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Multiple pattern stability in a photorefractive feedback system

M. Schwab, C. Denz, and M. Saffman'

We report on the observation of a multiple pattern stability regime in a photorefractive
single feedback system. While hexagonal patterns are predominant for feedback with positive
diffraction length we show that a variety of stable non-hexagonal patterns (square, rectangular
or squeezed hexagonal patterns) are generated for certain negative diffraction lengths. We
review the linear stability analysis for this system and show that the special shape of the
threshold curves in the investigated parameter range gives a first explanation for the occurence

of a multiple pattern region [1].

The spontaneous formation of periodic spatial
patterns is well-known for a variety of nonlinear op-
tical materials, e. g. atomic vapours, liquid crystals
(Kerr slices), organic films or photorefractives [2],
where squares and squeezed hexagons were first ob-
served in experiment [3]. Photorefractive mate-
rials are well-suited for pattern observation since
their intrinsically slow dynamics offers the oppor-
tunity to perform real-time measurements and ob-
servations. Moreover, low cw laser power in the
range of milliwatts is required. In the case of a
diffusion-dominated crystal such as KNbOj3, no ex-
ternal voltage has to be supplied providing an all-
optical pattern formation system. In all these sys-
tems, a single-feedback configuration creating two
counterpropagating beams in the nonlinear optical
medium gives rise to transverse modulational insta-
bilities above a certain threshold of the photorefrac-
tive coupling strength. These instabilities generally
lead to the formation of hexagonal patterns, which
were first reported for a photorefractive system by
Honda [2]. Following this pioneering work, various
other publications offered improved insight into the
stages of pattern formation in these photorefractive
materials [4, 5]. A first approach to a nonlinear sta-
bility analysis [6] and studies of pattern dynamics
due to angular misalignment and competition be-
haviour were published recently [7, 8, 9]. Our focus
of interest is to investigate more complex patterns
that may arise in the same configuration for a cer-
tain range of the diffraction length without chang-
ing the basic interaction geometry. Although some
of these patterns were observed previously [3], the
appropriate region of instability has not yet been
investigated. The basic interaction geometry is de-
picted in fig. 1. A plane wave of complex amplitude
F' is incident on a thick photorefractive medium
with length [. The backward beam B is produced
by reflection at a mirror at a certain position L be-
hind the medium. Our analysis is not restricted
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Fig. 1: Basic interaction geometry

to positive diffraction lengths since the 4f — 4f
configuration enables us experimentally to produce
negative diffraction lengths which are essential for
observing multiple pattern stability. The princi-
ple effect of the diffraction length L is to intro-
duce a phase lag of the generated transverse satel-
lite beams relative to the central beam. Through-
out the article, we use the normalized diffraction
length ngL/l as a dimensionless parameter. In this
notation, the virtual mirror is inside the crystal
for values —1 < ngL/l < 0. A diffusion-dominated
medium such as KNbOg offers beam coupling prop-
erties which are essential for pattern formation in
this configuration. In this case, a dynamic pho-
torefractive grating with a grating vector of 2kgng
is written, with ko representing the wave number
of the incident wave and ng the linear refractive
index of the crystal. The linear stability analysis
presented here is based on the treatment by Honda
and Banerjee given in [5]. It is derived from the
standard photorefractive two-wave mixing equa-
tions (Kukhtarev’s equations [10]) and based on the
assumption that reflection gratings are dominant in
this configuration. For contradirectional two-beam
coupling in a diffusion-dominated medium, these
equations read as [5]
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z is the direction of propagation, Vi = = +

BB—; denotes the transverse Laplacian, and v =
mni/Aexp(—i¢p) is the complex photorefractive
coupling constant, representing a measure for am-
plitude and phase transfer in the photorefractive
two-wave mixing process [10]. Here, A is the wave-
length of the incident waves, n; is a dimension-
less factor measuring the modulation depth of the
refractive index grating and ¢ represents the rela-
tive phase shift of the refractive index grating with
respect to the interference grating written by the
beams. For the KNbOjs:Fe crystal we used in our
experiments, this shift is known to be ¢ = 7/2 [11]
yielding a purely imaginary coupling constant v in
the notation we use here. This in turn is known to
cause pure energy-coupling between the two beams,
i.e. energy is transferred from one beam to the
other [11]. Performing a linear stability analysis
for the system of partial differential equations 1 by
applying weak spatial disturbations in the trans-
verse plane and including the boundary conditions
(representing the phase lag by feedback) results in
a threshold condition for modulational instability
(see [5] for details). This reads in a more sim-
plified form as f(#,v,L) = 0, (0 defines the side-
band far field angle in experiment), representing
a purely real threshold condition for all parameter
values. Given a certain mirror position L, a thresh-
old curve f(#,7) = 0 can be derived, where the
absolute minimum provides information about the
unstable sideband angle 6 at a certain mirror posi-
tion (see fig. 2). Figures 3 a) and b) extend previous
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Fig. 2: Example of a threshold curve for noL/l=0.6

