be a discrete phase offset of — 7z /4 .Using a CCD

camera positioned in the observation plane, we recorded the
intensity profile of the| R> and| L> components separately

by shutting beams 3 and 4 or 1 and 2 (cf. Fig. 2(c), (d)),
respectively. The results are shown in Fig. 3. In Fig. 3(b),

we show the simulated transverse intensity profile of |‘I—’>

when a horizontally aligned polarizer is positioned in front
of the CCD, thus reflecting the polarization distribution
illustrated in (a) and Fig.1. The normalized intensity profiles

for the| R> (beam 1+2) and |L> (beam 3+4) polarization
components are shown in Fig. 3(c) and (d), respectively, for
the different positions K,z+ @€ [0,7] (arrow at the
bottom). For both the |R> and |L> parts, we observe a
sinusoidal variation in the intensity that depended on
K,zZ+ ¢, which represented a longitudinal interference
pattern of included beams. Furthermore, the variation in
intensity for |R> and¥L> is out of phase, i.e., the | R>

components carry maximum intensity while the| L> parts
are at minimum, and vice versa. This behavior is attributed

to the phase shift Oy, > which is used to create

orthogonally polarized vector beams (cf. Eq. (14)).
Moreover, these counter-fluctuating intensities evince the
variation between pure vector and pure scalar states for

|W): 1f the |R) (L)) polarized components are at a
maximum, while the| L) (| R))parts disappear, then|'¥') is
represented solely by the|R) (| L))components, and thus,
the light field is purcly scalar with E(¥),2)=0 ,
k,z+@=1{0,7/2,7}. In contrast, if the|R) and |L)
parts are of equal intensity, then|\V') is a pure vector mode

with E(I‘P>,Z)=1 , kZZ+¢={7Z'/4,372'/4}. Between

these extreme cases, a smooth transition is found (cf. (b)).

Entanglement oscillation. To quantitatively verify the
longitudinal entanglement oscillation of |‘I’> , we

performed an entanglement entropy analysis while digitally
propagating the field. Using this approach, we determined

the degree of entanglement E(I ‘P>, Z)E [0,1] as a function

of K,Z+¢ . The respective experimental method is
visualized in Fig. 2(c) (blue box) and (e).

Figure 4(a) shows typical intensity images obtained in
experiments per Z -distance and from which E is
computed. The illustrated case corresponds to the scalar
field shown in Fig. 4(b). Figures 4(b), (c) and (d) show the
intensity values, normalized and arranged in the form of
Table 1. Here we show three cases: scalar, semi-vector and
vector beam, with the corresponding values E = 0.01,

0.32 and 0.94,

experimental E values obtained as a function of the
propagation distance Z is presented in Fig. 5. Here, the

respectively. The complete set of
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degree of entanglement (a) and the normalized intensity of
the right-/ left-handed circularly polarized light | rL(b) are

illustrated as a function ofK,Z+ @ . Errors of K,z + @are
given by SLM flickering (i T/ 16) , whereby error bars for
E (i 0.05) or | RL (i 0.03) are given by inaccuracies

within the experimental method/ system.

For comparison, we experimentally performed an
entanglement analysis of a pure radial vector mode
(beam1+3). As theoretically expected (cf. Materials and
Methods, Theory), this beam reveals an entanglement
entropy of approximately E =1 for all propagation
distances, as depicted by the black triangles in (a). In

contrast, the entanglement dynamics of the light ﬁeld|‘1’>
given by Eq. (6) confirms our theoretical predictions,

oscillating between pure scalar and pure vector, as shown in
Fig. 5(a). The data are represented by black circles filled

according to the ratio between the included| L> (blue) and

| R> (red) polarized parts (see scale bar). The green insets

indicate the modes of light at specific positions. The
experimental results reflect the theoretical description in Eq.

(7) with K,Z replaced by K,z+ ¢' perfectly, as illustrated
by the corresponding fit in (a) (black dashed curve). The
fitting parameter ' has a value of —0.71 and, thus, almost

matches the chosen setting of @ = —77/ 4.
Figure 5(b) shows simultaneously determined counter-
fluctuating intensity curves f0r| L> (blue fit, black hollow

diamonds) and |R) (red fit, black filled diamonds).

Obviously, these curves mirror the propagation dynamics of
entanglement and the involved variation in the ratio between

|L> and| R> , as demonstrated in (a). A slight shift with

respect to the positions of the extrema of 1 L> and |R> can
be observed, which reflects the deviation between ¢ and
@'.Our findings prove that by adjusting ¢, it is possible to
transport a desired degree of entanglement in |‘I’> to a

predefined Z -position.

Discussion. Our results highlight the fact that it is possible
to engineer vectorial light fields whose degree of non-
separability oscillates in free-space, from fully vector to
scalar, as a function of the propagation distance, through
spin-orbit coupling. While we have restricted ourselves to
first-order vector vortex beams for the demonstration, the
concept that we outline here is more general and can be
applied to higher-order vortex modes as well as, in
principle, any vector state with judicious choice of degree
of freedom.

The surprising result is that our entanglement dynamics
occur in free space under unitary conditions. We emphasize
that while we have performed our experiments with
coherent light for convenience, the same results are obtained
for local entanglement of the internal degrees of freedom of
a single photon. Neither theory nor experiments differentiate

between these two cases, and thus, we address topical
questions as to the notion of local and classical
entanglement and its propagation dynamics.

