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Susanne Schäfer1, Markus Dekiff2, Ulrich Plate1, Thomas Szuwart1, Cornelia Denz3,
and Dieter Dirksen*; 2

1 University of Münster, Dept. of Maxillofacial Surgery, Germany
2 University of Münster, Dept. of Prosthetic Dentistry and Biomaterials, Waldeyerstr. 30, 48149 Münster, Germany
3 University of Münster, Institute of Applied Physics, Germany

Received 29 August 2012, revised 21 September 2012, accepted 22 September 2012
Published online 1 November 2012

Key words: tissue engineering, osteoblasts, cell tracking, cell micro-masses, multicellular spheroids

1. Introduction

Bone defects and deformities are common sequels
of congenital development, trauma or surgical abla-
tion therapy [1–3]. New therapeutic approaches for
bone regeneration basically require a comprehensive
understanding of the cellular and tissue level me-
chanisms that underlie bone healing. To improve

bone tissue engineering strategies, it is of utmost im-
portance to mimic the native developmental me-
chanisms of bone growth and differentiation. The
proliferative and osteogenic potential of bone-cells
of the periosteum can be used to produce bone-like
tissue ex vivo, e.g. in order to regenerate lost bone.

Whereas most studies on extracorporeal tissue
engineering are based on the use of scaffold material
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Improvements in bone tissue engineering require an un-
derstanding of cellular and tissue level behavior of os-
teoblast-like cells. Experiments indicate that in the ab-
sence of an anchoring material, intercellular adhesion
may be based on signals that promote cell activity result-
ing in the formation of a spheroid cell-matrix. The aim
of the present study is to investigate the formation of
scaffold-free three-dimensional micro-mass cell spher-
oids in vitro, and to characterize quantitatively the cell
movement. A new correlation based automated tracking
method is evaluated in order to optimize the processing
parameters and to identify statistical parameters that
characterize the cell behavior. Results suggest that the
temporal development of the mean distance of the cells
to the center of gravity may be described by an expo-
nential function, thus providing a characteristic time con-
stant as a quantitative measure of cell dynamics.

Trajectories of osteoblasts forming a micro-mass spher-
oid obtained by correlation tracking.
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[4, 5], scaffold-free tissue engineering implicates sig-
nificant advantages. An overview of scaffold-free cell
based therapies in regenerative medicine is given by
Kelm and Fussenegger [6]. As an example, in the ab-
sence of an anchoring material, intercellular adhe-
sion may be based on signals that promote cell activ-
ity [7]. By the aid of the non-attachment feature of
agarose, it is possible to form cell aggregates rich in
extracellular matrix (ECM). The principle of such a
cell aggregation is to prevent cell adhesion to a cul-
ture surface, which forces adherent-dependent cells,
like osteoblasts, to reform into tissue. These cell mi-
cro-masses formed by the osteoblast-like cells have
features of bone tissue with respect to the formation
of the ECM complexes and the development of the
cells from primary cell generation up to formed cell
micro-mass cultures, the cell spheroids (spheres).
Langenbach et al. showed that osteogenic differen-
tiation of three-dimensional (3-D) cell micro-masses
is enhanced by mimicking in-vivo conditions [8]. Be-
cause of an increased ECM synthesis, micro-masses
are more adhesive than cultures in a two-dimen-
sional monolayer [9]. Out of these reasons, these cell
micro-masses are implemented in the present study.

However, a thorough understanding of the pro-
cess of cell migration during sphere formation, is
lacking until now. Especially, the automated tracking
of osteoblasts by digital image processing algorithms
is challenging due to the fact that in the present case
individual cells often can hardly be differentiated.

For the automated tracking of individual cells in
two or three dimensions, a huge variety of approaches
and implementations of cell tracking exists [10–12]. A
cell tracking process can be divided into two steps.
First, the cells have to be recognized and separated
from the background. For this step, the so-called seg-
mentation, several methods exist that implement e.g.
thresholding, watershed transformation, template
matching [13], or deformable models [14]. In the sec-
ond step, corresponding cells are identified in subse-
quent images. Features like cell positions, areas/vo-
lumes, orientations, and intensities can be used to find
the closest match for each investigated cell. Some ap-
proaches are based on template matching [12, 15], and
more sophisticated methods exploit e.g., estimated cell
dynamics [14] or probabilistic schemes [13].

