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We explore experimentally the effect of nonlinearity on resonant coupling between high-symmetry momentum
states in hexagonal photonic lattices. We observe nonlinear Pendellosung oscillations with the power-dependent
excitation of additional critical points of the same symmetry in the reciprocal cells closest to the excitation point.
In contrast, the nonlinear Landau-Zener tunneling in biased lattices exhibits a sharp transition to the modulational

instability with an increase of the input optical power.
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I. INTRODUCTION

The propagation of optical waves in periodic photonic struc-
tures has been attracting growing interest in recent years due
to various possibilities for direct visualization of fascinating
linear and nonlinear phenomena associated with wave packets
and quantum particles of different natures [1,2]. Important
examples in this context are resonant effects, such as Bloch
oscillations [3], Landau-Zener interband tunneling [4,5], Klein
tunneling [6], Zitterbewegung [7], dynamic diffraction [8],
and Anderson localization in disordered systems of optical
fibers [9], one-dimensional waveguide arrays [10], and two-
dimensional photonic lattices [11,12].

Linear Bloch oscillations and Landau-Zener interband
tunneling are characterized by resonant coupling between the
spectral bands which can be induced by an external force.
Both phenomena have been linked recently [8] to Pendellosung
oscillations, i.e., the resonant coupling of forward and Bragg-
reflected waves in purely periodic structures without an
external force [13-16]. In this case, the high-symmetry
momentum states form multilevel oscillatory systems, with
periodic Pendellosung transfer of population between the
levels due to interference of two or more Bloch waves: a
process which is similar to Rabi oscillations and energy
beating in coupled waveguides. Studies of the Landau-Zener
tunneling in two-dimensional optically induced hexagonal
photonic latices have demonstrated that the observed dynamics
is dominated by Pendellosung and Bloch oscillations without
significant tunneling on a short propagation scale, whereas the
tunneling process determines the asymptotic power transfer
between high-symmetry points [8].

An important question in all such resonant processes is
how they are affected by a possible nonlinear response of the
system. In general, the nonlinearity can lead to a dramatic
modification of resonant processes. For example, it may favor
Anderson localization on shorter propagation distances [10]
or lower levels of disorder [11]. In honeycomb lattices the
Dirac dynamics breaks down [17,18] under the action of
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nonlinearity, although the Klein tunneling is not suppressed
[19]. A general prerequisite for the tunneling process, such
as Landau-Zener tunneling, is the coupling between spectral
bands, which is usually achieved by an additional longitudinal
modulation [20-22] or a linear refractive index gradient [4,5].
Nonlinearity provides another important mechanism to induce
interband transitions via four-wave mixing (FWM). The FWM
process has been shown to play an important role in the
dynamics of Bose-Einstein condensates in optical lattices,
where nonlinearity due to atom-atom interaction often cannot
be neglected [23]. Probably the simplest arrangement in the
studies of nonlinear tunneling of Bose-Einstein condensates
is the double-well potential, in which the nonlinearity leads
to periodic oscillations of atoms between the wells and
macroscopic quantum self-trapping [24,25]. The reason for
such dramatic effects is that, since the superposition principle
is no longer valid in the presence of nonlinearity, the linear
modes of the potential are effectively coupled.

Similarly, Bloch waves fail to represent uncoupled modes
of the lattice and start to interact with each other in the
presence of nonlinearity, i.e., nonlinearity effectively couples
different bands and leads to significant modifications of the
wave dynamics [26]. In particular, for the case of one-
dimensional accelerated (biased) lattices, the nonlinearity
introduces asymmetry in the sense that tunneling from the
ground state to the excited state is enhanced, whereas tunneling
in the opposite direction becomes suppressed [27]. Nonlinear
tunneling in photonic structures was studied theoretically in
two-dimensional lattices, and corresponding models extending
the linear Landau-Zener-Majorana systems [28—30] have been
derived [31-33].

Here we study experimentally the influence of nonlinearity
on the resonant coupling between high-symmetry points in
two-dimensional photonic lattices. We demonstrate that in
unbiased lattices, depending on the initial excitation, nonlin-
earity leads to tunneling of optical power to additional nearest
neighbor high-symmetry points in higher Brillouin zones of
the lattice. This observation suggests that systems which
involve only the levels resonantly coupled in the linear limit
[31-33] are insufficient to describe the nonlinear dynamics
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of resonant coupling. Furthermore, in biased lattices which
exhibit Landau-Zener tunneling in the linear limit, we observe
a sharp transition to modulational instability, manifesting itself
in irregular output and significant broadening of the signal
beam in the momentum space.

II. EXPERIMENTAL PROCEDURE

We consider two-dimensional hexagonal photonic lattices
which are optically induced in a photorefractive crystal
[34,35]. In order to compensate for the distortion of the induced
refractive index pattern due to the photorefractive anisotropy,
we use a stretched lattice geometry, with the horizontal and
vertical lattice constants resulting in a ratio of n =d,/d, ~

2.4, compared to 1 = +/3 for the unperturbed hexagonal
symmetry [8,36—38]. A simulated intensity distribution of the
lattice wave is shown in Fig. 1(a).

