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a b s t r a c t

The increasing importance of optical 3D measurement techniques and the growing number of available

methods and systems require a fast and simple method to characterize the measurement accuracy.

However, the conventional approach of comparing measured coordinates to known reference

coordinates of a test target faces two major challenges: the precise fabrication of the target and – in

case of pattern projecting systems – finding the position of the reference points in the obtained point

cloud. The modulation transfer function (MTF) on the other hand is an established instrument to

describe the resolution characteristics of 2D imaging systems. Here, the MTF concept is applied to two

different topometric systems based on fringe and speckle pattern projection to obtain a 3D transfer

function. We demonstrate that in the present case fringe projection provides typically 3.5 times the 3D

resolution achieved with speckle pattern projection. By combining measurements of the 3D transfer

function with 2D MTF measurements the dependency of 2D and 3D resolutions are characterized. We

show that the method allows for a simple comparison of the 3D resolution of two 3D sensors using a

low cost test target, which is easy to manufacture.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The 3D acquisition of surfaces using optical topometry tech-
niques like fringe or speckle pattern projection yields a point
cloud containing a high quantity of coordinates that may be
combined with colored textures to obtain a digital model of the
regarded surface [1–5]. An overview of the recent development of
fringe projection techniques and their applications is given in [6].
Various approaches to reduce measurement errors by dealing
with different sources of error have been investigated. For
example, quantization effects on the accuracy in the fringe
projection case are discussed in [7]. This publication and [8] deal
with an intensity correction of the projector to enhance accuracy.
Systematic errors caused by image aberrations can either be
corrected during camera calibration [9] or within the measure-
ment process [10]. Lateral as well as depth depending lens
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distortions can be determined and reduced by an optimized lens
design [11].

Thus, the determination of the measuring accuracy and its
dependencies on various measurement conditions is a crucial
point in many applications. However, it is still a challenging
problem. One common method to determine accuracy is to use a
groove plate as an test object [12]. This requires very precisely
manufactured 3D structures in the test object. An overall error
compensation method by comparing measured coordinates with
those delivered by a coordinate measuring machine is presented
in [13].

For a comparison of measured with reference coordinates in
order to determine the accuracy, pairs of them have to be
identified. This can either be done by picking the pixel positions
of single target marks with known spatial distances manually or
using a pattern recognition algorithm like an ellipse fit [14].
However, such an approach does not take into account the
influence of pattern projection techniques. These methods are
used for automated image analysis, e.g. in the topometric mea-
suring systems described in Sections 2.2 and 2.3, and represent
another accuracy limiting factor, which has to be considered. In
these cases the locations of 3D points are obtained by analyzing
the fringe or speckle pattern projected onto the surface under
inspection. However, the acquired 3D points are not associated
with features or marks of the surface itself. Thus, instead of
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analyzing several single target marks for accuracy investigations,
a more sophisticated technique has to evaluate features of the 3D
model, which is given by the acquired point cloud. As a con-
sequence, not the accuracy in terms of coordinate deviations, but
a resolution of 3D structures is determined.

Goesele et al. [15] presented an approach for computing a 3D
transfer function (3D TF) of a laser range scanner from a
measurement of a test target containing a straight sharp edge.
This was inspired by a slanted edge technique that estimates the
MTF of 2D imaging systems [16]. In the present work we
investigate whether this approach is suitable for a simple com-
parison of the 3D resolution of two different 3D sensors. First, the
method is applied to a fringe projecting topometric sensor and
combined with MTF measurements of the imaging systems
involved in the topometric system. This allows for a direct
comparison of 2D and 3D resolutions gained from the respective
transfer functions. In order to compare the 3D resolutions of two
types of pattern projection systems, we apply the same method to
a second topometric sensor based on digital correlation of
projected laser speckle patterns. Due to the monochromatic
nature of laser light the latter approach offers the possibility of
an effective reduction of ambient light by narrow-band filters and
allows for a simple setup. Both systems use the same photogram-
metric approach for calculating 3D coordinates. Thus the obtained
results are highly comparable.
Fig. 1. Sketch of the fringe projecting topometric setup including the test target

for the determination of the 3D transfer function. b denotes the basis length, i.e.

