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We reveal a direct link between two fundamental wave phenomena in periodic media, Pendellösung

oscillations and resonant coupling between spectral bands. We experimentally measure the power transfer

between laser beams associated with the high-symmetry points in periodic and biased hexagonal photonic

lattices. As a result, we demonstrate that Pendellösung oscillations dominate the dynamics of resonant

interband transitions on a short propagation scale.
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Coherent transport of waves in periodic media manifests
itself in resonant phenomena such as Bragg scattering of
x rays, electrons, and neutrons [1] in crystals, matter waves
[2], and visible light [3] in optical lattices. Resonant cou-
pling between two [1,2,4,5] or several [6] forward and
Bragg-reflected waves leads to dynamic diffraction and
Pendellösung effect [1,2,4,5] with the wave energy oscil-
lating between high-symmetry momentum states. In con-
trast, the resonant coupling between spectral bands can be
induced by an external force, and it leads to Landau-Zener
interband tunneling (LZT) [7,8]. These two fundamental
phenomena have never been linked before, even though
they are observed in essentially similar settings, as cou-
pling between localized momentum states [8].

Periodic photonic structures, such as coupled waveguides
[3,9,10] and optical lattices [10,11], allow direct visualiza-
tion of many fundamental linear and nonlinear phenomena
inherent to wave packets and quantum particles of different
nature [12], such as electrons in crystals and matter waves in
optical lattices [13]. Examples include Bloch oscillations
[14], LZT [7,8], as well as nonlinear [10,11,15], disorder-
driven [16], and dynamic [17] localization. While the later
use narrow [11,15] or partially incoherent [18] beams with
wide spatial spectra, broad beams with localized spatial
spectra are usually required to selectively access specific
Bragg resonances. For instance, one-dimensional (1D)
Pendellösung oscillations between forward and Bragg-
reflected waves have been demonstrated with quasiplane
waves in holographic volume gratings [4] and in microwave
photonic crystals [5]. Nevertheless, resonant effects, such
as Bloch oscillations [14] and LZT [7,8] can be observed
with relatively narrow (and thus experimentally accessible)
beams covering only several lattice sites.

In this Letter, we reveal a deep relation between two
fundamental wave phenomena, Pendellösung oscillations
and interband transitions, in experimental studies of

resonant coupling between high-symmetry momentum
states of two-dimensional (2D) photonic lattices. In pure
periodic lattices these critical points form few-level oscil-
latory systems, with periodic Pendellösung transfer of
population between levels due to interference of two or
many Bloch waves; this process is similar to Rabi oscil-
lations and energy beating in coupled waveguides. In the
regime of LZT in lattices of a finite length, the observed
energy transport between high-symmetry points can be
explained by Pendellösung and Bloch oscillations, without
significant tunneling between spectral bands.
We begin with the resonant model of interband coupling

in hexagonal photonic lattices governed by the Landau-
Zener-Majorana (LZM) system [6,19]. As an example,
we consider a two-level LZM model of two resonantly
coupled plane waves (high-symmetry momentum states)
with complex amplitudes c1;2:

dc1;2=dz ¼ �ib1;2zc1;2 þ i�c2;1: (1)

Here, z is the propagation length in the crystal, the coef-
ficients b1;2 are proportional to the linear gradient of the

refractive index, and the coupling coefficient � is defined
by the resonant Fourier component of the lattice potential
[20]. Equation (1) describes the asymptotic transfer of
populations jc2;1j2 between levels due to interband tunnel-

ing, induced by the refractive index gradient. However,
at short propagation distances z � 0, close to the Bragg
resonance, the gradient terms b1;2zc1;2 are small and can be

neglected, thus effectively reducing Eq. (1) to

dc1;2=dz ¼ i�c2;1: (2)

