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It is well known that the entanglement of a quantum state is invariant under local 
unitary transformations. This rule dictates, for example, that the entanglement of 
internal degrees of freedom of a photon remain invariant during free-space propagation. 
Here, we outline a scenario in which this paradigm does not hold. Using local Bell states 
engineered from classical vector vortex beams with non-separable degrees of freedom, 
so-called classically entangled states, we demonstrate that the entanglement evolves 
during propagation, oscillating between maximally entangled (purely vector) and 
product states (purely scalar). We outline the spin-orbit interaction behind these novel 
propagation dynamics and confirm the results experimentally, demonstrating spin-
orbit coupling in paraxial beams. This demonstration highlights a hitherto unnoticed 
property of classical entanglement and simultaneously offers a device for the on-demand 
delivery of vector states to targets, e.g., for dynamic laser materials processing, 
switchable resolution within STED systems, and a tractor beam for entanglement. 

Keywords: complex light fields, classical entanglement, entanglement oscillation, spin-orbit coupling. 
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INTRODUCTION 

Under local unitary operations, e.g., when propagating 
through a unitary channel, the degree of entanglement 
does not change. This finding is true for both non-local 
entanglement, i.e., light fields (including single photon, 
multi-photons, or coherent light) that simultaneously 
exist in physically separated locations, and for local 
entanglement, i.e., between the internal degrees of freedom 
of a single photon. Recently, it has become of interest to 
study the latter and to mimic the former using vector states 
of classical light1-10. This approach is possible because the 
central feature of entanglement, non-separability, is not 
limited to quantum systems: classical vector beams are 
likewise non-separable, e.g., in their polarization and 
spatial modes. However, whether such fields can be called 
"classically entangled" is an open question1,7, in practice, 
this property has been exploited for real-time quantum 
error correction11, communication12-16, laser materials 
processing17-19, and metrology20-22. Additionally, in 
imaging23-26, where tightly focused radially polarized 
fields are known to produce the narrowest spot size27-30, 
classically entangled light fields allow super resolution 
microscopy techniques31, 32. 
Here, we demonstrate that entanglement can evolve 
during propagation in free space using classically 
entangled vector vortex beams, which are non-separable 
in orbital and spin angular momentum. We engineer 
superpositions of these beams to prove the dynamic 
change of entanglement upon propagation through spin-
orbit (SO) coupling. Such SO coupling33 has been 
observed through the spin-Hall effect of light at planar 
interfaces, by non-paraxial light (tightly focused by 
high-numerical aperture lenses), and with paraxial light 
in anisotropic and inhomogeneous structures, for 
example, using geometric phase34. Here, we show that it 
is possible with paraxial light in free-space. Through 
this SO coupling, we demonstrate entanglement beating 
from fully entangled (completely non-separable) to no 

entanglement (fully separable), and by a phase 
adjustment, we evince the possible transport of 
entanglement, which is reminiscent of tractor beams for 
particle transport35-38. This realization may open new 
avenues in quantum and classical communication as 
well as in improved materials processing (where vector 
beams and scalar polarized beams are crucial) and 
enhanced switchable imaging in STED microscopy. 

MATERIALS AND METHODS 

Concept. Consider a vector beam that is composed of a 
super-position of two orthogonally polarized Laguerre-

Gaussian modes ),( yxLG p
  given by9 

( ) zk
pp

zLLGRLG iii
VB eee

2

1
2

2

1

1

±−± ⋅+=Ψ  αα

(1) 

where we assume a propagation in the z± -direction, 

approximated by the factor 
zkzie±

, where

),,( zyx kkkk =


 is the wave vector expressed in terms 

of the wavelength λ , as λπ /2=k . The kets R and

L  represent the unit vector of right- and left-handed 

circular polarization states, respectively, and α  defines 

the phase relation between the two states. The indices 
and p denote the azimuthal and radial degrees of 

freedom, respectively, the former being related to the 
orbital angular momentum (OAM) of the Laguerre-
Gaussian beam. In the following description, we will 

restrict ourselves to the case in which  =−= 21 and 

ppp == 21 , but it can be extended to other cases. 