The aim of the presented study is to generate
scaffold-free 3-D micro-mass cell spheroids in vitro
and to characterize and evaluate quantitatively the
movement of the cells during 3-D cell-micro-mass
formation by a novel cell tracking algorithm. For this
purpose, an image processing software has been de-
veloped that allows image acquisition as well as the
quantitative evaluation of cell motion.

In order to find adequate parameters that de-
scribe sphere formation, individual cell movements
are of minor interest. Thus, instead of trying to iden-
tify and track single cells as most of the previously

described algorithms do, we developed an alternative
approach based on two-dimensional image correla-
tion techniques. By applying this method, statistical
information on the dynamics of multi-cell structures
during sphere formation is obtained. Parameters de-
scribing the dynamics of this process like the center
of gravity (CoG), the mean velocity, and the mean
distance to the CoG are calculated as time-depend-
ing functions. Results of manual and automated
tracking are compared in order to optimize the pro-
cessing parameters and to identify characteristic sta-
tistical parameters that describe the cell behavior.

2. Materials and methods

2.1. Cell culture for micro-mass formation

For culture, the potential of osteoblasts to migrate
from periosteum explants is used [16]. The periosteal
layer of calf metacarpus is aseptically stripped off
the bone, cut into small pieces and plated into poly-
styrene culture dishes (15 cm in diameter) with their
osteogenic side facing the bottom of the dishes.
500 ml High Growth Enhancement Medium (MP
Biomedicals GmbH, Leiden, The Netherlands) sup-
plemented with 60 ml fetal calf serum 690, 5 ml am-
photericin B, 5 ml penicillin/streptomycin and 5 ml
L-glutamine (Biochrom KG seromed, Berlin, Ger-
many) is used for culture maintenance and replaced
once a week. The cultures are incubated at 37 �C in
a humidified atmosphere of 95% air and 5% CO2.

Culture conditions and cell proliferation are rou-
tinely checked by light microscopy (Diaphot-TMD,
Nikon Kogaku K. K., Tokyo, Japan). A confluent
monolayer is obtained in about three weeks. Bovine
primary osteoblast-like cells are detached by ac-
cutase incubation (PAA Laboratories GmbH Pasch-
ing, Austria). While a sample volume of 100 ml is
counted in a Casy-counter system (CASY I Mod-
el TT, Schaerfe System GmbH, Reutlingen, Ger-
many) with 10 ml CasyTon, the remaining solution is
centrifuged for 10 minutes at 600 rpm. Finally, resus-
pension is carried out with 1 ml of a Leibovitz med-
ium per 1 million cells. Micro-masses (spheroids) are
generated by cultivating cells in a non-attachment
environment (Figure 1). 1% agarose (Biozym Scien-
tific GmbH, Hess. Oldendorf, Germany)-coated 1 m-
slide angiogenesis Ibidi treat chambers (Ibidi, Mar-
tinsried, Germany) are prepared by applying 5 ml of
a warm mixture of 10 ml Leibovitz (Gibco� invitro-
gen GmbH, Karlsruhe, Germany) and 0.1 g agarose
(Biozym Scientific GmbH, Hess. Oldendorf, Ger-
many) in one well which is then stored at 4 �C. The
thickness of the resulting agarose layer is estimated
to 0.4 mm. Osteoblasts are transferred into the pre-
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formed non-attachment agarose coated 1 m-slide an-
giogenesis Ibidi treat. 50 ml of the harvested primary
osteoblast suspension at a density of 0.1 million cells/
ml of medium is inoculated in each well. The wells
are then placed in a heating stage (Ibidi, Martins-
ried, Germany) at 37 �C. First passage cells were
used as indicated for all experiments. Phenotypic
characterization of osteoblasts revealed the expres-
sion of osteonectin und collagen I.