This generic oscillatory system can be also obtained
from the LZM model (1) with zero index gradient,
b1;2 ¼ 0, and thus it describes Pendellösung oscillations

along the propagation length [5] of a perfectly periodic
crystal. The oscillation frequency � is determined by the
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lattice depth [4]. Therefore, with initial population at one
level, c1ð0Þ ¼ 1 and c2ð0Þ ¼ 0, the harmonic solution to
Eq. (2) can be used to derive�, and thus the lattice depth, as
a function of the power ratio at two high-symmetry points
after propagation of distance z, �z ¼ tan�1jc2j=jc1j. In
fact, a similar method is used routinely with x-ray and
neutron [1] scattering to determine the structure and atomic
scattering amplitude of crystals. Interestingly, the same
Eq. (2) also describes two evanescently coupled waveguides
[9], and it is analogous to Rabi oscillations of an externally
driven two-level atom [21]. The analogy with Rabi oscilla-
tions [6] is based on the similarity between atomic levels
and high-symmetry points, with coupling strength � pro-
portional to the lattice amplitude, similar to the Rabi fre-
quency � defined by the strength of the driving field [21].

The arguments above suggest that Pendellösung
oscillations should dominate any interband coupling at
small propagation distances. Therefore, the first important
step in our experimental demonstration is to use pure
Pendellösung oscillations in lattices without index gradient
to verify the applicability of the theoretical model and
measure the lattice depth. In experiments, we realize pho-
tonic LZM systems in an optically induced hexagonal
lattice produced by interfering three ordinarily polarized
beams from a frequency-doubled Nd:YVO4 laser at a
wavelength of 532 nm in a 23 mm long photorefractive
strontium barium niobate crystal. An external dc electric
field, Eext, applied to the crystal, is used to control the
lattice depth. We use stretched hexagonal lattices, see
Fig. 1(a), to restore the symmetry of intersite coupling
broken by anisotropic modulation of the refractive index
in the photorefractive crystal [22]. The period in horizontal
x direction is d ¼ 22 �m and the stretching factor is � ¼
2:4. Two CCD cameras are used to analyze the output
beam in real as well as in Fourier space (far field). The
lattice Brillouin zone (BZ) and the band-gap spectrum are
shown in Figs. 1(b) and 1(c).

The two-level resonance can be excited on the border of
the irreducible BZ, and we choose the Y-symmetry point of
the lattice where the gap between the first two Bloch bands
is the smallest, as seen in the plot of the propagation
constant � in Fig. 1(c). The 1D Pendellösung oscillations
between the critical points Y and Y’ in Fig. 1(b) are excited
by sending a Gaussian beam with FWHM of 160 �m
in the direction of the Y point and recording the far-field
intensity profiles, Figs. 1(e)–1(g). The input at the Y point
is Bragg reflected and the output contains a second peak
at the Y’ point. The Bragg-reflected beam remains well
localized in Fourier space with its width replicating input
beam. We estimate the relative powers P1;2 by numerical

integration, and compare them with the plane-wave
intensities jc1;2j2 given by Eq. (2). The ratio of the two

powers changes with the externally applied field, Eext ¼
0–1 kV=cm, because the latter determines the lattice depth

and thus the oscillation frequency,�L ¼ tan�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2=P1

p

, as
depicted in Fig. 1(d). The resonant theory [6] predicts

Pendellösung oscillations between the two high-symmetry
points due to the interference and beating of two Bloch
waves. Therefore, the oscillation frequency can also be
estimated as � � ��=2. Indeed, the latter values of
��L=2 [calculated, dashed line in Fig. 1(d)] are close to
the experimental data and to the results of full numerical
simulations. The Bloch-wave spectrum of the input
Gaussian has dominating contributions from the first and
second bands (not shown) for the entire range of lattice
depths, which further supports the validity of the resonant
two-level approximation.
The two-level system (2) offers interesting opportunities

to explore phase-only manipulation of Pendellösung oscil-
lations in photonics. Figure 2 presents experimental results
on two-beam excitation of the two-level system, with the
relative phase � between input beams at Y-symmetry
points, providing full control over output population ratio.
This input realizes the following initial conditions for the

