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Increasing the structural variety of discrete nondiffracting wave fields
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We investigate discrete nondiffracting beams (DNBs) being the foundation of periodic and quasiperiodic
intensity distributions. Besides the number of interfering plane waves, the phase relation among these waves is
decisive to form a particular intensity lattice. In this manner, we systematize different classes of DNBs and present
similarities as well as differences. As one prominent instance, we introduce the class of sixfold nondiffracting
beams, offering four entirely different transverse intensity distributions: in detail, the hexagonal, kagome, and
honeycomb pattern, as well as a hexagonal vortex beam. We further extend our considerations to quasiperiodic
structures and show the changeover to Bessel beams. In addition, we introduce a highly flexible implementation
of the experimental analog of DNBs, namely discrete pseudo-nondiffracting beams, and present locally resolved
intensity and phase measurements, which underline the nondiffracting character of the generated wave fields.
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I. INTRODUCTION

In recent years, so-called nondiffracting wave fields have
become an important and well-researched topic in the fields of
optical trapping [1,2] and optical induction of photonic lattices
in photosensitive media [3–6], as well as optical atom traps
for Bose-Einstein condensates [7,8]. The distinctive feature
of nondiffracting wave fields is a transversely modulated
intensity distribution combined with a translation-invariant
intensity in the direction of propagation [9], which makes
an optical generation of largely expanded two-dimensional
structures in variable structural sizes highly feasible. In
this context, a significant benefit is the self-healing effect,
in which a disturbance occurring at a localized area of
the nondiffracting wave field is corrected with continuous
propagation [10]. Starting in the year 1987 with the prediction
and experimental implementation of the Bessel beam [11–13],
in the following years the focus was put on the examination
of nondiffracting beams characterized by a field distribution
in curvilinear symmetries. It was already known that there
are four different families of nondiffracting beams, and an
extensive investigation was carried out for Bessel beams [14]
and Mathieu beams [15,16], as well as Weber beams [17,18].
However, only small efforts were put into characterizing
the beam family that is described in Cartesian coordinates,
namely discrete nondiffracting beams (DNBs). In contrast to
radially decreasing intensities for the three beam families
with curvilinear symmetries, discrete nondiffracting beams
reveal radially independent intensities, which is an enormous
advantage for the induction of largely expanded photonic
lattices.

Probably, the most popular wave field with nondiffracting
properties is the interference of two monochromatic plane
waves propagating under a given angle, which defines the
period of the transverse one-dimensional (1D) intensity modu-
lation. This paper puts forward the derivation and classification
of more elaborate waves belonging to the family of discrete
nondiffracting beams and discusses the connection to Bessel
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beams. Furthermore, to confirm the successful implementation
of experimental translation-invariant light fields, we exemplar-
ily present measurement results of intensity and phase analyses
of selected examples, which are in good agreement with the
calculated simulations.

II. SOLUTIONS OF THE HELMHOLTZ EQUATION

In general, nondiffracting beams are scalar solutions �(r)
of the time-invariant Helmholtz equation,

(∇2 + k2)�(r) = 0, (1)

with r = (x,y,z) and k representing the norm of the wave vec-
tor k. These solutions can be found by separating the equation
into a transverse and a longitudinal differential equation. In
the following, we place the Cartesian coordinate system in a
manner that z describes the direction of propagation, whereas
x and y are the transverse coordinates. Then the time-invariant
solution of the longitudinal equation for monochromatic light
of the wavelength λ is proportional to exp(ikzz), in which kz

describes the longitudinal component of the wave vector k with
|k| = (k2

x + k2
y + k2

z )1/2 = 2π/λ. Finding special solutions for
the transverse differential equation, which explicitly consist
of partial waves exhibiting a fixed transverse component
kt = (k2

x + k2
y)1/2, the whole set of nondiffracting wave fields

is specified. Due to the fixed longitudinal solution independent
from the transverse one, as well as the monochromatic charac-
ter of the relevant wave fields, kt is determined automatically.