2.2. Image acquisition and analysis

For image acquisition and analysis, a specialized soft-
ware has been developed using the programming
language C# (Microsoft Visual Studio 2010), and
free numerical libraries (OpenCV [17] and FFTW
[18]). Image acquisition is performed via the Micro-
soft DirectShow interface of Windows XP. Thus, dif-
ferent cameras with drivers which are compatible to
the Windows Driver Model (WDM) can be used. In
the present case, an USB color camera (TC 131
USB Cam, Tucsen Ltd, Fuzhou, China) with a reso-
lution of 1280 � 1024 pixels is attached to the cam-
era port of the microscope (Diaphot-TMD, Nikon,
Tokyo, Japan). The used objective is a PL 2.5�/0.08
�170/-PL (Leitz, Wetzlar, Germany). Controlled by
a notebook (operating system: Windows XP), se-
quences of single RGB images are recorded with ad-
justable time delays in between. The elapsed time is
coded as part of the file names. Additional informa-
tion, like the image scale, is stored in a project de-
scription file. In order to minimize the accumulated
amount of data a programmable time delay between
subsequent image recordings is employed.

2.2.1 Manual cell tracking

In order to provide reference data for the automated
tracking routine described later, a simple interactive
tool for manual cell tracking has been implemented.
The program allows the user to mark individual cell
positions in a sequence of images where the cell
identities are represented by consecutive numbers.
After the cell positions have been transformed from
pixel to metric coordinates, individual trajectories
are stored in a text file as sequences of paired coor-
dinates and time values (in seconds).

2.2.2 Automated tracking of cell structures

The automated cell tracking employs a technique
called Digital Image Correlation (DIC), which is an

established method to determine displacement fields
in experimental mechanics [19, 20]. DIC requires a
digital image depicting the initial state of the speci-
men and an image depicting the displaced state. One
image is defined as reference image (e.g. the image
depicting the initial state) and divided into (usually
square) small regions, so-called subimages, which are
then sought-after in the other image, the so-called
search image. The displacement at the center point
of one of those subimages is defined as the differ-
ence between the point’s image coordinates in the
reference image and the image coordinates of the
center of the corresponding subimage in the search
image. The critical task during this procedure is actu-
ally finding the corresponding subimage. Therefore,
usually different subimages of the search image are
compared to the subimage in the reference image. A
similarity measure has to be calculated for each com-
bination of subimages. The subimage in the search
image which yields the highest similarity value is as-
sumed to correspond to the subimage from the refer-
ence image. In case of large deformations of the
object more advanced, computationally intensive
correspondence search algorithms that take account
of the expected deformations are required.

The DIC algorithm we use to find correspon-
dences in different images of cells is lent from Elec-
tronic (or Digital) Speckle Photography (ESP/DSP)
[21, 22] where it is employed to find corresponding
subimages in digital images of speckle patterns that
are formed by an object’s surface while being illumi-
nated by a laser. The evaluation of the recorded im-
age sequence depicting the cell migration is carried
out successively. First, the first image of the se-
quence represents the reference image and the sec-
ond the search image, then the second image be-
comes the reference image (with subimages
locations specified by the previous evaluation step)
and the third one the search image, and so forth.
The similarity measure is given by the two-dimen-
sional correlation coefficient:

cðk; lÞ¼
P
m�1

2

i¼m�1
2

P
m�1

2

J¼m�1
2

½I1ðuþi; vþjÞ I2ðuþiþk; vþjþlÞ�

(1)

where u and v denote the pixel coordinates of the
subimage center in the reference image, uþ k and
vþ l denote the pixel coordinates of the center of a
subimage in the search image, m is the (odd) width
and height of the (square) subimage, I1 and I2 repre-
sent the intensity distributions of the reference and
search image, respectively. The aim is to find those
values for k and l that maximize cðk; lÞ.

The calculation is more efficient in the spectral
domain. Hence, instead of Eq. (1)

C ¼ F�1ðH�s2Hs1Þ ð2Þ
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is evaluated, where C is the cross correlation matrix,
containing all cðk; lÞ for k; l ¼ �m� 1

2 ;

�m� 1
2 þ 1; :::; m� 1

2 , F�1 denotes the inverse (fast)
Fourier transform and Hs1 and Hs2 represent the
Fourier transforms of the subimages from the refer-
ence and search image (both with their centers at

ðu; vÞ). Finding the translation between both subi-
mages (� 0.5 pixel) is subsequently only a matter of
determining the position of the maximum of C. In
this way, only translations up to m� 1

2 pixels can be
determined by this algorithm. If larger translations
are expected, it is necessary to calculate Eq. (2) for
various subimages from the search image or to in-
crease the subimage size m.