Equation (1) can be conveniently written as39 
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LuaRua LR ⋅−+⋅=Ψ 1            (2) 

 

where LRz
p

zk
p LGLG ,i)(i ee ςα ⋅=⋅ ±±   are represented 

by the ket LRu ,  and the relative weightings of Ru

and Lu by a . Moreover, LRu , satisfies the 

normalization condition 0,, =LRRL uu . 

The degree of non-separability (classical entanglement) 

( ) [ ]1,0∈ΨE of a vector field as defined by Eq.  (2) 

can be computed using tools from quantum mechanics. 
Here, we consider the entanglement entropy, originally 
derived for quantum states40,41 and later extended to 
classical non-separable states39 as 

( ) [ ].)1(log)1()(log 22 aaaaE −⋅−+⋅−=Ψ        (3) 

 

Consequently, if we analyze a vector beam ±ΨVB  

under a unitary transformation, i.e., propagation in free 
space along the z± -direction (Eq. (1)), where 2/1=a
for all z values, we observe a spatially invariant degree 

of entanglement ( ) 1VB =Ψ ±E . 

 

Remarkably, we can engineer a light field ),,( zyxΨ

with a z -dependent degree of entanglement ( )zE ,Ψ  

by combining two orthogonal vector beams +Ψ
1VB  and 

−Ψ
2VB , coaxially propagating in opposite directions, as 

illustrated in Fig. 1(a). For example, these orthogonal 

fields can be generated by setting 0
1VB =α and 

2/
2VB πα =  in Eq.  (1), namely, 
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(5) 

with a phase distribution as a function of z as shown in 
Fig. 1(b), top and bottom, respectively, for the case

,1= 0=p . The normalized field that results from 

such a superposition takes the form 
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whose polarization evolution upon propagation for the 
regarded example is shown in Figs. 1(c) and (d), 
respectively. Here, (c) includes the change in the 

relative phase between the superimposed beams, which 
represents the origin of the resultant z -variant 

polarization structure. The new engineered state Ψ  

undergoes an oscillatory transition between fully vector 
and fully scalar modes of light, which can be described 
by the SO interaction33. The total angular momentum of 

our field always satisfies 0=zJ  (for superposition 

beams constructed from the 1±= subspace) but with 
oscillatory spin and orbit components that vary as 

)2sin( zkS zz ∝ and )2sin( zkL zz −∝ , respectively. 

As a result of the out-of-phase oscillation for opposite 
helicities, as the OAM component increases, the spin 
component decreases concomitantly to conserve the 
total angular momentum (see Supplementary 
Information). 
This variation between the scalar and vector modes 
manifests itself through a change in the degree of 
entanglement, as defined by Eq. (3), which for the new 

light field Ψ takes the form 

( ) [ ] [ ]

[ ] [ ])2sin(1log)2sin(1
2

1

)2sin(1log)2sin(1
2

1
1,

2

2

zkzk

zkzkzE

zz

zz

−⋅−−

+⋅+−=Ψ
   

(7) 
(details with respect to the calculations can be found 
within the Supplementary Information). Thus, the state 
undergoes a periodic variation in the degree of 
entanglement as a function of ,z as illustrated in Fig. 

1(d), bottom, while the intensity profile remains 
constant. Full entanglement, i.e., maximal non-

separability ( )( ),1, =Ψ zE is achieved at ,4/λnz =
,Ν∈n whereas non-entanglement, i.e., complete 

separability ( )( ),0, =Ψ zE  is observed at

,8/)12( λ+= nz  .Ν∈n  Note that space-variant 

entanglement of the form ( )zE ,Ψ  can be realized by 

any OAM subspace  by the superposition of orthogonal 

vector fields 
+Ψ

1VB and ,
2VB

−Ψ as long as they carry 

the same radial order .)VB( 2,12,1 pp =  In contrast, if 

we superimpose two counter-propagating scalar modes 
of opposite helicity and orthogonal polarization, the 
degree of entanglement will remain constant (see 
Supplementary Information).  