Such solutions can be derived in four different two-
dimensional (2D) coordinate systems, namely Cartesian
coordinates and polar coordinates, as well as elliptic coordi-
nates and parabolic coordinates, respectively [19,20]. Thereby,
the effect of nondiffracting propagation arises from the fixed
phase relation between all interfering partial waves. Hence,
in Fourier space, the k vectors of the partial waves lie on
the surface of a cone with a defined opening angle θ , which
depends on the transverse component kt , since

kt = |k| sin(θ/2). (2)
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Given that kt determines the structural size of the grating in
real space, a generalized lattice period g can be introduced for
the intensity distribution of the wave fields of all nondiffracting
beam families by g = π/kt .

The DNB family is deeply connected with a periodic and
a quasiperiodic transverse intensity distribution, respectively
[9]. Thereby, the associated order of rotational symmetry is
determined by the amount of interfering plane waves bearing a
nondiffracting beam. Thus the superposition of n plane waves
leads to a transverse intensity distribution with a rotational
symmetry of at least n. In the following, we solely concentrate
on those special cases at which the delta distributions of
intensity in the far field (which are the Fourier transformations
of the n interfering plane waves in real space) form vertices of
equilateral n-fold polygons. To increase the structural manifold
of DNBs with equal rotational symmetry, we introduce an
additional parameter m by varying the phase relation between
adjacent beam forming plane waves in Fourier space. Hence
the resulting time-dependent complex field distribution �n,m

in Cartesian coordinates is specified by

�n,m(r,t)

= �0

n∑
j=1

exp

{
i

(
kx,j x + ky,j y + kzz + j

�m

n
− ωt

)}
,

(3)

with

�m = m 2π (4)

indicating the total initial phase shift between all participating
plane waves. Hence, by impressing an absolute phase j �m/n

onto the j th plane wave in Fourier space, a fixed phase
difference �m/n between adjacent discrete wave components
appears. Indeed, the phase parameter m generally describes
qualitatively different wave fields compared to the usual case
m = 0. Thereby, to describe all possible wave fields for a fixed
n, it is sufficient to contemplate m in the interval

0 � m � n

2
, m ∈ R, (5)

by reason of the following considerations. Due to the 2π

periodicity of the phase, all structures with m beyond the
interval (5) can also be described by a value that is an element
of that interval. Negative m values describe structures with a
counterrotating phase distribution compared to the −m case,
though the associated intensity distributions are equal. Thus,
for a phase difference between adjacent plane waves greater
than π , for instance �m/n = π + ε, the phase difference can
be wrapped back into the interval [−π,π ] by subtracting 2π ,
which is �m/n − 2π = (π + ε) − 2π = −(π − ε). Hence
the resulting intensity distribution |�|2 is equal to the structure
of �m/n = π − ε.

III. PERIODIC TRANSVERSE INTENSITY MODULATION

Initially, we concentrate on DNBs with a periodic transverse
intensity modulation, implementable by superimposing 2, 3,
4, or 6 plane waves.

FIG. 1. (Color online) Discrete nondiffracting beam �3,m. Left
column: illustration of the wave field in Fourier space; closed circles
represent plane waves and color maps the relative phase. Middle
column: numerical calculation of the transverse intensity distribution.
Marked intensity maximum visualizes the traveling of the pattern
with varying m. Right column: numerical calculation of the transverse
phase distribution. (a)–(c) m = 0, (d)–(f) m = 0.5, and (g)–(i) m = 1.

A. Three interfering plane waves

For the simple and well-known cases of n = 2,3, no
additional structures besides the 1D modulated intensity and
the hexagon structure arise by varying m following Eq. (5).
That is, increasing m from 0 to the double of the maximal
value of Eq. (5), m = 2 n/2 = 3 for n = 3, the invariant
intensity pattern travels transversely in one direction, until the
initial distribution is reached again due to its periodicity. This
behavior, which is well known from the 1D lattice representing
the fundament of every interferometry measurement, can also
be seen in Fig. 1 for n = 3 and m = 0 (upper row), m = 0.5
(middle row), and m = 1 (lower row).