Hs1 and Hs2 have to be padded to twice their size
before performing the calculation of C, which is
done best by subtracting the respective mean value
from the subimages and padding them with zeros.
Iterating the calculation of C with a new subimage
from the search image at the previously estimated
location can yield a better defined peak in C.

There are several ways of improving the algo-
rithm to achieve subpixel accuracy (e.g., by fitting a
continuous function to the peak region of C and de-
termining the location of its maximum), but in our
application case this is not supposed to be necessary.
It has to be noted that in contrast to manual tracking
which allows determining the trajectories of indivi-
dual cells, our automated cell tracking analyses the
average motion of all cells contained in a subimage
(Figures 1 and 2).

2.2.3 Evaluation of cell dynamics

From the recorded trajectories, three basic statistical
parameters are calculated for each (discrete) time
step tk: the center of gravity (CoG) rs, the mean ve-
locity �vv, and the mean distance ds to the CoG.

rsðtkÞ ¼
1
N

PN

i¼1
riðtkÞ ð3Þ

�vvðtkÞ ¼
1
N

PN

i¼1

jriðtkþ1Þ � riðtkÞj
tkþ1 � tk

ð4Þ

dsðtkÞ ¼
1
N

PN

i¼1
jriðtkÞ � rsðtkÞj ð5Þ

Figure 1 (online color at: www.biophotonics-journal.org)
Details of two subsequently recorded microscope images
of osteoblasts. The red squares depict enlargements of two
corresponding subimages (99 � 99 pixel) that are used for
correlation analysis. Original image size: 1280 � 1024 pixel,
scale: 1.71 mm/pixel.

Figure 2 The two-dimensional cor-
relation function C. (a) intensity
plot, (b) pseudo 3-D plot calcu-
lated for the regions marked in
Figure 1 by Eq. (2). The position
of its maximum indicates a transla-
tion of 12 pixels in horizontal di-
rection.
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Here, riðtkÞ ¼ ðxi; yiÞ denotes the position vector of a
cell (or cell pattern in the case of correlation) within
the kth frame (i.e. at time tk).

In the preceding formulas summations are carried
out over all N marked positions at a certain time step
(i.e. a frame). As not all tracked cells may be identi-
fied in all frames, N may change from frame to frame.

3. Results

The following results are obtained with a single cul-
ture of 5,000 osteoblasts produced and cultivated as
described above. After approximately one hour, a
compact micro-mass structure has formed. A se-
quence of 20 images is recorded with a time delay of
1 min between subsequent exposures. The sequence
has been limited to this length in order to allow a
manual evaluation for comparison.

3.1 Comparison of manual
and automated tracking

For manual evaluation, a set of 40 cell positions is cho-
sen in the peripheral region of the developing micro-
mass agglomeration (Figure 3a). Start positions are
subsequently adopted as initial positions of the corre-
lation process. The result is displayed in Figure 3b. A
comparison of Figures 3a and b reveals nearly identi-
cal tracks. Minor differences can be found e.g. in the
upper and lower left corners, where two tracks could
not be found by the automatic analysis.

An important parameter that influences the results
of automatic tracking is the width of the subimages
(windows) for which the local displacements are cal-
culated by correlation. Windows that are either too
small or too large may lead to a strong decrease in the
number of identified cell positions. Thus, automatic
tracking results for five different subimage sizes are
compared to a result obtained by manual tracking.

In Figure 4 the mean velocities (according to
Eq. (4)) for these cases are displayed. Note that each

data point represents a mean of about 40 cell veloci-
ties. Therefore, when comparing the curves, standard
deviations have to be considered. These have not
been added to the graph for the sake of clarity, but
they are displayed for a similar situation (i.e. the
same image sequence) in Figure 7. They show that
all curves are within the 2s margins. As there ap-
pears to be no clear tendency with respect to the
used window size (within the chosen limits), any of
these seem to be applicable.