This unique property of the field Ψ  provides a means 

to facilitate the transport of a chosen degree of 
entanglement across arbitrary distances, by simply 
applying a phase adjustmentϕ , which is reminiscent of 

tractor beams35-38. To illustrate this approach, we can 
replace the propagation factor in Eq. (1) by the factor

)i(e ϕ+± zkz . In this way, the maximum degree of 

entanglement ( )( )1max =ΨE , for example, can be 
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transported to a position maxz  according to the 

expression 

,
2

4
)(max 






 −=

π
ϕλϕ mz Ζ∈m .               (8) 

This means that any chosen state can be conveyed to a 
specific position in space, along the propagation axis, by 
simply adjusting the phase ϕ .  Moreover, by applying a 

time-dependent phase shift )(tϕ , it is possible to impart 

a time-dependent movement of a regarded maximum 
with an axial velocity given by  

.
)(

2
)(max t

ttv
∂

∂−= ϕ
π
λ

                            (9) 

 
Experimental details.  A simple method to generate a light 

field Ψ  with local entanglement beating is via an 

interferometric approach. An exemplary system is sketched 
in Fig. 2(a). By combining a Sagnac interferometer with a 
half-wave plate (diagonally oriented), a single incident 
vector beam, e.g., radially polarized, can be used for the 
generation of a standing wave according to Eqs. (4-6), 
whose local degree of entanglement E  oscillates upon 
propagation. Note that in each arm of the interferometer, 
counter-propagating (green arrows) vector modes of 
orthogonal polarization will give rise to a classically 
entangled standing wave, as indicated by a red curve in one 
of the arms. 
Even if this approach of counter-propagating beams is very 

intuitive, the investigation of the light field Ψ  would be 

challenging because any measuring device inserted in the 
path would destroy the oscillatory behavior of the light field 

Ψ . Here, we propose an alternative approach that allows 

us to quantify the spatially varying degree of entanglement. 
This approach is based on the engineered superposition of 
co-propagating orthogonally polarized vector modes, as 
visualized in Fig. 2(b). By applying digital propagation, we 
can artificially counter-propagate the two modes (red 
arrows), which physically co-propagate in the same 
direction (green arrows), enabling us to investigate the light 

field Ψ  along the beam path. 

The digital propagation of a light field ),( zrU 
 

propagating in the z -direction is based on the angular 
spectrum42,43, according to which

[ ]{ }zkzrUFFzrU i1 e)0,(),( ⋅= − 
, where ),,( zyxr =

are the coordinates in real space, and F  and 
1−F are the 

Fourier and inverse Fourier transforms, respectively. Next, 
by the application of Fourier holograms in combination with 

a phase shift ,zkz±  encoded on a spatial light modulator 

(SLM), we were able to digitally propagate a light field in 
the z± -direction. To independently control the phase shift 
of each vector mode, to artificially generate counter-
propagating vector modes, we developed a new method that 
facilitates the generation of any vector beam using a 
multiplexing approach enabled by an SLM44. This method 
allows not only simultaneous generation of multiple vector 

modes but also their independent manipulation, such as 
digital propagation. 
The idea behind our method is to encode a superposition of 
different holograms, each with a different spatial carrier 
frequency (blazed grating), on a single SLM. Thus, each 
beam is sent to different transverse positions in space, 
which allows manipulation of their polarization 
independently, as required for vector beam generation.  
For example, to generate a radially polarized vector 
beam, we multiplexed the corresponding holograms to 
create two helical LG beams with opposite topological 

charges ( )1±=  on the SLM. A half-wave plate placed 

in the path of one beam changes its polarization from 
horizontal to vertical. Both beams were then 
recombined and passed through a quarter-wave plate to 
change the horizontal and vertical polarizations into left- 
and right-circular polarizations, respectively, thus 
generating the desired vector beam45. 
In the present case, where we realized a superposition of 
two cylindrical vector beamsVBl,2 (see Fig.2(c), red 
box, and (d)), four vortex beams were multiplexed in the 
SLM (SLMl); Fourier holograms), manipulated 
accordingly and (counter-) propagated digitally (Fourier 
relation between SLMl and SLM2 by lens Ll) to 

investigate the desired field Ψ within the observation 

plane (SLM2). In this way, the detection system can 
remain static while the created vector beams artificially 
propagate in opposite directions. Beyond this, digital 
propagation, encoded on the SLM as a phase shift ϕ , 

facilitates the realization of a chosen degree of 
entanglement at the observation plane, which is similar 
to the case of tractor beams. 
 