the distance between the projection centers of the cameras, and j denotes the

triangulation angle. Object points in the world coordinate system {X, Y, Z} are

mapped into the image coordinate system {x, y} on the camera sensor.
2. Theory and methods

2.1. Photogrammetry and calibration

The investigated topometric systems are based on the princi-
ple of photogrammetry, i.e. the calculation of 3D coordinates from
images taken from different perspectives. Using the pinhole
camera model, the mapping of the object coordinate (X, Y, Z) into
the image plane is described in homogeneous coordinates [17]
with an arbitrary scaling factor l:
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where (x, y) denote the image coordinates, while the position and
orientation of the camera in space are described by the transla-
tion vector C and the rotation matrix R. I3 denotes the three-
dimensional identity matrix. The pinhole model focal length f,
which is the distance from the image plane to the camera center,
is multiplied by the conversion factors kx and ky to obtain pixel
coordinates along the x and y axes. (px, py) is the position of the
principal point, i.e. the intersection of the optical axis and the
image plane. In order to determine these parameters as well as
additional lens distortion parameters [9], a calibration is per-
formed following the approach of Zhang [18]. The advantages of
this approach are its proven numerical stability and the possibi-
lity to use a plane field of target marks. Thus manufacturing
problems associated with 3D structures are avoided. At least two
images of the plane field in varied orientations have to be
captured. From these images the imaging parameters are then
estimated by a least-squares-fit.

After the setup has been calibrated, object coordinates can be
calculated from at least two images of different perspectives. For
this evaluation homologous image points, i.e. points in both
images, which belong to the same object point [19], have to be
identified. Subsequently, a system of equations for (X, Y, Z) has to
be solved, which contains (1) for each perspective.
A special variant of two-camera photogrammetry is the stereo
normal case. Here, the viewing directions are parallel to each
other and perpendicular to the line which connects the two
cameras (basis). It provides simple error formulas [20] for the
measurement uncertainties sZ and sX of the coordinates Z (axial
direction, (2)), X (3) and Y (analog formula to (3))
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Z2

f b
spx

, ð2Þ
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where f denotes the focal length and b is the length of the basis. x1

represents the corresponding x-coordinate of the first camera
image and spx the uncertainty of the related parallax.
2.2. The fringe projecting topometric system

The topometric sensor investigated here is set up as depicted
in Fig. 1. Two monochrome CCD cameras with digital interfaces
(IEEE 1394) are used for image capturing, while fringe projection
is performed by a video projector. The projector (Infocus) uses the
DLP technology (Digital Light Processing) and has a pixel quantity
of 1024�768. Cameras with pixel quantities of either 1024�768
or 1280�960 are employed. Fig. 1 also shows the test target used
for the measurement of the 3D transfer function (see Section 2.5).

Phase measuring fringe projection [21] is applied to identify
homologous image points automatically. For this purpose a
sequence of seven Gray coded black-and-white and four sinusoi-
dal vertical fringe patterns are projected onto the object and for
each pattern an image is captured from two different perspec-
tives. In combination with images of one completely white and
one completely black projector illumination, binary values are
calculated for each pixel from the seven black-and-white fringe
pattern images. Next, sinusoidal fringes are projected, which are
phase-shifted by p/2 each. From these images phase values are
calculated pixel-wise [22]. The horizontal location of a homo-
logous pair of points can then be obtained from the stack of
binary and phase values. Along with the epipolar constraint [17],
each pair can be identified unambiguously. Fig. 2 illustrates a
measurement situation and the resulting point cloud rendered as
a shaded triangle surface.



Fig. 2. Measurement image of the test target illuminated with a sinusoidal fringe pattern and a section of the respective triangulated point cloud.

Fig. 3. Sketch of the speckle pattern projecting topometric setup including the test

target for the determination of the 3D transfer function. b denotes the basis length

and j denotes the triangulation angle.

