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Abstract: Using numerical analysis we demonstrate the existence of
vortex solitons at the edge and in the corners of two-dimensional trian-
gular photonic lattice. We develop a concise picture of their behavior in
both single-propagating and counterpropagating beam geometries. In the
single-beam geometry, we observe stable surface vortex solitons for long
propagation distances only in the form of discrete six-lobe solutions at
the edge of the photonic lattice. Other observed solutions, in the form of
ring vortex and discrete solitons with two or three lobes, oscillate during
propagation in a way indicating the exchange of power between neighbor-
ing lobes. For higher beam powers we observe dynamical instabilities of
surface vortex solitons and study orbital angular momentum transfer of such
vortex states. In the two-beam counterpropagating geometry, all kinds of
vortex solutions are stable for propagation distances of the order of typical
experimental crystal lengths.
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1. Introduction

Self-trapped nonlinear surface states (surface solitons) propagating along the interface of two
different media have attracted recently a great deal of interest in different optical systems
[1, 2]. Nonlinear discrete surface waves in one-dimensional (1D) waveguide lattices have been
predicted to exist theoretically [3–5] and were demonstrated experimentally [6, 7]. Two-
dimensional (2D) lattice interfaces also support surface solitons [8]. Experimental observa-
tion of 2D solitons was reported at the boundaries of a finite optically induced photonic lattice
[9, 10], at the interface between the square and hexagonal waveguide arrays [11], and also at
the interface between a homogeneous lattice and a superlattice [12].

Special attention has also been devoted to the nonlinear surface vortex solitons. Such solitons
are supported at the interface of two different optical lattices imprinted in Kerr-type focusing
nonlinear media [13] and are demonstrated experimentally at the surface of an optically in-
duced 2D photonic lattice [14]. In principle, surface solitons should be distinguished from the
other surface waves propagating at the interface of different media, such as the surface plasmon
polaritons. These surface waves are linear in their nature and require widely different media at
the interface, e.g. a metal and a dielectric.

In this paper we report on the existence and properties of vortex solitons at the edge and
in the corners of two-dimensional photonic lattices. We consider the very general case of the
counterpropagating (CP) beams [15, 16], and compare them with the single-propagating beam
geometry. However, we present only the single-propagating beam results, as they provide for
more varied dynamical behavior. Recent experimental results [14] predict the existence of
stable vortex solitons at the edge of 2D square photonic lattice in the form of four-site vortex
solitons, in the single-propagating beam geometry. We extend the analysis to vortex beams in
the triangular lattice, including edge and corner geometries, and focus more attention to the
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study of extensively oscillating surface vortex solitons, as well as on the dynamical instabilities
of such solitons.

We describe novel types of discrete vortex solitons and the ring surface vortex solitons, lo-
calized in the lattice corners or at its edges. Discrete vortex surface solitons are observed in
the form of two, three, or six lobe solutions. We demonstrate that in the single-beam geometry,
the lattice surface produces a strong stabilizing effect only on the discrete vortex solitons in
the form of the six-lobe solutions, enabling them to stably propagate for long distances. Other
kinds of discrete solitons are unstable during propagation; oscillations and irregular dynamics
are observed while increasing the beam power or the propagation constant. But in the CP ge-
ometry, it is possible to find stable CP vector solutions of different kinds for the propagation
distances of the order of typical experimental crystal lengths. We also study the orbital angular
momentum transfer of the vortex surface states [17, 18].

The paper is structured as follows. Section 2 introduces the model and the basic equations.
It also presents the methods of eigenstate determination and numerical integration. Section 3
discusses different vortex surface states. Instabilities of such states are investigated in Sec. 4
and Sec. 5 offers conclusions.

2. Model and basic equations

The behavior of CP vortex beams propagating in photonic lattices is described by the wave
equation in the paraxial approximation for the beam propagation in a photorefractive crystal.
The model equations in the computational domain are given by [15, 16]:

i∂zF +ΔF +Γ
I+ Ig

1+ I+ Ig
F = 0, (1)

− i∂zB+ΔB+Γ
I+ Ig

1+ I+ Ig
B = 0, (2)

where z is the propagation distance, F and B are the envelopes of the counterpropagating beams,
Δ is the transverse Laplacian, Γ is the dimensionless beam coupling constant, and I = |F |2+ |B|2
is the total laser light intensity measured in units of the background intensity Id . Typically, in
photorefractive media laser beams interact incoherently, through the change in the index of
refraction, caused by the light intensity. Here, Ig is the intensity distribution of the optically
induced truncated photonic lattice. In this paper, we concentrate on the triangular lattice.

It is well known that in the homogeneous bulk photorefractive media the vortices are un-
stable; they tend to break up into filaments that rotate and fly away from each other [16]. The
presence of a lattice changes this behavior somewhat [19], in that there appears the tendency of
localization of the beam filaments at the lattice cites; however, the instability remains [20, 21].
It is our aim to investigate what happens to the vortices launched at the edges and corners of a
lattice.