Figure 5 depicts the temporal evolution of the
mean distances of cell positions (within a frame) to
the center of gravity for manually as well as for
automatically evaluated tracks. Again, there is no
clear tendency of the deviation from the manually
acquired tracks with respect to the window size. The
difference between the curves of both methods is
somewhat growing over time which is not too sur-
prising as – in contrast to manual evaluation – the
correlation function describes the average shift of a

Figure 3 (online color at:
www.biophotonics-journal.org)
Comparison of manual tracking
(a) and automatic tracking (b).
Trajectories of 40 cell positions are
evaluated. Cell trajectories start at
the peripheral (blue) ends. Origi-
nal image size: 1280 � 1024 pixel,
scale: 1.97 mm/pixel.
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Figure 4 (online color at: www.biophotonics-journal.org)
Mean velocity calculated by Eq. (3) from the tracked cell
positions in each frame.
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cell ensemble. Differences are again smaller than the
respective error interval (see also Figure 8).

3.2 Automated analysis of cell dynamics

For the regular evaluation of the osteoblast move-
ment, the same parameters are calculated for the
identical image sequence as in the example shown

before. In contrast, the start positions of the correla-
tion windows are now located on a regular grid of
which the grid spacing can be adjusted. In the pre-
sented case a window size of 64 � 64 pixels and a
grid spacing of 64 pixels (in both horizontal and ver-
tical direction) have been chosen. Computation
takes about 2 s per image on a desktop system with
an Intel core i7 processor.

In Figure 6 the calculated trajectories for the im-
age sequence with a duration of 20 min are dis-
played. A total number of 252 trajectories have been
detected. Nearly all of the tracks show an inbound
radial direction. On the one hand, those starting
in the peripheral region are generally longer
(� 400 mm), indicating that the corresponding cells
are moving faster. On the other hand, cells located
in the central region are hardly moving at all. The
center of gravity remains almost at a fixed position
(total displacement � 50 mm).

The mean velocity for each frame as a function
of time is depicted in Figure 7 with 2s intervals. It
demonstrates that the osteoblasts are moving faster
at the beginning of the formation process
(�vv � 0:34 mm/s) than at the end (�vv � 0:16 mm/s). The
standard deviation is quite large (s � 1.5 mm/s)
which reflects the differences in velocity between
cells in central and peripheral regions.

Figure 8 shows the mean distances to the center
of gravity calculated from the trajectories in Figure 6
with 2s intervals. These intervals mainly reflect the
geometrical situation, i.e. by defining that the per-
ipheral cells are located farther from the center of
gravity than the central ones. Despite of the large
standard deviation (s � 260 mm), the mean distance
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Figure 5 (online color at: www.biophotonics-journal.org)
Mean distance to center of gravity calculated by Eq. (5)
from the tracked cell positions in each frame.

Figure 6 (online color at: www.biophotonics-journal.org)
Trajectories found by correlation tracking using a sub-
image size of 64 � 64 pixels and a grid spacing of
64 � 64 pixels. Original image size: 1280 � 1024 pixel,
scale: 1.97 mm/pixel.
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Figure 7 Mean velocity calculated from trajectories in Fig-
ure 6 with 2s error.
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evolves as a smooth function of time, starting at
� 750 mm and ending at � 510 mm.

The monotony and continuity of the curve inspire
fitting of an analytical function, and the overall shape
suggests an exponential approach. The result of a
nonlinear least squares fit (accomplished with the gnls
function of the statistical package R [23]) is displayed

in Figure 9. The exponential function (time constant
t � 1100 s, offset b1 � 370 mm) fits the data with a re-
sidual standard error of less than one micron.

4. Discussion and conclusion

Progress in osteogenic tissue engineering requires a
thorough understanding of cellular interactions of
osteoblast-like cells. However, even basic questions
as if and how cell activity is controlled by signals are
still unanswered. Scaffold-free tissue engineering
with bovine osteoblasts, as it has been employed
here, allows an insight into the cell dynamics during
formation of micro-masses or spheres. For this pur-
pose, parameters are required that allow a quantita-
tive description of the dynamic behavior as well as
adequate tools to measure them.