Theory of entanglement entropy. For the analysis of the 

light field Ψ , we determined the degree of classical 

entanglement, i.e., the degree of non-separability, in 

different ),( yx -planes. An appropriate tool for this 

concern is the quantum mechanics entanglement entropy39, 

40 

,
2

1






 += shE                               (10) 

 

with )1(log)1()(log)( 22 rrrrrh −−−−= . Here, s  

is the length of the Bloch vector, given by

( ) 2/12=
i is σ with { }3,2,1=i , where iσ are the 

expectation values of the Pauli operators. These values are 
obtained by a set of 12 normalized, on-axis intensity 
measurements or six identical measurements for two 
different basis states 39, 41. 
We chose circular polarization as a basis. As a consequence, 
the projection measurements are given by two modes that 
carry the OAM of topological charge  and − , in addition 

to four superposition states represented by
φγφ  -iii eee +  

with { } 2/3,/,2/,0 πππγ =  (φ : azimuthal angle in 

polar coordinates). In the case at hand, we investigate the 
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vector modes of first order (cf. Results and Discussion 
section), and hence, the projection measurements are 
performed for 1= . 

According to Table I, the expectation values iσ are 

calculated from 
 

),()( 251523131 IIII +−+=σ               (11)  

),()( 261624142 IIII +−+=σ             (12) 

),()( 221221113 IIII +−+=σ             (13) 

 
To determine the entanglement entropy E  experimentally, 

we measure the on-axis intensity values uvI with 

{ }3,2,1, ∈vu , as indicated in Fig. 2(c), blue box, and (e). 

Therefore, polarization projections are performed by the use 
of a quarter-wave plate ( 4/λ ) set to °± 45  in 
combination with a polarization-sensitive spatial light 
modulator (SLM2) and OAM projections by a phase pattern 
on this modulator. The respective phase pattern carries the 
information of all six OAM projections, in which each of 
them is assigned to another spatial carrier frequency46. The 
application of this demultiplexing hologram results in six 
outputs on the CCD camera (Fig. 2(e)) positioned in Fourier 
relation with the observation plane (SLM2) by a lens (L2), 
which enables a single-shot measurement for each 
polarization basis. 

For the entanglement entropy analysis in different ),( yx -

planes of the light field, artificial propagation in the z -

direction is applied. Further, the intensities uvI  for different 

planes are normalized by 22211211 IIII +++ for left- and 

right-circular polarization basis. 
 

RESULTS AND DISCUSSION 

To verify that the field Ψ  follows the entanglement 

dynamics predicted by Eq. (7), we experimentally generated 
and superimposed two orthogonal vector beams (according 
to Eqs. (4) and (5)), using the setup shown in Fig. 2(c), as 
indicated by the red box. For simplicity but without the loss 
of generality, we chose first-order radially and azimuthally 

polarized modes with 1= and 0=p . Magnifications of 

the different sections of the generation process are shown in 

(d). The desired light field Ψ  for a specific z -position is 

realized in the Fourier plane (SLM2, observation plane) of 
SLM1. 