LZM system (2): c1ð0Þ ¼ 1=
ffiffiffi

2
p

and c2ð0Þ ¼ expði�Þ= ffiffiffi

2
p

;
the solution reads jc1;2ðzÞj2 ¼ ð1� sin� sin2�zÞ=2. For a
given lattice depth � and crystal length z ¼ L, the output

FIG. 1 (color online). (a) Experimental intensity distribution
of the stretched hexagonal lattice. (b) First BZ with the high-
symmetry points. (c) Band-gap diagram calculated for a lattice-
wave amplitude I0 ¼ 1:1 and an external field Eext ¼ 1 kV=cm.
The numbers next to the curves show band index.
(d) Experimentally measured Rabi frequency � of oscillations
between Y and Y’ points (shown as dimensionless parameter
�L) versus external field Eext (dots with error bars). Solid line:
numerical simulations; dashed line: normalized gap ��L=2
between first two bands at Y point as indicated in (c). (e)–
(g) Experimentally recorded far-field output intensity for
Eext ¼ 0:2, 0.6, and 1 kV=cm, respectively.
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is fully defined by the input phase �. The Bloch-band
population in Fig. 2(d) strongly depends on the phase
difference � and shows coupling between the two lowest
Bloch bands. The experimental measurements in Fig. 2(e)
show a remarkable agreement with simple harmonic solu-
tions to Eq. (2), namely, the two cases correspond to differ-
ent frequencies �, and thus different amplitudes of power
ratios at � ¼ �=2, as defined by the LZM solution:
maxðjc1ðLÞj=jc2ðLÞjÞ ¼ ð1þ sin2�LÞ= cos2�L.

More importantly, 2D lattices provide access to multi-
level systems, in addition to the 1D Bragg reflection de-
scribed above. In the configuration in Fig. 3(a), the field
amplitudes at M points in momentum space are described
by three-level LZM model [20]. By varying the relative
phase � between two input beams at M and M’ points, we
are able to distribute and switch the output power between
two or three beams, in excellent agreement with resonant
theory. Despite the anisotropy of the stretched hexagonal
lattice, the experimental outputs in Figs. 3(c)–3(f) clearly
show the strong localization at high-symmetry points.
Indeed, the measured relative power of the output peaks
is in excellent agreement with numerical simulations in
Fig. 3(h), and it recovers the corresponding solutions to
the Rabi system derived in [20].

In contrast to the Rabi oscillations between waveguide
modes [23] or spectral bands [24] in longitudinally
modulated waveguides, so far we observed oscillations