In our experiments, we distinguish two cases: (i) when the
coupling occurs in a two-level system between the X points of
the Brillouin zone [Fig. 1(b)] and (ii) when it occurs in a three-
level system formed by the M points as shown in Fig. 1(c).
Our experimental setup is shown schematically in Fig. 2(a). A
beam from a frequency-doubled Nd: YAG laser at a wavelength
of 532 nm is sent through a combination of a half-wave plate
and polarizing beam splitter in order to obtain two beams
(lattice and probe beam) of controllable relative intensities.
The optically induced lattice is created by a combination
of Mach-Zehnder-type interferometers used to interfere three
beams inside a 23-mm-long photorefractive Sty goBag 40Nb,Og
(SBN:Ce) crystal which is externally biased, with a dc electric
field of approximately Eg =2 kV/cm directed along its ¢
axis. The total power of the three interfering lattice beams is
Pt = 0.4 mW and the angles of the interfering waves are
adjusted to result in lattice constants dy = 24 and d, = 57um,
thus giving a stretching factor of n & 2.4 [see Fig. 2(b)].

The probe beam is mildly focused at the front face of the
crystal to a FWHM of 160 pum such that it covers several
lattice sites and the output is analyzed in real space as well as
in Fourier space using two CCD cameras. In order to induce
a refractive index gradient along the transverse x direction,
the crystal can be illuminated from the top with a modulated
incoherent white-light intensity distribution [5]. In contrast to
the theoretical analysis, in which the gradient can be oriented
along any direction [30], the above technique only allows
the production of a refractive index gradient along the x
direction. Therefore, the index gradient in our experiments
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FIG. 1. (Color online) Resonant interband coupling in two-
dimensional hexagonal photonic lattices. (a) Simulated lattice in-
tensity; (b) two-level system with coupling between X points; (c)
three-level system with coupling between M points.
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FIG. 2. (Color online) (a) Schematic experimental setup. CCD1,
real-space camera; CCD2, Fourier space camera; FF, Fourier filter;
L, lens; M, mirror; MO, microscope objective; (P)BS, (polarizing)
beam splitter; PH, pinhole. (b) Experimental intensity distribution of
the stretched hexagonal lattice.

on Landau-Zener tunneling is always directed along the
horizontal direction of the first Brillouin zone (Fig. 1).

III. NONLINEAR PENDELLOSUNG OSCILLATIONS

Before analyzing the nonlinear system, we briefly recall the
example of linear one-dimensional Pendellosung oscillations
[8]. To this end, the input beam, with a power of P, = 0.1 uW,
is sent at such an angle of incidence as to match with the X
point of the Brillouin zone and the output intensity distribution
is observed in Fourier space. As shown in Fig. 3, the beam
gets Bragg reflected and the output contains a second peak
at the X, point. The power ratio of the two intensity peaks
changes with the applied electric field E.y; = 0-1kV/ cm and
thus depends on the lattice depth; the latter determines the
oscillation frequency [8]. It is important to note that since we
are working in the linear regime, the energy is locked between
the two X points, with no additional points excited.

FIG. 3. (Color online) Experimentally recorded far-field intensity
distributions for one-dimensional linear Pendellosung oscillations
with the input beam at the top X point of the Brillouin zone; the
Brillouin zone is shown here and in subsequent figures by (white)
hexagons. The applied field E.y, is (a) 0.2 kV/cm, (b) 0.6 kV/cm,
and (c¢) 1.0 kV/cm.
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FIG. 4. (Color online) Nonlinear interband tunneling in the unbiased lattice with three excitation conditions at the X, points of the
Brillouin zone, as indicated schematically in the left column: (a) input beam with momentum at the X, point, (b) two in-phase beam excitation,
and (a) initial excitation of theX, point. The far-field (Fourier space) outputs are shown for different input powers, as indicated at the bottom:

P, =0.2,04,05,0.6,0.8 and 1.0 uW.

This situation changes when moving to the nonlinear
regime, which, in our experiments in photorefractive media,
is achieved by increasing the input power of the probe beam.
We again adjust the input beam angle to match with the X,
or X, point and observe in Figs. 4(a) and 4(c), respectively,
the output intensity distributions in Fourier space with varying
input powers. The externally applied electric field is Eex =
1 kV/cm to ensure a sufficient lattice depth. As before, the
output at low power Py, < 0.5 uW shows only two excited
X points. However, with an increase in power up to Py, =
0.6 uW, the output changes dramatically and we observe
the appearance of additional excited X points in the higher
Brillouin zones. A further increase in power then leads to
the development of modulational instability, with significantly
broadened and disordered Fourier peaks. The results presented
in Figs. 4(a) and 4(c) suggest that the power is transferred to the
X points closest to the initially excited point in the Brillouin
zone (X or X;) and thus independent of the center of the
Brillouin zone. Comparing Figs. 4(a) and 4(c), we see that
the two additional X points, on the left and on the right of the
first Brillouin zone, are present in both cases. Depending on
the initial conditions, three more X points are excited above
[Fig. 4(a)] or below [Fig. 4(c)] the first Brillouin zone.