P. Berssenbrügge et al. / Optics and Lasers in Engineering 50 (2012) 465–472 467
2.3. The speckle pattern projecting topometric system

The second topometric system differs from the one described
in Section 2.2 only with respect to the technique used for finding
homologous image points. A schematic of this setup is shown in
Fig. 3. It utilizes a laser speckle pattern [23] projected onto the
object’s surface. The beam of a frequency doubled Nd:YAG CW
laser with a wavelength of 532 nm and a maximum power of
21 mW (LCS-DTL-112A from Lasercompact, Moscow, Russia) is
focused by a lens (f¼80 mm) and passes a ground glass that
generates a speckle pattern. Monochrome CCD cameras with
1280�960 pixels (IEEE 1394 interface) are used for recording.

While the automated determination of 3D coordinates with
the fringe projection technique in our case requires 13 (stereo-)
image pairs (see Section 2.2), the speckle pattern projection gets
by with only one image pair. In this way, the measurement time is
reduced to the single exposure time of the cameras, thus enhan-
cing the reliability of non-stationary measurements. The pattern
analysis is done by digital image correlation (DIC) as described in
[24]. The method is mainly based on an algorithm proposed by Lu
and Cary [25], which matches subsets of the two camera images
by maximizing an adequate similarity measure. In order to
simplify the correspondence analysis, the image pair is rectified
in advance. This means that the image planes of both cameras are
transformed in such a way that pairs of conjugate epipolar lines
become collinear and in our case parallel to the horizontal image
axis [26]. In the resulting rectified images, corresponding image
points are located on the same horizontal line and the correspon-
dence search can therefore be limited to a search along an
image row.
Fig. 4 shows one of the recorded speckle images of the 3D TF
test target and the resulting point cloud rendered as a shaded
triangle surface.

2.4. Measurement of the modulation transfer function using a

slanting edge technique

To estimate the (2D) MTF a technique is used, which is based
on an approach presented by Buhr et al. [27]. There, the line
spread function (LSF) is obtained as the numerical derivative of an
edge spread function (ESF), which represents the system’s
response to an ideal black-to-white-transition (step response).

A large number (4100) of such transitions is used to obtain an
oversampled ESF. The transitions are provided by the evaluation
of an image of a slanted edge. This allows the determination of
the MTF from a single measurement instead of evaluating multi-
ple images of sinusoidal patterns with different frequencies.

The test target for the determination of the MTF is a printout
from a laser printer displaying a pattern of alternating black and
white stripes. Fig. 5 shows an image of this test target. It is
slightly slanted with respect to the pixel grid of the recording
camera. The distance between the target and the camera must be
large enough to ensure that the blurring of the printout is not
resolved by the cameras. So a laserprint target has sufficient
accuracy for this purpose. In the present case, with a focal length
of 12 mm, a distance of 60 cm is used. The oversampled ESF is
extracted from a region of interest (ROI) within the image. The
ROI is chosen according to the following criteria: the dark-to-
bright-transition should be located approximately in the middle
of the ROI. The width of the ROI should be at least 20 pixels as it
defines the number of spatial frequencies where the MTF can be
specified. The height of the ROI is just the number of rows after
which the gray scale profile of the transition is displaced by one
pixel due to the inclination of the test target. It should include a
minimum of 15 pixels to ensure sufficient oversampling. Hence
the inclination angle of the test target is not arbitrary and has to
be adjusted to the chosen ROI height.

The gray scale values of the ROI are strung column by column
as depicted in Fig. 6 to obtain the oversampled ESF. The ESF is
then normalized by dividing by an averaged value of the bright
part of the profile. Finally, the derivative of this signal is
calculated to obtain the LSF. Due to the oversampling, the error
caused by the numerical approximation of the derivative is
negligible at the relevant low frequencies. A potential brightness
inhomogeneity in the ESF may cause different values of the LSF at
the beginning and the end of the block. In order to avoid an effect
of this discontinuity on the spectrum, a window function is



Fig. 4. Measurement image of the test target illuminated with a laser speckle pattern and a section of the respective triangulated point cloud.

Fig. 5. Image of the slanted stripe pattern as it is used for the determination of the

2D modulation transfer function.

Fig. 6. Order of the pixels in a region of interest to build up the oversampled edge

spread function.
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applied to the LSF. Afterwards the MTF is calculated by applying
the Fast Fourier Transform algorithm (FFT) to the windowed LSF
and then taking the absolute value.