The first column in Fig. 1 illustrates the Fourier plane of the
lattice beams with its spatial frequencies. As the frequencies
of the contributory beam parts are 2D delta functions, they are
depicted as circles in the according as well as in the following
diagrams. The color of a circle represents the individual phase.
Considering the intensity distribution, the marked lattice sites
in Figs. 1(b)–1(h) illustrate the translation of the intensity
pattern with varying m, whereupon its direction depends on
the particular phase distribution of the plane waves. That is,
the general context of a linear phase shift in Fourier space due
to a variation of m causing a translation of the pattern in real
space can be comprehended here. In contrast to the intensity
modulation, the phase pattern of a threefold nondiffracting
wave field changes dramatically for a varying m, as becomes
definite by comparing Fig. 1(c) with Fig. 1(f), as well as
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FIG. 2. (Color online) Discrete nondiffracting beam �4,m. Left
column: illustration of the wave field in Fourier space; closed
circles represent plane waves and color maps the relative phase.
Middle column: numerical calculation of the transverse intensity
distribution. Right column: numerical calculation of the transverse
phase distribution. (a)–(c) m = 0, (d)–(f) m = 1, and (g)–(i) m = 2.
Magnifications in the lower right corner of every simulation depict
the area around the transverse beam center. Dashed rhombs mark a
unit cell.

Fig. 1(f) with Fig. 1(i). However, also here, translated similar
patterns can be found for different values of m, as a comparison
between Figs. 1(c) and 1(i) proves.

B. Four interfering plane waves

As the example of n = 3 indicates, an infinite amount
of structures can be described by varying m continuously.
Nevertheless, in the following, we limit our discussions to the
interesting cases of integer values of m. Thus n-fold wave fields
bearing vortices of integer topological charge in the transverse
center of the beam and occupying distinctive intensity patterns
can be regarded. We go on with the description of the trans-
versely fourfold wave field �4m. In doing so, we first consider
the cases m = 0 and m = 2, whose intensity modulation can
be identified as the well-known square or diamond pattern. The
corresponding intensity and phase distributions are depicted in
Figs. 2(b) and 2(h). Such a wave field has been occasionally
implemented as a lattice beam to optically induce photonic
square or diamond lattices [21,22]. Comparing the m = 0 with
the m = 2 pattern, again a translation of the structure occurs.
Also the phase patterns [cf. Figs. 2(c) and 2(i)] only differ by
a translation.

However, the intensity distribution for n = 4,m = 1, which
can be found in Fig. 2(e), is structurally completely dif-
ferent from the former described fourfold case of m = 0,

bearing a square pattern, although it is fourfold as well.
Here, the intensity modulation, which resembles a 45◦ tilted
checkerboard, can be characterized as alternating lines of
intensity maxima and minima, whereas the intensity of
each line is modulated, additionally. A unit cell of such a
structure consists of two intensity maxima and two minima
[23,24]. Paying attention to Fig. 2(f), the associated phase
distribution bears a completely different structure compared
to the m = 0 wave field. Thus the m = 1 pattern consists
of vortices with a topological charge of ±1, arranged in
the typical square alignment. Noteworthy is that sites where
vortices are placed correspond to sites of minimum value
in the intensity illustration of the wave field. In contrast to
that, intensity maxima coincide with areas of homogeneous
phase.

C. Six interfering plane waves

Considering Eq. (5), four completely different sixfold struc-
tures can be distinguished by interfering six plane waves and
varying the value m between integer numbers of 0 and 3. These
structures have in common that their unit cells have sixfold
symmetry, in contrast to structures that are characterized by
noninteger values of m. Figure 3 shows the Fourier space
spectrum (left column), as well as the transverse intensity
modulation in the middle column containing a magnification
of the unit cell of the real space pattern. Further, the phase
distribution of each of the four sixfold beam intensities is
depicted in the right column.