The artificially generated field Ψ can be separated into its 

R and L parts, with each including two counter-

propagating LG modes of the same helicity. For each 
polarization, one mode propagates in the z+ -direction, and 
the other propagates in the z− -direction, which is achieved 
through digital propagation enabled by SLM1. The digital 

propagation was encoded as ,e )i( ϕ+± zkz  in which we chose

ϕ  to be a discrete phase offset of 4/π− .Using a CCD 

camera positioned in the observation plane, we recorded the 

intensity profile of the R and L components separately 

by shutting beams 3 and 4 or 1 and 2 (cf. Fig. 2(c), (d)), 
respectively. The results are shown in Fig. 3. In Fig. 3(b), 

we show the simulated transverse intensity profile of Ψ  

when a horizontally aligned polarizer is positioned in front 
of the CCD, thus reflecting the polarization distribution 
illustrated in (a) and Fig.1. The normalized intensity profiles 

for the R  (beam 1+2) and L  (beam 3+4) polarization 

components are shown in Fig. 3(c) and (d), respectively, for 

the different positions ],0[ πϕ ∈+zkz  (arrow at the 

bottom). For both the R and L  parts, we observe a 

sinusoidal variation in the intensity that depended on

ϕ+zkz , which represented a longitudinal interference 

pattern of included beams. Furthermore, the variation in 

intensity for R and L  is out of phase, i.e., the R  

components carry maximum intensity while the L  parts 

are at minimum, and vice versa. This behavior is attributed 
to the phase shift 

2,1VBα , which is used to create 

orthogonally polarized vector beams (cf. Eq. (14)). 
Moreover, these counter-fluctuating intensities evince the 
variation between pure vector and pure scalar states for 

:Ψ If the R ( )L polarized components are at a 

maximum, while the L ( )R parts disappear, then Ψ  is 

represented solely by the R ( )L components, and thus, 

the light field is purely scalar with ( ) 0, =Ψ zE , 

{ }ππϕ ,2/,0=+zkz . In contrast, if the R  and L  

parts are of equal intensity, then Ψ  is a pure vector mode 

with ( ) 1, =Ψ zE , { }.4/3,4/ ππϕ =+zkz  Between 

these extreme cases, a smooth transition is found (cf. (b)). 
 
Entanglement oscillation. To quantitatively verify the 

longitudinal entanglement oscillation of Ψ , we 

performed an entanglement entropy analysis while digitally 
propagating the field. Using this approach, we determined 

the degree of entanglement ( ) ]1,0[, ∈Ψ zE  as a function 

of ϕ+zk z . The respective experimental method is 

visualized in Fig. 2(c) (blue box) and (e). 
Figure 4(a) shows typical intensity images obtained in 
experiments per z -distance and from which E is 
computed. The illustrated case corresponds to the scalar 
field shown in Fig. 4(b). Figures 4(b), (c) and (d) show the 
intensity values, normalized and arranged in the form of 
Table I. Here we show three cases: scalar, semi-vector and 
vector beam, with the corresponding values ,01.0=E

32.0 and ,94.0  respectively. The complete set of 

experimental E  values obtained as a function of the 
propagation distance z is presented in Fig. 5. Here, the 
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degree of entanglement (a) and the normalized intensity of 

the right-/ left-handed circularly polarized light LRI , (b) are 

illustrated as a function of ϕ+zkz . Errors of ϕ+zkz are 

given by SLM flickering ( )16/π± , whereby error bars for 

E ( )05.0±  or LRI , ( )03.0±  are given by inaccuracies 

within the experimental method/ system. 
For comparison, we experimentally performed an 
entanglement analysis of a pure radial vector mode 
(beam1+3). As theoretically expected (cf.  Materials and 
Methods, Theory), this beam reveals an entanglement 
entropy of approximately 1=E  for all propagation 
distances, as depicted by the black triangles in (a). In 

contrast, the entanglement dynamics of the light field Ψ  

given by Eq. (6) confirms our theoretical predictions, 
oscillating between pure scalar and pure vector, as shown in 
Fig. 5(a). The data are represented by black circles filled 

according to the ratio between the included L  (blue) and 

R  (red) polarized parts (see scale bar). The green insets 

indicate the modes of light at specific positions. The 
experimental results reflect the theoretical description in Eq. 
(7) with zkz  replaced by 'ϕ+zk z perfectly, as illustrated 

by the corresponding fit in (a) (black dashed curve). The 

fitting parameter 'ϕ has a value of 71.0−  and, thus, almost 

matches the chosen setting of 4/πϕ −= . 