This vertical asymmetry is eliminated in the case of two-
beam excitation shown in Fig. 4(b). Here, the power is most
efficiently transferred to the left and right X points, while it is
evenly distributed between the three top and the three bottom
X points, which are hardly visible. Interestingly, we observe
an asymmetry in the development of modulational instability,
persistent for all three excitations, namely, the left Fourier
peaks get much stronger than the right ones. This appearance of
modulational instability and its intrinsic relation to interband
tunneling were also discussed in Ref. [39] for nonseparable
square lattices.

IV. NONLINEAR LANDAU-ZENER TUNNELING

The crucial importance of the initial conditions for the
development of modulational instability was also observed
in the context of asymmetry of nonlinear Landau-Zener tun-
neling, in agreement with our observations above. In order to
fully appreciate this effect, we perform additional experiments
on nonlinear Landau-Zener tunneling in the biased lattice.
However, before analyzing the nonlinear tunneling process,
we again recall the linear results first. We consider the simplest
case of so-called symmetric tunneling [8], in which a probe
beam with initial condition k,, = 0 follows the applied gradient
and moves across the Brillouin zone before reaching the Bragg
resonance [point M; in Fig. 1(c)]. Eventually, two additional
beams appear due to resonant coupling between the Fourier
amplitudes, as shown in Fig. 5.

Since in our experiment it is not possible to directly observe
the evolution of the probe beam inside the crystal, we vary the
incident angle of the probe beam and monitor the Fourier space
output at the back face of the crystal. For a fixed crystal length

FIG. 5. (Color online) Linear Landau-Zener tunneling. Far-field
output intensity distribution for different initial inclination angles 6 of
the probe beam: (a) 8 = 0.102°, (b) 6 = 0.285°, and (c) 0 = 0.340°.
Arrows indicate the direction of the refractive index gradient.
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FIG. 6. (Color online) Nonlinear Landau-Zener tunneling in
biased hexagonal lattices. Far-field output intensity distributions for
different input powers Py: (a) 2 uW, (b) 4 uW, (c) 6 uW, (d)
8 uW, (e) 10 W, and (f) 12 uW. Arrows indicate the direction
of the index gradient. (g) Ratio of the output power P; at the initially
excited M, point to the power P, + P; tunneled to the points M,
and M3, estimated as the ratio of intensity integrals for k£, < 0 and
k. > 0; see the inset. The different symbols represent 10 different
measurements; filled (red) circles correspond to images (a)—(f); filled
(black) diamonds and horizontal error bars show the mean value and
standard deviation for 10 measurements. The area of modulational
instability for P, > 10 uW is shaded.

and angles below the Bragg resonance, such an excitation at
different transverse wave-vector components is equivalent to
different starting points in the Brillouin zone and thus allows
one to infer details of the tunneling dynamics at different
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stages of beam evolution [S5]. It was shown in [8] that the
final efficiency of the tunneling process strongly depends on
the initial conditions, i.e., on the initial inclination angle of the
probe beam. This is also shown in Fig. 5, where the intensity
of the tunneled beams in Fourier space clearly varies with the
input angle.

In order to analyze the nonlinear evolution of the system,
we choose a fixed angle of the input beam and vary the input
power while again observing the far-field output intensity
distribution, as shown in Figs. 6(a)-6(f). While nonlinear
tunneling with excitation of high-symmetry points in the
higher Brillouin zones was not seen, we observed a sharp
transition to a modulational instability regime as shown in the
Fourier image at P, = 12 uW [Fig. 6(f)]. To obtain a more
quantitative measure of the tunneling efficiency, we integrated
the powers of the three beams at the M points of the first
Brillouin zone. Figure 6(g) shows the obtained integrated
powers of 10 repetitive measurements. The plot clearly reveals
the sharp transition to the modulational instability (shaded
area) which was already observed in the far-field output
intensity distributions [Fig. 6(f)]. It should be noted that
the left-to-right asymmetry discussed above for the case of
nonlinear Pendellosung oscillations is also clearly present in
this case [filled (black) diamonds in Fig. 6(g)].

V. CONCLUSIONS

We have experimentally studied interband coupling induced
or facilitated by the nonlinear response of an optical medium
and we have identified two regimes. For weak nonlinearity,
the resonant tunneling in unbiased lattices, so-called Bloch-
band tunneling [39], leads to the excitation of additional high-
symmetry points in the momentum space of the lattice. For
sufficiently strong nonlinearity we observe the development
of modulational instability in both pure periodic and biased
lattices. In addition, we observe left-to-right asymmetry of
tunneling, persistent not only in biased lattices, but also in the
regime of nonlinear Pendellosung oscillations.
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