First, we want to establish the existence of CP vortex solitonic solutions. Owing to their sym-
metry, the above equations suggest the existence of a fundamental 2D vector soliton solution,
in the form F = u(x,y)cosθeiμz, B = u(x,y)sinθe−iμz, where μ is the propagation constant, and
θ is an arbitrary projection angle, which controls the relative size of beam components. For the
simple CP geometry, we take θ = π/4; for the single-beam geometry, we take θ = 0. After
the substitution of the presumed solitonic solution in Eqs. (1) and (2), they transform into one,
degenerate equation:

−μu+Δu+Γu
|u|2 + Ig

1+ |u|2 + Ig
= 0. (3)
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Equation (3) presents an eigenvalue problem in the transverse (x,y) plane. In solving this
problem, i.e., in finding the solitonic solutions with the corresponding propagation constants,
we utilize the modified Petviashvili’s iteration method [22, 23]. We determine different classes
of vortex surface solitons, by launching vortex beams whose rings are covering one or more
lattice sites near the boundaries of the photonic lattice. The topological charge of the input
vortex beam is chosen to be 1. In this paper we analyze four different classes of surface vortex
solitons: the ring vortex, and discrete solitons consisting of six, three, and two lobes.

Next, to investigate the stability of such solutions in the single beam geometry, we use the
vortex surface solitons as input beams in Eq. (1) and solve the equation numerically. For in-
vestigating the stability of such solutions in the CP geometry, we use the CP model given by
Eqs. (1) and (2). The numerical procedure is based on the fast-Fourier-transform split-step nu-
merical algorithm [15].

Fig. 1. Narrow surface ring vortex solitons. Input vortex beams are shown at the edge (a)
and in the corner (b) of the lattice, with the layout of the lattice beams indicated by open
circles. (c) Power diagram for the existence of narrow surface vortex solitons. Insets depict
the corresponding intensity distributions for the corner and the edge vortex solitons. The
lines in the insets depict the lattice outlines. Parameters: Γ = 11, the maximum lattice
intensity I0 = 1.

3. Vortex surface states

The lattice induces confinement of the filaments approximately at the location of the incident
vortex ring and the surrounding lattice sites; so initially we choose the input ring vortex beam
to cover the corresponding single lattice site only. For investigating such narrow ring vortex
surface states, the incident vortex beams covering only one lattice site are used at the edge
(Fig. 1(a)) and in the corner (Fig. 1(b)) of the triangular photonic lattice. Both corner and
edge vortex solitons are found in almost the same range of the propagation constant μ , but the
existence domain of corner solitons is a bit broader than that of the edge solitons. The corre-
sponding power diagrams are presented in Fig. 1(c), with the characteristic outcomes shown
as insets. The beam power for vortex solitons is given by the formula P =

∫ ∞
−∞

∫ ∞
−∞ |u|2dxdy.

An essentially new finding is that the surface vortex solitons can exist for narrow input beam
vortices. However, such surface states with symmetric uniform ring profiles exist only at the
edge of the lattice and for lower values of the propagation constant. Asymmetric nonuniform
surface vortex states are commonly observed in both corner and edge geometries. Both kinds
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of narrow ring vortex surface solitons are unstable during propagation in the single-beam ge-
ometry, similar to the experimental results [14]. In the CP geometry, the narrow ring solutions
may propagate stably, but only for short propagation distances.

Fig. 2. Six-lobe discrete surface vortex solitons. Top row: The edge surface modes. Bottom
row: The corner surface modes. The layout of the lattice beams is only shown in the first
column. (a), (e) The input vortex beams. Different kinds of edge (b), (c), and corner vortex
solitons (f), (g), are shown with the corresponding power diagrams (d), (h). The phase
distributions are presented as insets. The parameters are as in Fig. 1.

Next, we investigate the discrete surface vortex solitons, in the form of multi-lobe solutions.
Figure 2 presents the six-lobe discrete vortex solutions at the edge and in the corner of the
optically induced triangular lattice. The input vortex beams are presented in the first column at
the edge (a) and in the corner (e) of the lattice. For easier comparison, the layout of the lattice
beams is again depicted by open circles. For both corner and edge states, the asymmetry of the
vortex soliton with higher power is more pronounced than that of the vortex with lower power.
The corresponding power diagrams are presented for both the corner and the edge states; they
exist in the same range of the propagation constant.

Investigating the stability of such vortex solitons, for the single-beam geometry, we find that
only the six-lobe edge solutions with small asymmetry are stable during propagation, and can
exist for long propagation distances. Such solutions are observed for lower propagation con-
stants, as well as for lower beam powers (the region marked red on the power line in Fig. 2(d)).
In the CP geometry, the stability of all six-lobe solutions is observed for short propagation
distances (∼ 20 mm).