The ROI height is subject to a statistical spread, which is
caused by the rounding to integer pixel coordinates as well as by
variations of the inclination angle due to lens distortion. Thus,
considering ROIs with one specific height would result in a MTF
that is not representative for the investigated image section. To
address this problem the MTF is determined as an average over all
ROIs, which have at least the minimum height and which are
found in the investigated section. Not only dark-to-bright-transi-
tions but also bright-to-dark-transitions, after having rotated
them through 1801, are included in the average. All these partial
MTFs are weighted with the area of the respective ROIs.
2.5. Measurement of the 3D transfer function

The basic concept of a 2D transfer function analysis consists of
determining the response of a system to a signal, which shows a
sufficiently broad spatial frequency spectrum. The system is then
characterized by the ratio of output and input frequency compo-
nents [28]. Typically a pattern with a sharp edge is used (see
Section 2.4) to obtain this broad spectrum. In order to translate
this approach to the analysis of a 3D system, a precision-ground
steel cuboid is used as a test target, which features a straight and
sharp edge and two planar adjacent faces. The surface of the
target is painted matte white to prevent specular reflections and
achieve a homogeneous diffuse reflection. As shown in [15], the
angle between the two adjacent faces has an effect on the
measurement of the 3D transfer function. Thus, only measure-
ments using a test target with the same angle are comparable.
Here an angle of 901 is applied.

The starting point for the 3D TF analysis is the 3D point cloud
delivered by a topometric measurement of the cuboid. To gain an
oversampled profile, at least 100 edge profiles are extracted from
the cloud and are superposed by parallel projection along the
direction of the edge. The edge of the test target is slightly slanted
against the pixel grid of the CCD sensor in order to avoid gaps in
the superposed edge profile. Furthermore, the edge has to be
oriented towards the cameras as shown in Fig. 1.

The obtained two-dimensional oversampled edge profile is
then prepared for a Fourier analysis. It is symmetrically cropped
and its bisecting line is aligned parallel to the ordinate. Further-
more, the profile is periodically continued by appending a version
of it, which is reflected along the x-axis. In this way it is ensured
that the two extrema are the only high-frequency features in the
profile. Fig. 7a shows the result of these operations.

Since the x-coordinates are not equidistant, the profile is
sampled along the x-axis at a rate of at least four times the
Nyquist frequency of the signal. In the absence of an equally
spaced grid, the Nyquist frequency xNyquist is estimated as half the
reciprocal of the mean distance dNN of nearest neighbors in the 3D



Fig. 7. (a) Periodically continued, oversampled edge profile. (b) Resampled edge

profile and the perfectly sharp edge profile, both after the application of the

window function. The insets in both plots show detailed enlargements of the

left peak.

Fig. 8. Mean value (solid lines) and standard deviation (dashed lines) of the 3D

transfer function, each with a B-spline-fit.
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point cloud:

xNyquist ¼
1

2dNN

: ð4Þ

Next, the undistorted input signal has to be determined, which
in our case is represented by the (supposedly perfectly sharp)
edge profile of the cuboid. It is obtained by fitting straight lines to
the slopes of the measured profile.

Finally, both halves of the measured and the input edge profile
are separately multiplied by a Welch window in order to inhibit
continuity errors between the profiles and their periodic con-
tinuations. Both signals are depicted in Fig. 7b.

Except for numerical errors, the signals satisfy the equation

f ðxÞ ¼ �f ðxþT
2Þ, ð5Þ

where T denotes the period length (see Fig. 7). Thus, the even
coefficients in the spectrum are approximately zero. In order to
enable the following division, only the odd coefficients, labeled
with the index o, are taken into account. Moreover, the profiles
are real-valued and odd except for numerical errors. Thus, the real
parts of the spectra are negligible and only the imaginary parts of
the odd coefficients need to be included. The 3D TF H(xo) is then
given by

HðxoÞ ¼
Imo½FFTðqðxÞÞ�

Imo½FFTðpðxÞÞ�
: ð6Þ

where xo denotes the spatial frequency, q the resampled edge
profile and p the perfect edge profile, both after the application of
the window function. The 3D resolution in this case is defined as
the spatial frequency limit where H drops beneath a given value.
3. Experimental results and discussion

3.1. Reproducibility of the measurement of the 3D transfer function

In order to define the frequency limit used for characterizing
the 3D resolution investigations on the reproducibility of the 3D
TF measurement are carried out.