Figure 5(b) shows simultaneously determined counter-

fluctuating intensity curves for L  (blue fit, black hollow 

diamonds) and R  (red fit, black filled diamonds). 

Obviously, these curves mirror the propagation dynamics of 
entanglement and the involved variation in the ratio between

L and R , as demonstrated in (a). A slight shift with 

respect to the positions of the extrema of L  and R can 

be observed, which reflects the deviation between ϕ and 

'.ϕ Our findings prove that by adjusting ϕ , it is possible to 

transport a desired degree of entanglement in Ψ to a 

predefined z -position. 
 
Discussion.  Our results highlight the fact that it is possible 
to engineer vectorial light fields whose degree of non-
separability oscillates in free-space, from fully vector to 
scalar, as a function of the propagation distance, through 
spin-orbit coupling. While we have restricted ourselves to 
first-order vector vortex beams for the demonstration, the 
concept that we outline here is more general and can be 
applied to higher-order vortex modes as well as, in 
principle, any vector state with judicious choice of degree 
of freedom. 
The surprising result is that our entanglement dynamics 
occur in free space under unitary conditions. We emphasize 
that while we have performed our experiments with 
coherent light for convenience, the same results are obtained 
for local entanglement of the internal degrees of freedom of 
a single photon. Neither theory nor experiments differentiate 

between these two cases, and thus, we address topical 
questions as to the notion of local and classical 
entanglement and its propagation dynamics. 
An important aspect of this work is the practical approach to 
the generation and propagation of the fields. It is possible to 
engineer the desired effect using a Sagnac interferometer in 
which an input radially polarized vector beam is split into 
two beams that traveling along each arm: one of the beams 
is switched to azimuthal polarization, with a half-wave 
plate, and interfered with the radially polarized beam. In the 
third arm, both beams propagate in opposite directions 
while bearing orthogonal states of polarization, and they 
thus generate a standing wave whose degree of 
entanglement varies along the propagation axis. This 
generating approach does not allow one to experimentally 
verify the spatially variant degree of entanglement. We offer 
a more powerful approach that utilizes digital generation 
and propagation enabled by an SLM. This approach allowed 
us to manipulate each vector beam independently and, 
among other options, perform digital propagation on each. 
Hence, both vector beams propagate in a collinear fashion in 
a manner that simulates propagation in opposite directions. 
This approach of generation and propagation enabled us to 

realize any state of Ψ  with a chosen degree of 

entanglement that can be adapted in real time by simply 
changing the displayed hologram. 
Importantly, this approach allows us not only to monitor the 
degree of non-separability but also to provide on-demand 
specific states to the observer's positions. We believe that 
this method will enhance several noteworthy applications, 
namely, STED microscopy, optical trapping, quantum key 
distribution (QKD) and laser material processing systems, 
which we summarize graphically in Fig. 6. For example, 
rapid changing of the mode type from circularly polarized 
light for cutting to radially polarized light for drilling would 
have clear benefits in processing materials with lasers17-19, 
while switching from a tight spot with radially polarized 
light to a donut beam with azimuthally polarized light (after 
an objective lens) is precisely the requirement for STED31-

32. In addition, the presented configuration paves the way for 
novel QKD approaches using a prepare-and-measure BB84 
QKD protocol, with vector and scalar OAM modes as the 
orthogonal and mutually unbiased bases47-48. This approach 
adds a new level of security to QKD protocols, since (as it 
has been noted to us) this work can be extended to a third 
dimension by considering the longitudinal mode function. 
Further, this tripartite description facilitates classical studies 
of GHZ-like states (see Supplementary Information), an 
exciting opportunity for further work with classically 
entangled states. 
 