For m = 0, connected to plane waves with equal phase
[cf. Fig. 3(a)], the well-known hexagonal structure occurs,
which is pictured in Fig. 3(b). An intensity maximum can be
found in the center of the beam, which generally coincides
with the rotational center of every nondiffracting beam. The
corresponding phase distribution consists of areas of equal
phase, bordered by circles of π phase shifts as depicted in
Fig. 3(c).

Increasing the phase parameter to m = 1, the field distribu-
tion arises as a composition of nondiffracting vortices arranged
in a sixfold manner [25]. Therefore, the corresponding inten-
sity and phase distributions are shown in Figures 3(d)–3(f).
In the latter picture, phase singularities with a clockwise
increasing phase and hexagonally arranged are prominent.
Again, areas of singularities are closely connected with local
minima in the intensity picture, each enclosed by honeycomb-
like intensity shapes [cf. Fig. 3(e)]. This nondiffracting beam
is an interesting case for applications regarding the transfer of
angular momentum to particles [26,27].

Besides hexagonal and honeycomb sixfold structures, there
exists a third manner to tessellate a 2D area periodically,
namely the kagome pattern. Such a structure can be found by
determining m = 2; thus the complete phase shift between all
six beam forming plane waves is �2 = 4π . Figures 3(g)–3(i)
represent the intensity distribution in Fourier space and in real
space, as well as the phase distribution in real space. Vortices
of topological charge 1 and 2, visible in the phase pattern
of Fig. 3(i), raise intensity minima, which are origins of the
typical transverse kagome intensity distribution, consisting of
hexagonal and hourglass shapes. Moreover, it is valid, and
can be confirmed by Figs. 3(h) and 3(i), that the area of
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FIG. 3. (Color online) Discrete nondiffracting beam �6,m. Left
column: illustration of the wave field in Fourier space; closed
circles represent plane waves and color maps the relative phase.
Middle column: numerical calculation of the transverse intensity
distribution. Right column: numerical calculation of the transverse
phase distribution. (a)–(c) m = 0, (d)–(f) m = 1, (g)–(i) m = 2, and
(j)–(l) m = 3. Magnifications in the lower right corner of every
simulation depict the area around the transverse beam center. Dashed
hexagons mark a unit cell.

low intensity increases with the rising topological charge of
a vortex. In general, such lattice beams are predestined to
be applied for an optical induction of the exciting kagome
pattern in photosensitive media [28], offering new possibilities
of linear and nonlinear beam propagation arising from distinct
band structures [29].

The fourth alternative to implement a sixfold nondiffracting
beam is defining m = 3, which puts forth a honeycomb
lattice beam, whose corresponding distributions are depicted
in Figs. 3(j)–3(l). The transverse intensity pattern of Fig. 3(k)
is characterized by graphene-like arranged and triangularly
shaped intensity spots. These spots converge with the center
of triangles of homogeneous phase in the phase depiction of
Fig. 3(l). Again, singularities appear in the phase distribution,
in this case at the corners of the triangles containing six
π -phase jumps, which affect a region of minimum amplitude
noticeable in the intensity distribution. At the edges of every
phase triangle appears a π -phase jump as well, which in
turn drops the amplitude of the nondiffracting wave field.

This nondiffracting wave field can be used as a lattice beam
inducing a pattern that reveals stable dipole-mode gap soliton
propagation [30].

IV. QUASIPERIODIC TRANSVERSE INTENSITY
MODULATION

So far, we exclusively concentrated on nondiffracting
beams that show a periodic transverse intensity modulation.
It is well known that solely two-, three-, four-, and six-
fold patterns reveal a periodic tessellation of a 2D plane,
though structures exhibiting a rotational symmetry of 2π/n

with n = 5,7,8, . . . are characterized as quasiperiodic. Hence
Eq. (3) bears solutions with a quasiperiodic phase and
intensity distribution for n = 5,7,8, . . .. Again, there is a
continuous transition between different intensity patterns for
an increasing m, analogous to periodic DNBs. However, field
distributions with integer values of m show a rotational center
of the structure coinciding with the center of the beam as
well. Exemplarily, we describe two wave fields possessing
a quasiperiodic transverse intensity modulation: in detail,
n = 5 offering the famous Penrose pattern [5] and n = 10
determining a decagonal transverse intensity pattern [31].