For an approach, which describes the behavior of
the cell culture as an ensemble, the dynamics of a
single cell is of little significance. Thus, we propose
statistical methods both for acquisition and descrip-
tion. A new method of cell tracking is proposed
which is based on correlation analysis of multi-cell
structures rather than on identifying and tracking
single cells. In comparison to the methods for auto-
mated tracking of individual cells mentioned in the
introduction, our approach is quite simple, yet has
proven to be effective. It has the advantage of being
able to deal with situations in which individual ob-
jects (e.g. cells) are hard to identify as has been
shown for other applications [24]. The result is a set
of trajectories of cells or cell patterns that may ex-
tend over a varying number of image frames.

Two statistical parameters to characterize the cell
dynamics have been investigated: the mean velocity
calculated for these trajectories during each frame,
and the mean distance to the center of gravity. In
order to verify the results of the correlation analysis,
these have been compared to results obtained by
manually tracking single cells. Within the statistical
error margins, the curves are in good agreement.

The fully automatic evaluation of an image se-
quence of a cell culture consisting of 5,000 osteo-
blasts resulted in approximately 250 individual tra-
jectories. Both, the mean velocity and the mean
distance to the center of gravity decrease in a char-
acteristic way during the observation time (Figures 7
and 8). The standard deviations of both parameters
are relatively large. This is probably due to the fact
that the velocity as well as the distance to the CoG
is not uniformly distributed. At least with respect to
the geometrical distribution of the cells this is ob-
vious (Figure 6). However, both parameters seem to
behave – as functions of time – in a monotonic and
smooth way. In case of the mean distance to the
CoG, an exponential function can be fitted that is in
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Figure 8 Mean distances to the center of gravity calculated
from trajectories in Figure 6 with 2s error.
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Figure 9 Mean distances to the center of gravity calculated
from trajectories in Figure 6 as a function of time with least
squares fit of exponential function (b1 ¼ 370.1 mm, standard
error SE ¼ 5.12 mm; b2 ¼ 439.4 mm, SE ¼ 4.84 mm;
t ¼ 1118 s, SE ¼ 21.2 mm, residual standard error: 0.96 mm).
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agreement with the data. Further investigations will
have to proof whether this can be generalized to
other experimental configurations. First results indi-
cate that such a generalization is justified. For this
case, the corresponding time constant (here: 1100 s)
is a simple parameter to characterize the dynamic
behavior of osteoblast-like cells.

Moreover, we are convinced that our image pro-
cessing software of automated cell tracking is also
a useful tool of documentation for other models
of sphere-generation, like neurospheres, chondro-
spheres, or myocardial microspheres. Cell migration
to form spheres in turn is an adequate means to cre-
ate the required cell mass and will impact the thera-
peutic potential of the cells.
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S. Schäfer et al.: Dynamic behavior of osteoblasts during formation of micro-mass cell cultures8

Journal of 

BIOPHOTONICS

# 2012 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biophotonics-journal.org



References

[1] D. A. Atwood and J. Prosthet. Dent. 26, 266–279
(1971).

[2] A. Tallgren and J. Prosthet. Dent. 27, 120–132 (1972).
[3] J. I. Cawood and R. A. Howell, Int. J. Oral Maxillo-

fac. Surg. 17, 232–236 (1988).
[4] E. G. Khaled, M. Saleh, S. Hindocha, M. Griffin, and

W. S. Khan, Open Orthop. J. 5 Suppl. 2, 289–295
(2011).

[5] M. Vallet-Regı́, I. Izquierdo-Barba, and M. Colilla,
Philos Transact A Math. Phys. Eng. Sci. 370, 1400–
1421 (2012).

[6] J. M. Kelm and M. Fussenegger, Adv. Drug Deliv.
Rev. 62, 753–764 (2010).

[7] R. C. Bates, N. S. Edwards, and J. D. Yates, Crit. Rev.
Oncol. Hematol. 36, 61–74 (2000).

[8] F. Langenbach, C. Naujoks, R. Smeets, K. Berr,
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