The fringe projection approach described in Section 2.2 is used
for these measurements. In the present case CCD cameras of the
type DMK 41BF02 by Imaging Source GmbH, Bremen, Germany,
with 1280�960 pixels and 12 mm 1:1.4 lenses by Pentax are
employed. The f-number is set to 5.6. For the measurement, a
symmetric convergent setup (Fig. 1) is chosen meaning that the
optical axes are converging and aligned in the same angle to the
camera basis (b¼44 cm). The triangulation angle is j¼361.

Utilizing the method described in Section 2.5, five measure-
ments are performed, after each of which the test target is rotated
slightly. From the five resulting 3D transfer functions, the mean
value and the standard deviation are calculated. Both curves are
smoothed by B-spline-fits. Fig. 8 shows H as a function of the
spatial frequency xo. The upper horizontal axis of the plot shows
the spatial frequency normalized to the Nyquist frequency xNyquist,
which is set to the average of the estimated Nyquist frequencies
(see (4)) of all five measurements. xNyquist amounts to about
1.2 mm�1 and is marked with a vertical dotted line. Since the
spread of H increases with the spatial frequency, the frequency at
which it drops to 0.6 is chosen as an indicator of the 3D
resolution. For most cases this value is found within the range
where H has its steepest slope. At the same time the standard
deviation of H is still smaller than its mean value. In the following,
this parameter will be used to quantify 3D resolution.

3.2. Comparison of 2D and 3D resolutions using low-pass filtered

images for point cloud acquisition

In this section the influence of the camera image resolution on
the 3D resolution of the measured point cloud is investigated. Five
measurements are performed as described in Section 3.1. The
calibration and the experimental setup are maintained except for
a slight rotation of the test target between the measurements in
order to determine the spread of H. First the obtained measure-
ment data are evaluated in their original form and then with
varying low-pass filtered camera images in order to simulate
lower 2D resolutions. The applied low-pass filters are Butterworth
filters of second order with eight different cut-off-frequencies
between 330 and 125 pixel�1 at an image size of 1024�768
pixels. This filter type is chosen because its gain function shows
no ripple.



Fig. 11. Plot of the 3D uncertainty vs. the 2D uncertainty. The numbering (a–i) is

the same as in Figs. 9 and 10.
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The images are captured with monochrome cameras of the
type Sony XCD-X700 with a pixel size of 6.25�6.25 mm and
12 mm 1:1.2 lenses (Cosmicar/Pentax) using an f-number of 5.6.
The exposure time is adjusted to 1/16 s in order to avoid flickering
caused by the color wheel of the projector. The camera basis is
b¼43 cm and the triangulation angle j¼401.

In addition to the 3D TF measurements, the 2D MTFs are
determined from the inner sector of the original images as well as
the eight filtered versions as explained in Section 2.4. This inner
sector is defined as a circle of radius 192 pixels in the image
center and contains the edge of the test target during the 3D
measurement.

Fig. 9 shows the retrieved values of the 2D MTF with respect to
the spatial frequency in the image plane (camera sensor). The 2D
resolution is defined as the frequency where the 2D MTF drops to
0.5. Fig. 10 depicts the confidence belts of the B-spline-smoothed
mean values and standard deviations (error bars) of the 3D TFs for
all nine cases. Fig. 11 shows the plot of the 2D and 3D uncertain-
ties that are determined by calculating the reciprocals of the 2D
and 3D resolutions in Figs. 9 and 10, respectively. For a better
Fig. 9. 2D modulation transfer functions of the inner sector of the unfiltered

image (a) and the images filtered with Butterworth low-pass-filters (b–i). The cut-

off-frequencies of the filters are 330 (b), 251 (c), 208 (d), 180 (e), 160 (f), 144 (g),

132 (h) and 125 pixel�1 (i). The dashed line marks the level where the 2D

resolution is defined.