In Figs. 4(a)–4(c), the intensity distributions for n = 5 and
m = 0,1,2 are depicted. Remarkably, the different Penrose
patterns for varying integer values of m are nearly similar,
only rearrangements of fivefold building blocks constitute the
differences to each other. Again, an intensity maximum is
placed in the center of the beam for m = 0 [cf. Fig. 4(a)]. In
contrast to that, intensity minima can be found in the center
of the beam for m �= 0, whose area increases with the rising
value of |m|, which again can be linked to the occurrence of a
vortex with topological charge m in Fourier space.

This behavior becomes more significant for wave fields
of higher n, such as decagonal intensity distributions with
n = 10, for instance, as depicted in Figs. 5(a)–5(f). In Fig. 5(a),
the center of the beam is similar to the center of a Bessel beam
of zeroth order, containing an intensity maximum surrounded
by rings of less intensity compared to the center maximum.
Both wave fields carry no topological charge, in contrast to
the beam given by m = 1 [cf. Fig. 5(b)], resembling a Bessel
beam of first order. While m is increasing, the area of similarity
to the Bessel beam constricts [cf. Fig. 5(c)] and an additional
azimuthal modulation of the center surrounding rings becomes
prominent [cf. Figs. 5(d) and 5(e)]. Finally, the beam ends up
in a wave field whose center is identical to one of a modulated
Bessel beam of fifth order [32–34], as illustrated in Fig. 5(f).

FIG. 4. (Color online) Simulated intensity modulations of �5,m

beams for (a) m = 0, (b) m = 1, and (c) m = 2.
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FIG. 5. (Color online) Simulated intensity modulations of a �10,m

beam for (a) m = 0, (b) m = 1, (c) m = 2, (d) m = 3, (e) m = 4, and
(f) m = 5.

As occasionally mentioned earlier, all discussed wave fields
have in common that the center of the m = 0 beam exhibits an
intensity maximum, in contrast to higher values of m revealing
an intensity minimum. The area of the implied minimum
becomes larger with increasing m within the bounds of Eq. (5),
associated with a local singularity of various topological
charge, that can be identified in the phase depiction. A similar
behavior can be found in terms of a nondiffracting Bessel
beam of the order m. Comparing either, there exists an area
of similarity in the center of each beam, as observed for the
�10,m-wave fields. This area becomes increasingly larger with
ascending n. However, with a fixed value of n, an azimuthal
intensity modulation progressively supplants the Bessel beam
area around the center of the DNB field with rising m, and the
transformation of the central area ends up in a field similar to a
modulated Bessel beam of the order n for the maximum value

FIG. 6. (Color online) Intensity simulations for �42,m DNBs (first
row) and (modulated) Bessel beams of different order (second row).
(a) DNB of n = 42,m = 0; (b) m = 4; (c) m = 21; (d) Bessel beam
of zeroth order; (e) Bessel beam of fourth order; (f) modulated Bessel
beam of 21st order.

of m in terms of Eq. (5). In Fig. 6, the intensity distributions of
a DNB with n = 42 and varying m as well as of a (modulated)
Bessel beam of order m are depicted. It was already shown
that DNBs can be implemented by interfering nondiffracting
Bessel beams [35], which indicates that nondiffracting beam
families are transformable among each other. The described
behavior of DNBs implies that also Bessel beams can be
developed in the frame of DNBs.

