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We present a highly purposive technique to optically induce periodic photonic lattices enriched with a negative
defect site by using a properly designed nondiffracting (ND) beam. As the interference of two or more ND beams with
adequate mutual spatial frequency relations in turn reproduces an ND beam, we adeptly superpose a hexagonal and
a Bessel beam to create the ND defect beam of demand. The presented wavelength-independent technique is of
utmost universality in terms of structural scalability and does not make any specific requirements to the photosen-
sitive medium. In addition, the technique is easily transferable to all pattern-forming holographic methods in gen-
eral and its application is highly appropriate, e.g., in the fields of particle as well as atom trapping. © 2012 Optical

Society of America
OCIS codes: 090.2880, 070.0070, 230.6120, 090.1995.

Periodic dielectric media featuring structural sizes in the
regime of the wavelength of a propagating wave field are
notedly capable of dramatically modifying the propaga-
tion behavior of light in comparison to the characteristics
in a bulk material and are thus of high interest to funda-
mental physics as also to new technical applications
[1-3]. In analogy to the behavior of electrons in solid
state physics, many phenomena of light guidance, such
as Bloch oscillation, Zener tunneling, or Anderson loca-
lization were first predicted theoretically and later de-
monstrated in experiments [4-6]. Light propagation in
periodic media is described by photonic band structures,
where, depending on the periodical formation, eigen-
modes in terms of Bloch waves can propagate on differ-
ent bands, while wave propagation between the bands,
or rather inside so-called band gaps, is forbidden [7]. To
make these media more functional, such a behavior can
be broken by introducing artificial defects into periodic
structures, causing the appearance of additive propaga-
tion modes inside the band gaps [8-10]. Hence, many
unexplored effects have been observed such as defect
solitons in waveguide arrays [11], linear vortex defect
modes [12], or nonlinear beam deflection on defect sites
[13]. However, the arbitrary implementation of largely
extended two-dimensional (2D) periodic structures of
high structural accuracy is still a challenging task, as
common techniques of serial writing proceeding, e.g.,
direct laser writing techniques, reveal various disadvan-
tages for instance in terms of writing time and a huge
demand of adjustment accuracy [14].

In contrast to that, the usage of nondiffracting (ND)
wave fields to write photonic lattices in a parallel manner
has become a widely approved and purposive principle
[2,15-17]. Consequently, implementing defect bearing
periodic and quasiperiodic structures by a single-shot ND
beam induction would be an enormous improvement in
terms of accuracy and temporal effort. Already in 20006,
Makasyuk et al. [9] successfully implemented 2D lattices
with a single-site negative defect into photorefractive
crystals by utilizing a particularly balanced polarization
state of the ND writing beam especially adapted to
the anisotropic nonlinear behavior of strontium barium
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niobate crystals to avoid self-healing effects. Nonethe-
less, this technique strongly depends on the charac-
teristic of the used photorefractive medium. However,
a general and medium-independent approach of parallely
inducing defect enriched photonic lattices is missing up
to now.

In this Letter, we propose a so far unexploited method
to generate ND defect beams by coherently superimpos-
ing periodic lattices belonging to the family of discrete
ND beams [18,19] with a certain beam of one of the four
different families of ND beams [20-22]. More precisely,
we combine a hexagonal lattice wave field £ with a
Bessel beam Eg of zeroth order to induce a local reduc-
tion of intensity at one lattice site without significant
disturbance of the remaining lattice periodicity. As for
all ND beams, the structural size is adaptable by manip-
ulating the respective transverse k-spectrum of the wave
field while the general structure is maintained.

To avoid longitudinal modulation along the propaga-
tion direction of an ND beam, the parallel component
of all interfering wave vectors k for a monochromatic
wave has to be equal, so that the value of the transversal
part k| is also the same. Emanating from this condition,
all possible wave vectors can be arranged in Fourier
space on a cone with an opening angle of § with respect
to the normal vector of the transverse plane. The abso-
lute value of the transverse part of the wave vector can
also be determined by the equation k| = 2z sin /4
and leads in the case of a periodic field distribution to the
lattice constant g = z/k; [18]. To generate a super-
imposed light field that in addition maintains the ND
properties, attention must be paid to the transverse part
of the contributing wave vectors, which have to be equal
for both light fields k| ; = k) g = k. Then the super-
position yielding an ND beam can be generated by the
prescription of the resulting light field

Eges(k1) = Ep(ky) + ae'’Eg(k ). M

where the factor a varies the defect strength and ¢ de-
notes a free phase parameter exploiting the phase distri-
bution of the fields.
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The results of the numerical calculation of the discrete
and Bessel beam as well as of the superimposed beam is
shown in Fig. 1. The hexagonal ND beam as presented in
Fig. 1(a) results by arranging in the Fourier space three
plane waves on a ring with an equidistant azimuthal shift
to each other as illustrated in the inset. For the zeroth
order Bessel beam the wave vectors are distributed con-
tinuously on the ring holding mutual constant phase, so
that the intensity distribution in real space has a central
maximum [Fig. 1(b)]. The local reduction of intensity by
interference of complex light fields in a certain position
is affected by a phase difference of =, so that in our case
the parameters for a central defect site with zero inten-
sity have to be chosen as follows [cf. Eq. (1)]: a =1
and ¢ = . The results of the superposition for intensity
and phase distribution are shown in Figs. 1(c) and 1(d),
respectively. Because of the ring shaped maxima of the
Bessel beam the intensity of the lattice sites is slightly
changed but still arranged periodically and the distur-
bance decays with increasing distance to the center. The
intensity minimum in the center of the pattern is caused
by an emerging phase singularity as shown in Fig. 1(d).
Furthermore, the azimuthal phase distribution in the vici-
nity of the central site consists of discrete phase plateaus
of z, which is different than the other phase singularities
of the superimposed beam. For a fixed a = 1, it is gener-
ally possible to introduce an arbitrary phase difference ¢,
where the defect has a maximal amplitude for ¢ = 0 and
zero amplitude for the case ¢ = #.