Fig. 10. Confidence belts of the 3D transfer functions of 3D coordinate measure-

ments using the unfiltered (a) and filtered images (b–i). They are established by

the B-spline-smoothed mean values and standard deviations over five measure-

ments. The cut-off-frequencies of the filters are denoted in Fig. 9. The 3D

resolutions are those frequencies where the curves cross the horizontal dashed

line, which marks the 3D transfer function value 0.6.
comparability, the 2D uncertainties are converted to mm by
dividing them by the reproduction scale of 1024 pixels per
265 mm.

The linear fit in Fig. 11 shows that the experimental data are in
agreement with the expectations of the coordinate mean errors of
the stereo normal case (2), (3), which is an approximation of the
actual setup (see Fig. 1). The calibration error, here given by the
errors of f and b, is assumed to be small and thus neglected.
Furthermore, neglecting the first summand in (3), which is small
for small x1 near the image center, and replacing the image-
related accuracies sx and spx by a general image accuracy si

results in the proportionality:

sX,Y ,Z � si: ð7Þ

The offset of the straight line in Fig. 11 from the origin has its
source in the chosen definition of the 2D and 3D (see Section 2.5)
resolutions.

3.3. Influence of the triangulation angle on the 3D resolution

For the investigated experimental setup the triangulation
angle j is defined as the angle between the optical axes of the
two involved cameras (see Fig. 1). It represents a mean value of
the individual triangulation angles of single 3D points in the
evaluated point cloud as the test target for the determination of
the 3D TF is placed centrally in the camera images. Thus, the
relevant image points are situated near to the principal point.

The used setup and devices are the same as in Section 3.2. The
triangulation angle j is varied in a range from 211 to 711 by
increasing the distance between the cameras from 24 cm to
80 cm without changing the distance between the test target
and the camera lenses. Two series of measurements are presented
here, the first covering triangulation angles from 211 to 291, the
second covering 321 to 711. Within each series the internal
camera parameters (focal lengths, positions of the principal
points, lens distortion parameters) are calibrated once while the
external parameters (position and orientation of the cameras) of
course have to be updated for each angle.

In analogy to the measurement described in Section 3.1, in five
measurements per triangulation angle mean and standard devia-
tion values of the 3D transfer function H are determined. From
this curves the 3D resolutions are extracted and depicted in
Fig. 12. The corresponding triangulation angles are calculated
from the rotation matrices (see (1)), which are determined during
the calibration progress.



Fig. 12. 3D resolution normalized to the Nyquist frequency with respect to the

triangulation angle. Two series of measurements are displayed, the first denoted

by triangles and the second by circles. Within each series only the calibration of

the position and the orientation of the cameras are renewed per angle while the

other parameters are retained. The filled symbols mark those angles (251 and 321)

where a complete calibration of all parameters is performed.

Fig. 13. Confidence belts of the 3D transfer functions of 3D coordinate measure-

ments using digital image correlation of projected speckle patterns. The subset

sizes are 15 (a), 21 (b), 27 (c), 33 (d) and 39 pixels (e).

Fig. 14. 3D resolution with respect to the subset size.
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The 3D resolution shows a fundamental dependency on the
point density of the cloud, since fewer points can reproduce less
details of the regarded surface. The point density depends on the
angle between the optical axis and the surface at a constant
camera-to-subject distance and is maximal for a perpendicular
view. Therefore, smaller triangulation angles result in higher
point densities. To account for this influence, the 3D resolutions
are normalized to the respective Nyquist frequencies.

As Fig. 12 illustrates, the 3D resolution increases with the
triangulation angle, and the increase is especially pronounced in
the range up to 321. A consideration of the probability density
function of a reconstructed 3D point [17] gives a description of
the triangulation error, which affects the 3D resolution, and
qualitatively predicts this behavior. The angles at which the
complete calibration is performed (filled symbols in Fig. 12) show
a significantly higher 3D resolution than the others. This can be an
indication that the calibration is more accurate when the com-
plete set of parameters is calibrated together. This is plausible
since the calibration technique includes an optimization over all
parameters [18], which is skipped if only the camera position and
orientation parameters are updated.