V. EXPERIMENTAL IMPLEMENTATION

In general, nondiffracting beams are infinitely expanded in
the direction of propagation, carrying infinite energy, which is
not achievable in experiments. Further natural confinements
are finite apertures of optical elements. Nonetheless, the
experimentally implemented analog to nondiffracting beams
called pseudo-nondiffracting can be understood as Helmholtz-
Gaussian wave fields [36,37], both transversely or longitudi-
nally constrained to a finite volume. Within an area around
the transverse beam center, whose diameter certainly depends
on the used optical components, Helmholtz-Gaussian wave
fields approximately conform to DNBs. In the following,
the experimentally implemented wave fields are denoted as
discrete pseudo-nondiffracting beams (DPNBs).

Oftentimes, the utilization of a spatial light modulator
is suggested to holographically generate arbitrary pseudo-
nondiffracting wave fields [38], which convinces by its simple
beam alignment. To integrate this technique into a DPNB
implementing setup as illustrated in Fig. 7, we expand a
frequency-doubled Nd:YAG (yttrium aluminum garnet) laser
beam (λ = 532 nm) to a transversely broad plane wave and
send it to the reflective surface of the SLM. The reflected beam
experiences a phase retardation according to a phase pattern
of the desired nondiffracting beam given to the SLM. In detail,
the phase information is calculated directly by determining
the argument of the complex-valued field distribution �n,m

per ϕ = arctan{Im(�n,m)/Re(�n,m)}. A system of mirrors and

FIG. 7. (Color online) Schematic of the experimental setup.
B: light blocker; Cam: camera; FF: Fourier filter; L: lens; M: mirror;
MO: microscope objective; P: polarizer; (P)BS: (polarizing) beam
splitter; PH: pin hole; S: shutter; SLM: phase-only spatial light
modulator. The magnification shows the interference zone of a DPNB,
illustrated as a transversely cosine modulated intensity. In here, the
dashed line marks the longitudinal center.
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FIG. 8. (Color online) Experimental pictures of transverse intensity (upper row) and phase distribution (lower row) of sixfold beams
�6,m. Insets show the according simulation. (a),(b) Intensity and phase of the hexagon lattice with m = 0; (c),(d) vortex lattice with m = 1;
(e),(f) kagome lattice with m = 2; (g),(h) honeycomb lattice with m = 3.

telescopes images the SLM to a particular plane in real space,
which is the longitudinal center of the implemented DPNB
(cf. magnified inset in Fig. 7). Due to the (quasi)periodicity of
the light modulating phase pattern, several diffraction orders
are prominent in Fourier space. Therefore, it is necessary to
additionally modulate the amplitude of the wave field, which
can easily be done in the Fourier plane (indicated as FF
in Fig. 7) by blocking all diffraction orders except the first
one. Thus a particular intensity filter assures the appropriate
propagation of the first diffraction order.

For the analysis of the intensity distributions of the
generated wave fields, we employ a camera imaging
the intensity in real space. In order to additionally measure
the phase of the implemented wave field, we superimpose
a reference plane wave and the DPNB. The reference beam

holds a fixed phase and an orthogonal polarization compared
to the investigated beam, whereby the superposition bears a
wave field of arbitrarily elliptical polarization. Consequently,
a Stokes parameter measurement to detect the polarization
state of a light field extracts the phase connection between
the lattice beam and the reference beam, as described in [39].
Hence we are able to depict the locally resolved transverse
phase information of an experimentally developed DPNB.

To exemplify the implementation of an arbitrary DPNB, we
first concentrate on the analysis of the four different sixfold
DPNBs with integer values of m by depicting transverse
intensity and phase distributions in Fig. 8. The generated
beams have a lattice period of g = 24 μm, where the image
plane of the camera is identical to the longitudinal center
plane of each generated beam. Paying attention to the upper

FIG. 9. (Color online) Experimental inspection of the nondiffracting character of a sixfold vortex DPNB �6,2. (a) Measured transverse
intensity pattern; lines indicate location of planes shown in (b) and (c). Experimentally determined intensity in (b) x-z plane and (c) y-z
plane including the rotational center of the beam. Simulations of the intensity development in either plane are illustrated in the boxes beside
experimental z-propagation pictures.
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row of Fig. 8, it is remarkable to find a huge similarity
between the measured and the above introduced simulated
intensities, which are accordingly depicted in the lower right
quarter of the experimental picture. Thus every characteristic
intensity distribution of each implemented sixfold DPNB
is definitely identifiable. Besides the intensity distributions,
also the measured phase distributions match excellently the
simulated patterns, as can be seen in the lower row of
Fig. 8, which indicates the experimental implementation of
a particular DPNB in one plane.