An important aspect of this work is the practical approach to
the generation and propagation of the fields. It is possible to
engineer the desired effect using a Sagnac interferometer in
which an input radially polarized vector beam is split into
two beams that traveling along each arm: one of the beams
is switched to azimuthal polarization, with a half-wave
plate, and interfered with the radially polarized beam. In the
third arm, both beams propagate in opposite directions
while bearing orthogonal states of polarization, and they
thus generate a standing wave whose degree of
entanglement varies along the propagation axis. This
generating approach does not allow one to experimentally
verify the spatially variant degree of entanglement. We offer
a more powerful approach that utilizes digital generation
and propagation enabled by an SLM. This approach allowed
us to manipulate each vector beam independently and,
among other options, perform digital propagation on each.
Hence, both vector beams propagate in a collinear fashion in
a manner that simulates propagation in opposite directions.
This approach of generation and propagation enabled us to

realize any state of "P> with a chosen degree of

entanglement that can be adapted in real time by simply
changing the displayed hologram.

Importantly, this approach allows us not only to monitor the
degree of non-separability but also to provide on-demand
specific states to the observer's positions. We believe that
this method will enhance several noteworthy applications,
namely, STED microscopy, optical trapping, quantum key
distribution (QKD) and laser material processing systems,
which we summarize graphically in Fig. 6. For example,
rapid changing of the mode type from circularly polarized
light for cutting to radially polarized light for drilling would
have clear benefits in processing materials with lasers'”"?,
while switching from a tight spot with radially polarized
light to a donut beam with azimuthally polarized light (after
an objective lens) is precisely the requirement for STED?"
32 In addition, the presented configuration paves the way for
novel QKD approaches using a prepare-and-measure BB84
QKD protocol, with vector and scalar OAM modes as the
orthogonal and mutually unbiased bases*”*®. This approach
adds a new level of security to QKD protocols, since (as it
has been noted to us) this work can be extended to a third
dimension by considering the longitudinal mode function.
Further, this tripartite description facilitates classical studies
of GHZ-like states (see Supplementary Information), an
exciting opportunity for further work with classically
entangled states.

CONCLUSIONS

We have demonstrated that by exploiting complex modes of
light, it is possible to have an oscillating degree of local
entanglement during propagation, even though the medium
is considered to be unitary, i.e., a medium in which the
entanglement should not change. The result is a
demonstration of spin-orbit coupling in paraxial light beams
in free-space. We have shown this effect with entangled
internal degrees of freedom of polarization and spatial
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modes, and while our experiment was classical, the results
hold equally well for local entanglement of the internal
degrees of freedom of a single photon. In addition, we have
demonstrated the concept behind the first tractor beam for
local entanglement, which would be able to deliver a known
degree of entanglement to some target plane. Our approach
highlights intriguing questions about the notion of
entanglement dynamics, opens a new topic in spin-orbit
coupling and offers a new tool for a myriad of applications
that would benefit from holographically controlled
availability of vector and scalar states of light at the target
plane.
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FIG. 1. Schematic representation of the investigated field with a Z -dependent degree of entanglement. (a)
concept,(b) phase change of the radial/azimuthal beam (top/bottom) relative to the initial phase (c) absolute value
of the relative phase difference between the radial and azimuthal beam, (d) change in polarization upon intensity

(top) with the corresponding degree of entanglement E (bottom) for superimposed counter propagating radial and
azimuthal vector beams, all depending on the propagation distance Z (kZZE [0,7 ]) Further, (b) and (c) include
the respective polarization distributions per distance.
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FIG. 3. Intensity profile of the investigated light field |\P> for various

Z -positions in units of kZZ + @ ((l) =—r/ 4) with corresponding
polarization structure in (a). (b) Normalized intensity profile of the field

|lP> , passing through a horizontally aligned polarizer (data from
simulation). Experimental results of counter-oscillating intensities for (c)

| L> and (d) | R> polarization components.
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FIG. 4. (a) Typical intensity images acquired with a CCD camera to
determine the degree of entanglement E in the case of a scalar beam. The
withU, V& {1,2,3}, arranged according
to Table I for the cases of a (b) scalar, (¢) semi-vector and (d) vector

beams, with corresponding values of E = 0.01, 0.32, 0.94 .
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FIG. 5. Propagation dynamics of entanglement: (a) Entanglement analysis of pure radial vector mode (black triangles) and the light field | \P> . Measured

E as a function of kz Z+ @ ((0 =-r/ 4) of the latter is marked by black circles filled according to the ratio between the| L> and| R> parts (see
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| rL of the| R> (red fit, black filled diamonds) and | L> (blue fit, black hollow diamonds) components of | \I‘> ,oscillating out of phase.
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FIG. 6. Exemplary applications of virtually counter-propagated,
orthogonally polarized vector modes: (a) adjusting the mode at the focal
region for, e.g., STED microscopy systems, optical trapping or (b) laser
material processing by digital propagation (phase shift (0 ), to create

TABLE I. Normalized intensity measurements | uy for the determination

of the expectation values <O' i > .

radially polarized beams for drilling and circularly polarized beams for /=1 =0 /2
cutting; (c) illustration of a novel quantum key distribution approach for the Basis -1 7 T 3z /2
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