of populations between high-symmetry points in momen-
tum space, while the Bloch-band populations in Figs. 2(d)
and 3(g) are given by the initial excitation. To induce
tunneling between different Bloch bands, one needs to
break the periodicity of the lattice by additional longitudi-
nal modulation [23,24] or a linear refractive index gradient
[7,8]. The latter case corresponds to LZ tunneling and has
been previously studied in square lattices [8]. However, no
relation between Pendellösung oscillations and the tunnel-
ing process has been revealed. The reduction from Eq. (1)
to Eq. (2) suggests that, for small propagation distances,
the Pendellösung oscillations will dominate the dynamics,
while the tunneling process determines the asymptotic
power transport.
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FIG. 2 (color online). Two-level Pendellösung oscillations.
(a) The two-level system of Fig. 1, but excited with a pair of
beams with equal power and phase difference �. (b),(c)
Examples of experimental far-field output intensity distributions
for (b) � ¼ 0 and (c) � ¼ �=2. (d) Corresponding Bloch-band
populations, calculated for I0 ¼ 1:1 and Eext ¼ 1 kV=cm.
(e) The measured (relative) powers of output beams (symbols
and error bars) and the corresponding numerical simulations
(solid lines) for external bias Eext ¼ 0:4 kV=cm (inner curves)
and Eext ¼ 1 kV=cm (outer curves). The symbols next to the
curves indicate corresponding beam in BZ.
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FIG. 3 (color online). Switching of power between different
outputs by input phase-only manipulation. (a) Three-level
Pendellösung oscillations realized by coupling of threeM points.
The experimental input in (b) consists of two beams atM andM’
points with equal power and phase difference �. Corresponding
LZMsolution is derived in [20], and it allows one to obtain a single
beam at the output, as in (c) with � ¼ 0, or any pair of output
beams in (d)–(f) with � ¼ �=3 in (d), � in (e), and 5�=3 in (f).
The Bloch-band populations in (g) (calculated for I0 ¼ 1:1 and
Eext ¼ 1 kV=cm) show the coupling between first three bands, as
expected from resonant theory. (h) Measured relative powers of
the output beams (symbols and error bars) and the corresponding
numerical simulations (solid lines). Eext ¼ 1 kV=cm.
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In order to study experimentally the tunneling dynamics
of optical beams in lattices with index gradient, the crystal
is illuminated from the top with a transversely modulated
incoherent white light which induces a refractive index
gradient along the transverse x direction. Since it is not
possible to directly observe the evolution of the signal
beam inside the crystal, we vary the incident angle and
image the output real space and the Fourier space onto a
CCD camera [8]. For a fixed crystal length and angles
below the Bragg resonance, such an excitation at different
transverse wave vector components is equivalent to differ-
ent starting points in the BZ and thus allows one to infer
details of the tunneling dynamics at different stages of the
beam evolution. Our results for symmetric LZ tunneling in
Fig. 4 confirm theoretical predictions and demonstrate the
interplay of both effects at the initial stage of evolution.
Since the medium length L is relatively short, it is not
possible to reach the asymptotic transfer of population
between bands, yet we observe significant transfer of
power between resonantly coupled wave packets in
Fourier space, shown in Fig. 4(e). The localization of these
waves in momentum space corresponds to high-symmetry
points in the frame moving in the BZ due to gradient-
induced Bloch oscillations, cf. Figs. 4(a) and 4(b). The

actual interband coupling is demonstrated in numerical
simulations in Fig. 4(f), where the first and third Bloch
bands undergo periodic exchange of energy with small and
gradual tunneling of power to the second band. Therefore,
such regime can be characterized as quasi-Pendellösung
oscillations.
In conclusion, we have studied Pendellösung oscilla-

tions and interband Landau-Zener transitions in experi-
ments on resonant coupling between high-symmetry
points of 2D photonic lattices. The comparison of both
effects shows that, in biased lattices of a finite length, the
Landau-Zener tunneling is dominated by Pendellösung
oscillations allowing for spatial spectral shaping of the
waves. Our findings provide an important insight into
resonant wave transport in periodic media, and they can
be applied to electromagnetic and matter waves.
This work was supported by the Australian Research

Council and the German Academic Exchange Service.
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FIG. 4 (color online). Observation of Landau-Zener tunneling.
(a),(b) Fourier space and (c),(d) real space output intensity
distributions for input inclination angles of the signal beam:
� ¼ 0:14� in (a),(c) and � ¼ 0:26� in (b),(d). (e) Measured
output power ratios (markers) and the corresponding numerical
simulations (solid lines). The error bars show finite beam widths
in the reciprocal space; the arrow in the BZ inset indicates
the direction of the linear index gradient � ¼ rIgrad. (f) The

dynamics of band populations (in the Bloch-wave basis of the
periodic lattice with � ¼ 0) during the tunneling in the crystal
with band indices next to the curves. Calculations are for
I0 ¼ 0:9 and Eext ¼ 1:35 kV=cm, with the gradient illumination
Igrad of width b ¼ 200 �m and amplitude B ¼ 2 [20].
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