Additionally, we verify the nondiffracting property of the
generated wave field. To facilitate such a measurement, we
mount the real space camera as well as an imaging lens onto
a translation stage, operating in the direction of the field prop-
agation, denoted as z. The translation stage has an operation
range of 10 cm at a resolution of 100 nm. In this manner, we
are able to display the longitudinal intensity development of
the implemented DPNB in one x-z and y-z plane, respectively.
That is, we stack particular rows or columns of pictured inten-
sities for several propagation distances to retrieve the desired
information. In Fig. 9, the transverse intensity distribution as
well as the intensity development in z direction of a DPNB with
n = 6,m = 1 is depicted. Again, the transverse lattice period
of the beam is fixed to g = 24 μm. By reason of the qual-
itatively matching intensity modulations, a huge conformity
between simulation and measurement is prominent, especially
around the transverse and longitudinal center of the intensity
distribution, declared as 0 μm for transverse dimensions x and
y as well as 0 mm for z. The pictures in Figs. 9(b) and 9(c)
indicate a longitudinal length of the developed nondiffracting
beam of at least 5 cm at a lattice period of g = 24 μm. In our
measurements, the mean full width at half maximum (FWHM)
of one intensity maximum in the vicinity of the transverse beam
center and in a z range of −25 mm to 25 mm is dFWHM,x =
(14.40 ± 0.02) μm for the x-z plane and dFWHM,y =
(14.36 ± 0.02) μm for the y-z plane, respectively. In contrast,
a Gaussian beam, whose minimum beam waist ω0 is compa-
rable to dFWHM/2, experiences a broadening of the beam waist
at z = ±25 mm to a diameter of w(z = ±25 mm) ≈590 μm.

The corresponding Rayleigh range of the Gaussian beam is
zR ≈ 0.58 mm; thus the detected longitudinal nondiffracting
range of the investigated light field is approximately 80 times
larger than zR . Our investigation confirms the nondiffracting
character of the implemented wave fields as the longitudinal
range, in which the intensity stays constant, is several orders of
magnitude larger than the Rayleigh range of a Gaussian beam
with comparable beam waist.

VI. CONCLUSION

In summary, we have characterized and systematized
the family of discrete nondiffracting beams by describ-
ing the field distribution with two parameters n and m,
whereupon n determines the number of plane waves form-
ing a nondiffracting wave field per superposition and m

establishes a constant phase step between each plane wave.
The variation of both parameters causes a huge structural
diversity of transverse intensity modulations, where the
occurrence of the essentially different intensity as well as
phase patterns of the four introduced sixfold DNBs has
to be pointed out. Besides these periodic lattice beams,
wave fields holding quasiperiodic intensity modulations also
belong to the discussed beam family. In this context, we
pointed out that a nondiffracting wave field with n → ∞
converges to the field distribution of a Bessel beam of
particular order. Our experimental results demonstrate the
similarities between theoretical DNBs and experimentally
implemented DPNBs in terms of the spatial expansion of
the latter field, whereby we could confirm exemplarily
the generation of any desired wave field by transversely
resolved images of the intensity, as well as the phase
distribution. Additionally, we could indicate that a sixfold
vortex DPNB with a lattice period of tens of micrometers
reveals a nondiffracting character over a finite length that
is approximately 80 times larger than the Rayleigh range
of a comparable Gaussian beam. This behavior is repre-
sentative for the whole family of discrete nondiffracting
beams.
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