CONCLUSIONS 

We have demonstrated that by exploiting complex modes of 
light, it is possible to have an oscillating degree of local 
entanglement during propagation, even though the medium 
is considered to be unitary, i.e., a medium in which the 
entanglement should not change. The result is a 
demonstration of spin-orbit coupling in paraxial light beams 
in free-space. We have shown this effect with entangled 
internal degrees of freedom of polarization and spatial 
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modes, and while our experiment was classical, the results 
hold equally well for local entanglement of the internal 
degrees of freedom of a single photon. In addition, we have 
demonstrated the concept behind the first tractor beam for 
local entanglement, which would be able to deliver a known 
degree of entanglement to some target plane. Our approach 
highlights intriguing questions about the notion of 
entanglement dynamics, opens a new topic in spin-orbit 
coupling and offers a new tool for a myriad of applications 
that would benefit from holographically controlled 
availability of vector and scalar states of light at the target 
plane. 
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FIG. 1. Schematic representation of the investigated field with a z -dependent degree of entanglement. (a) 
concept,(b) phase change of the radial/azimuthal beam (top/bottom) relative to the initial phase (c) absolute value 
of the relative phase difference between the radial and azimuthal beam, (d) change in polarization upon intensity 

(top) with the corresponding degree of entanglement E (bottom) for superimposed counter propagating radial and 

azimuthal vector beams, all depending on the propagation distance z ( )],0[ π∈zkz . Further, (b) and (c) include 

the respective polarization distributions per distance. 
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FIG.   2.   Sketch of the experimental concept: Approach of (a) counter- and (b) co-propagating vector modes for the realization/investigation 

of the light field Ψ . (c) Applied system for generation (red box) and analysis (blue box, (e)) of Ψ  with experimental steps indicated 

in (d). SLM1,2: spatial light modulator | 2/λ : half-wave plate | 4/λ : quarter-wave plate | M: mirror | BS1,2: beam splitter | L1,2: lens | 
CCD: camera. 

  

 
FIG.  3.   Intensity profile of the investigated light field Ψ   for various 

z -positions in units of ϕ+zk z ( )4/πϕ −= with corresponding 

polarization structure in (a). (b) Normalized intensity profile of the field 

Ψ  , passing through a horizontally aligned polarizer (data from 

simulation). Experimental results of counter-oscillating intensities for (c)

L  and (d) R  polarization components. 

 
 
 

 
FIG.  4. (a) Typical intensity images acquired with a CCD camera to 

determine the degree of entanglement E in the case of a scalar beam. The 

corresponding intensities uvI  with { }3,2,1, ∈vu , arranged according 

to Table I for the cases of a (b) scalar, (c) semi-vector and (d) vector 

beams, with corresponding values of 01.0=E , 32.0 , 94.0 . 
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FIG.  5.  Propagation dynamics of entanglement: (a) Entanglement analysis of pure radial vector mode (black triangles) and the light field Ψ . Measured 

E  as a function of ϕ+zk z ( )4/πϕ −=  of the latter is marked by black circles filled according to the ratio between the L  and R parts (see 

scale bar). Exemplary modes are shown as green insets. The black dashed curve represents the theoretical fit according to Eq. (7). (b) Respective intensity

LRI ,  of the R (red fit, black filled diamonds) and L (blue fit, black hollow diamonds) components of Ψ ,oscillating out of phase. 

 

FIG.  6. Exemplary applications of virtually counter-propagated, 
orthogonally polarized vector modes: (a) adjusting the mode at the focal 
region for, e.g., STED microscopy systems, optical trapping or (b) laser 
material processing by digital propagation (phase shift ϕ ), to create 

radially polarized beams for drilling and circularly polarized beams for 
cutting; (c) illustration of a novel quantum key distribution approach for the 
delivery of Alice's states to Bob. 
 
 
 
 
 
 
 

TABLE I. Normalized intensity measurements uvI  for the determination 

of the expectation values iσ . 

Basis 
states 

1=
 

 

1−  

 

0=γ
 

 
 

2/π
 

 

π  

 

2/3π
 
 

Left 
circular 

L  11I  12I  13I  14I  15I  16I  

Right 
circular 

R  21I  22I  23I  24I  25I  26I  
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