results of the linear stability analysis [5, 6], taking
into account negative diffraction lengths and higher
order instability balloons. If the relative minima of
the threshold curve (fig. 2) are numbered consecu-
tively, the values of the threshold coupling strength
depending on the mirror position for the first to
fourth instability "balloon" can be plotted leading
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Fig. 3: Results from the linear stability analysis. a) min-
imal coupling strength for different normalized mirror
positions ngL/l and b) corresponding sideband angle.

to fig. 3a). The characteristic shape of the curve
indicates that the treshold coupling strength has a
maximum around ng L/l = —0.5 which corresponds
to a situation where the virtual mirror is situated in
the middle of the crystal. This corresponds to pre-
viously reported results that for a lower coupling
strength, no pattern formation can be observed in
this parameter region [7, 8]. Note also the char-
acteristic dip at a value for the diffraction length
of ngL/l = —0.5 and the oscillations appearing for
the higher order curves. The corresponding values
for the sideband angle @ in the threshold condition
lead to the curve displayed in fig. 3b). One can
clearly see the abnormal behaviour of the sideband
angle-curve (fig. 3b) in a region near no L/l = —0.5,
where a nearly vertical slope of the curve appears.
This typical shape of the curve also appears in the
higher order curves and is therefore a special prop-
erty of this nonlinear feedback system. It may also
be a generic feature of negative diffraction lengths
in cubic material, but this investigation is not the
scope of this paper. However, the special shape of
the curves in fig. 3a) and b) may give rise to unex-
pected patterns in this parameter region. A nonlin-
ear stability analysis is still required for explaining
the occurence of different pattern types. The rea-
son for the occurence of these patterns can only be
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found by a nonlinear analysis, since a linear sta-
bility analysis only accounts for the occurence of
a special transverse wavevector to become unsta-
ble when excited beyond the instability threshold.
We will concentrate on experimental investigations
in this parameter region of small negative diffrac-
tion lengths. The experimental setup is depicted
in fig. 4. Light obtained from a frequency-doubled

near field / far field
observation
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Fig. 4: Experimental setup. M=mirror, v.m.=virtual
mirror, L=diffraction length

cw Nd:YAG laser operating at A = 532 nm with
a coherence length of some meters is focused by
lens L1 of focal length f=600 mm onto the exit
face of an Iron-doped KNbOj; crystal (I=5 mm),
producing a spot with a Gaussian diameter of 320
pum. The crystal was slightly inclined (about 4 de-
grees) in order to avoid undesired back-reflections
from the crystal surfaces. By means of a 4f-2L-
4f-system with f=100 mm, the incoming beam is
back reflected, thus providing the counterpropagat-
ing beam. Considering ABCD-matrix formalism,
this configuration can be shown to be completely
equivalent to a simple single mirror feedback con-
figuration. Thus, a virtual mirror with a distance
of L from the photorefractive medium is obtained.
The basic advantage of this system is that negative
diffraction lengths can be achieved, which allow to
access a broader range of stationary patterns, in-
cluding squares and rectangles. The laser beam
is linearly polarized along the crystal a-axis to ex-
ploit the large r;3 component of the electrooptic
tensor in this direction, resulting in a minimum in-
put power for pattern observation of just 0.5 mW.
A beam splitter between the focusing lens and the
photorefractive medium enables to observe the far
field, and by means of a lens and a microscope sys-
tem, the near field, respectively. The direction of
the crystal c-axis is arranged to give rise to de-
pletion of the incoming and amplification of the
backward reflected beam, a configuration that is
necessary for the observation of transverse struc-
tures in this material. The reflectivity of the feed-
back system including all elements was measured to
be R = 83%. For positive diffraction lengths, sta-
ble hexagonal patterns are always seen, as depicted
in fig. 5a). Higher order harmonics of the hexag-
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onal pattern are clearly apparent in experiment.
They saturate the explosive instability of the first
order hexagon and are essential for the stability of a
hexagonal pattern [6]. This hexagonal structure is
well-known to be dominant for many different non-
linear optical materials and is reported for a num-
ber of other non-optical pattern forming systems.
However, when the virtual mirror is shifted into
the crystal, i.e. when negative diffraction lengths
are achieved, a remarkable pattern transition oc-
curs: In a small parameter region of the diffrac-
tion length around noL/l = —0.5, different non-
hexagonal structures may appear. Square patterns,
squeezed hexagonal, rectangular or parallelogram-
shaped structures (see fig. 5 b-e) can be realized
as stable pure solutions. The patterns were sta-