In the idealized numerical consideration the ND beam
is extended to the entire space, which is not possible in
the experiment due to the finite dimensions of optical
components. Even though the ND properties of the light
field exist in reality only in a specific volume, the range
of this volume is large enough for an optical induction

Fig. 1. (Color online) Light distribution of (a) a hexagonal
beam and (b) a Bessel beam where the color represents the
phase distribution and brightness is linear to varying amplitude.
(c) and (d) depict the intensity and phase distribution of
the combined lattice. In the insets the intensities of the Fourier
spectrum are presented according to the corresponding light
fields.
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in a photosensitive material, as can be seen in the three-
dimensional examination of the intensity distribution
(Fig. 2). An established and highly flexible method to
generate complex light fields of various phase and ampli-
tude distributions is the utilization of a spatial light mod-
ulator (SLM). In our setup similar to the one used in [23],
we project a plane wave emerging from a frequency-
doubled Nd:YAG laser with a wavelength of 532 nm onto
a phase SLM that modulates the phase as well as the am-
plitude. To separate different diffraction orders of the
modulated wave, an appropriate Fourier-filtering system
that is applicable to transmit ND beams with different k|
is integrated in the setup. The determination of the trans-
verse intensity profile for different propagation distances
is carried out by a camera mounted on a translation table
with a travel distance of 10 cm. In addition the phase of
the complex field can be analyzed via superimposing the
object wave with a planar reference beam. This digital
holography technique was, for example, applied earlier
to determine the refractive index change in a photore-
fractive crystal [24]. Hereby the first order of the interfer-
ence pattern recorded by a camera is bandpass filtered
and shifted to the center of the Fourier plane. Finally the
subsequent back transformation of the complex field
contains the relative phase distribution of the generated
beam. Although the determined phase is available in low-
er resolution due to the filtering mask in Fourier space,
the resulting distribution contains the whole phase land-
scape including phase vortices.

Figures 2(a) and 2(b) present the transverse intensity
and phase distribution of the experimentally imple-
mented superimposed defect lattice, where the lattice
constant of the discrete beam was chosen to g = 25 pm.
In comparison to the numerical calculated distributions
from Figs. 1(c) and 1(d), the experimental results show
an excellent agreement in real space as well as in Fourier
space. Furthermore the desired defect site in the center
of the pattern reveals the same shape as was predicted in
the numerics and displays a fascinating vortex structure
exhibiting a multiple topological charge.

To prove the ND properties of the superimposed beam
we explored the transverse intensity distribution in dif-
ferent positions with regard to the propagation direction
of the light field. This is realized by shifting the movable
camera along an interval of 10 cm with a shift step size of
1 pm. For better visualization of the intensity distribution
in dependence of the propagation direction (z axis), we
select one particular row and column of each transverse
intensity pattern and stack them respectively to the
propagation distance. The resulting longitudinal distribu-
tion of the intensity in the x-z2 and y-z plane are shown in
Figs. 2(c) and 2(d), where the dashed lines in the middle
depict the transverse intensity and phase distribution of
Figs. 2(a) and 2(b). The constant intensity distribution
along the z axis illustrates the ND character of the super-
imposed lattice with the defect site positioned at the cen-
ter of the beam. The intensity profile clearly remains
stable. Hence for the optical induction of 2D defect struc-
tures in a photorefractive crystal with typical dimensions
of several centimeters the presented superimposed lattice
beam is highly qualified in view of various experiments.

In conclusion, we have presented a type of ND beam
with a periodic lattice structure bearing a local defect
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Fig. 2. (Color online) Experimental realization of a defect
beam. (a) and (b): Transverse intensity and phase distribution.
Dashed lines in (a) mark the positions of the planes shown
in (c¢) and (d), the inset in (a) depicts the intensity distribution
of the Fourier spectrum. (c) and (d): Longitudinal intensity
distributions of the 2-z and y-z intersection planes. Dashed lines
mark the longitudinal position of the specified transverse field
distribution.

site by superimposing a periodic light field of hexagonal
symmetry with a Bessel beam of zeroth order. Both the
transverse intensity and phase distribution as well as
the longitudinal propagation-invariant intensity of the ex-
perimentally generated superimposed beam show very
good agreement with the simulated field distribution. Be-
cause of the shown properties, this defect lattice beam is
aperfect tool to parallelly induce a photonic defect struc-
ture into a photosensitive medium potentially yielding to
further investigations of light guidance by defect modes.
The presented work gives only one example of possible
superpositions of ND beams. Because of its high flexibil-
ity, the method can be extended to generate more com-
plex defect lattice beams or even other desired ND field
distributions.
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