3.4. Influence of the subset size in digital correlation of speckle

patterns on the 3D resolution

The speckle pattern projecting topometric system (Fig. 3) differs
from the fringe projection system mainly by the way in which
corresponding (homologous) image points are detected in the stereo
image pairs. A crucial parameter here is the size of the image
subsets, which are used during the correlation process. So the
influence of this parameter is investigated as an example with the
presented approach. The setup involves the same (monochrome)
CCD cameras and lenses (f/5.6) as in Section 3.1. It is symmetrically
convergent with a triangulation angle of 351 and a camera basis of
37 cm. The speckle size is adjusted to about 5 pixels. A detailed
description of the determination of the speckle size is presented in
[24] and is based on the autocorrelation function of the speckle
pattern [29]. The image subsets used in the DIC algorithm are
squares with edge lengths of 15, 21, 27, 33 and 39 pixels.

The obtained (smoothed) 3D TFs and standard deviations are
depicted in Fig. 13. Fig. 14 shows the extracted 3D resolutions. The
3D resolution as well as its uncertainty decrease with increasing
subset sizes. Thus, larger subsets have a smoothing effect on the
point cloud. On one hand this reduces noise, on the other hand,
high-frequency features of the object are suppressed and accord-
ingly the 3D resolution. A further measurement using a subset size
of only 9 pixels could not be evaluated due to the noise.

The Nyquist frequency gives an indication whether the point
density of the cloud is sufficient to exploit the 3D resolution of the
system. Here, every fifth pixel in each direction of the main
camera’s image is evaluated to obtain a 3D point because the DIC
algorithm is very time consuming. The resulting Nyquist fre-
quency just matches the 3D resolution for a subset size of 39
pixels as Fig. 13 shows. For smaller subset sizes even lower point
densities would be sufficient.
4. Conclusions

A novel approach to determine the resolution of topometric 3D
measurement systems by a 3D transfer function has been applied
to characterize and compare the accuracy of two such systems
based on fringe and laser speckle projection. Both systems use the
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same photogrammetric methods for calculating 3D coordinates
from image pairs while utilizing different techniques to identify
homologous points through evaluation of projected patterns. As a
consequence, the measurement setups appear to be good candi-
dates for a direct comparison. The 3D resolution calculated with
the proposed approach then has been evaluated in relation to the
2D resolution of the processed camera images. Furthermore, the
dependencies of the 3D resolution on the triangulation angle and
on the size of the correlation window have been investigated.

The 3D resolution turns out to be a reliable overall quality
criterion of a 3D point cloud that is influenced by several effects:
it comprises lateral and axial measurement errors affected by the
uncertainty of the setup’s calibration parameters as well as the
uncertainty of the identification of homologous image points.
The latter is influenced for instance by the 2D image resolution.
In Section 3.2 it has been illustrated that the 3D uncertainty
increases with the 2D uncertainty almost linearly. The results of
Section 3.3 demonstrate that larger triangulation angles yield
higher 3D resolutions with a pronounced increase for angles up to
321. When comparing typical measuring setups of the two
topometric systems, the fringe projection technique (Section 3.3,
triangulation angle: 36.61) shows a 3D resolution which is about
3.5 times the 3D resolution of the speckle pattern projecting
system (Section 3.4, subset size: 21 pixels). As it is shown in
Section 3.4, larger subset sizes of the DIC algorithm result in lower
3D resolutions.

The definition of the 3D resolution established in Section 3.1
appears to be a reasonable criterion when taking into considera-
tion the uncertainty of the 3D TF. Other experiments not
described here suggest that the 3D resolution, which is achievable
in praxis, is underestimated by the definition chosen here. Never-
theless, it has been demonstrated that the method of 3D TF
determination is suitable for a simple comparison of the 3D
resolution of two different 3D sensors. In general it is applicable
to all measuring systems that produce a point cloud as it is
capable of measuring 3D resolutions in a wide range. The used
test target is easy to manufacture and therefore cheap.
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