Fig. 5: Experimentally obtained pure pattern states: a)
predominant hexagonal structure, b-e) other pattern ge-
ometries for the multiple pattern region noL/l &~ —0.5.
The intensity incident on the crystal was I = 2.4
W/cm?.

ble for a long period of time (¢ 3> 10007), where T
denotes the time constant for this system, in this
case defined as the mean build-up time of a pattern
which was in the range of 0.5 — 1s in the experi-
ments reported here, depending on the input in-
tensity. Temporal alternation of different patterns
due to disturbances in the system was also possi-
ble on much larger timescales (¢ > 20s) than the
usual build-up time of a pattern. Besides these
pure stable states, also mixed states can be ob-
served, where different patterns coexist with the
same or different transverse wave numbers. For
this reason, we call this parameter region multiple
pattern region since a clear parameter-dependent
behaviour of the different pattern types was not
obtained. A rich variety of patterns was accessi-
ble, as well as a large set of transverse E-vectors
as shown in figs. 5, even for the same diffraction
length. Outside this multiple pattern region, no
other patterns than hexagonal ones can be observed
experimentally. Previously [7, 8], we reported a re-
markable pattern collapse for the region of negative
diffraction length where we now observe multiple
patterns. The pattern collapse, or absence of pat-
terns, was explained as a result of the photorefrac-
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tive coupling strength being too low for the obser-
vation of transverse structures. In the experiments
reported here a different crystal was used with
about twice as large nonlinearity (vl & 4) which
accentuates the necessity of sufficient nonlinearity
for observing non-hexagonal patterns in the regime
of negative diffraction length. Though a nonlin-
ear stability analysis has not been performed for
negative diffraction lengths, detailed investigations
of the results of the linear stability analysis tak-
ing into account higher order instability balloons
may already give useful information about the pat-
tern type. Figure 6 shows the measured values for
the hexagon instability angle 6 in the far field as a
function of the normalized diffraction length no L/l
together with the theoretical results of the linear
stability analysis (first and second instability bal-

loon). The measured values agree well with the
normalized diffraction length L/
1.2
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Fig. 6: Sideband angle ¢ as function of the normalized
diffraction length noL/l for an incident intensity of I =
2.4 W/cm?. The theoretical curve is displayed together
with experimental values for the transverse scale (circles
and squares).

theoretical curves. As predicted in [7], a coexis-
tence of two transverse k-vectors appears for larger
positive or negative diffraction length as indicated
in the figure. Here, a second instability balloon (see
fig. 3 in [7]) takes the absolute minimum of the in-
stability curve thus leading to a degeneration of the
transverse wave-vector. This leads to a coexistence
of two hexagons on two transverse scales tilted by
30 degrees relative to each other. The multiple
pattern region described earlier is also indicated in
the figure. A large number of various transverse k-
vectors occur for —0.7 < noL/l < —0.3, being too
numerous to be displayed in fig. 6. One can clearly
see that for parameter values noL/l = —0.57 and
noL/l = —0.43 the curve in fig. 6 shows a nearly
vertical slope indicating that a whole band of trans-
verse k-vectors will participate in the stage of pat-
tern formation, thus explaining the possibility for
a variety of transverse E-vectors. Nevertheless, the
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observed sideband angles in the multiple pattern re-
gion do not necessarily lie on the curve. Moreover,
this explanation does not hold for noL/l = —0.5
(flat region of this curve) where sideband angles
up to 2.7 degrees could be observed for the case of
rectangular patterns. This problem is still under
investigation.

In conclusion, we have analyzed a parameter re-
gion where a photorefractive feedback system pro-
duces a variety of different spatial patterns. With
our experimental configuration, we are able to ac-
cess a broader parameter region including negative
diffraction lengths, which allow the observation of
squares, squeezed hexagonal or rectangular pat-
terns. The occurence of nonhexagonal patterns is
restricted to a small parameter region where the
virtual mirror is placed inside the crystal. This
multiple pattern region coincides with an unusual
shape of the corresponding curves for pattern size
vs. diffraction length derived from a linear stabil-
ity analysis. This is, to the best of our knowledge,
the first observation of a multiple pattern parame-
ter region. This observation may not be restricted
to photorefractives and could be observed in other
optical pattern forming systems.
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