Finally, we investigate the discrete surface vortex solitons when the input vortex beam is
launched in-between the three neighboring lattice sites (Fig. 3(a), 3(e)). Commonly, then the
three-lobe soliton solutions are observed. Figure 3 summarizes the results for the three-lobe sur-
face vortex solitons. Again, the asymmetry of the vortex soliton with higher power is stronger
than that of the vortex with lower power. Both the corner and the edge solutions are not stable
during propagation in the single-beam geometry. The low-power states exhibit regular oscilla-
tions, but solutions with the higher power display irregular oscillations. For high beam powers,
even chaotic instabilities are observed. In the CP geometry, the stability of all three-lobe solu-
tions is observed only for short propagation distances, such as the typical experimental crystal
lengths. Similar results in both the single and the CP beam geometry hold for the surface modes
in the form of two-lobe vortex solitons (not shown).

(C) 2011 OSA 19 December 2011 / Vol. 19,  No. 27 / OPTICS EXPRESS  26236



Fig. 3. Three-lobe discrete surface vortex solitons. The figure layout is as in Fig. 2. The
parameters are as in Fig. 1.

4. Soliton instabilities

In the end, we display the instabilities of vortex surface solitons, and investigate their orbital
angular momentum [17, 18]. The standard definition for the (normalized) z component of the
orbital AM is adopted, Lz(F) =− i

2
∫ ∫

dxdyF∗(x,y)(x∂y −y∂x)F(x,y)+cc. In Fig. 4(a), a typ-
ical example of the ring surface vortex solution in the single-beam geometry is presented as a
movie of the intensity distribution along the propagation distance. The ring shape of the vortex
beam is broken very fast, and irregular dynamics take place along propagation. This is also
confirmed by monitoring the angular momentum of such a vortex beam (Fig. 4(b)).

The most illustrative cases of discrete surface vortex solitons in the single-beam geometry
are shown in Fig. 5 as 3D movies along the propagation distance. Figure 5(a) shows typical
behavior of an asymmetric six-lobe surface state during propagation. At the beginning each
lobe oscillates, slightly changing its peak intensity with the periodic oscillations of the angular
momentum. During propagation, the neighboring lobes exchange more power, irregular oscil-
lations take place, and the transfer of angular momentum among the lobes of the vortex, as well
as from the vortex to the photonic lattice, is more pronounced (Fig. 5(d)).

Fig. 4. Dynamical behavior of surface ring vortex solitons. Movies of the intensity dis-
tribution are shown along the propagation direction: (a) (Media 1). The inset depicts the
corresponding solitonic solutions. (b) The normalized z component of the angular momen-
tum.

In the case of three-lobe discrete vortex solitons, we present the behavior of symmetric edge
mode solutions during propagation (Fig. 5(b)). This solution shows regular oscillations, but
the oscillations of each lobe around its initial position are more pronounced than the exchange
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of power between the neighboring lobes. This is also visible when monitoring the angular
momentum transfer (Fig. 5(e)). The simplest state is the discrete solution with only two lobes
(Fig. 5(c)). During propagation the lobes exchange power, but with a substantial transfer of the
angular momentum as well (Fig. 5(f)).

Fig. 5. Oscillating behavior of the edge surface vortex solitons. Top row: The edge vortex
solitons. Movies of the intensity distributions are shown along the propagation direction: (a)
(Media 2), (b) (Media 3), (c) (Media 4). Insets depict the corresponding solitonic solutions.
Bottom row: The normalized z component of the angular momentum for the corresponding
vortex solitons.

By further investigating the propagation of vortex solitons in the CP beam geometry, we
observe stable solutions only for short propagation distances, corresponding to the typical ex-
perimental crystal lengths. Such a stable propagation is found for the solutions in the form of
ring vortices, as well as discrete vortices with two, three, and six lobes. But, when the propaga-
tion of CP vortex solutions is followed for longer propagation distances, we observe irregular
behavior for all kinds of the vortex solutions in the CP beam geometry (not shown).

5. Conclusion

We have studied surface vortex solitons in truncated 2D photorefractive photonic lattices and
revealed the existence of novel types of discrete vortex surface solitons, localized in the lattice
corners or at the edges. We have developed a concise picture of different scenarios of the vortex
solutions behavior, and investigated their stability in the single-beam propagating and the CP
beam geometry. In the single-beam geometry, beside the stable six-lobe discrete surface modes
propagating for long distances, we have observed various oscillatory vortex surface solitons, as
well as dynamical instabilities of different kinds of solutions. Dynamical instabilities occur for
higher values of the propagation constant, or at higher beam powers. We also have investigated
orbital angular momentum transfer of such solutions during propagation. In the CP geometry
it is possible to find stable CP vector solutions for propagation distances corresponding to the
typical experimental crystal lengths.
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