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Nondiffracting kagome lattice
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We introduce a generalized approach to generate an elementary nondiffracting beam, whose
transverse intensity is distributed corresponding to a two-dimensional kagome structure.
Furthermore, we present an effective experimental implementation via a computer controlled phase
controlling spatial light modulator in combination with a specific Fourier filter system. Intensity and
phase analysis of the kagome lattice beam accounts for an experimental wave field implementation.
Altogether, the examined wave field may be a fundament for the fabrication of large
two-dimensional photonic crystals or photonic lattices in kagome symmetry using miscellaneous
holographic matter structuring techniques. © 2011 American Institute of Physics.

[doi:10.1063/1.3554759]

The kagome structure is a very famous and prevalent
lattice form in nature. Although this kind of structure is well-
known in human cultures for centuries, not until the recent
years various examples eminently in condensed-matter phys-
ics became a subject of numerous theoretical and experimen-
tal considerations. In this research area, the kagome lattice
occupies a special standingl’2 as kagome structured atomic
and molecular lattices exhibit intriguing behaviors such as
magnetic spin frustration® or the spin Hall effect.* Since a
complete band gaps’7 and flat band structures with applicable
propagation characteristics® were predicted for a two-
dimensional photonic kagome crystal, the nondiffracting
kagome lattice beam (KLB) plays an important role in the
field of generating photonic crystals as well. In the range of
optically induced photonic lattices, localized structures, such
as vortices and solitons, were predetermined in discrete and
continuous kagome lattices.” Having the powerful tool of a
KLB in hand, matter structuring to generate a photonic
kagome lattice is imaginable in many different ways. Con-
ceivable applications are in the regime of optical induction of
photonic lattices in photorefractive crystals,lo*12 optical
tweezing in connection with particle assembly on microme-
ter scale,'* as well as holographic lithography15 or apply-
ing a KLB as an optical atom trap for Bose—Einstein
condensates,” just to mention a few.

In this letter, we introduce a so far unexploited funda-
mental nondiffracting beam with a transverse intensity
modulation according to the kagome lattice and show simu-
lations of the ideal nondiffracting KLB and results of inten-
sity and phase distributions of the corresponding experimen-
tally implemented wave field. In general, nondiffracting
beams, primarily studied by Durnin et al.,'® are characterized
by an arbitrarily modulated intensity distribution transverse
to the direction of propagation, while the intensity remains
constant in the longitudinal direction. As an additional fea-
ture, all nondiffracting beams exhibit the intriguing effect of
self—healing.17 Mathematically, the static field distribution of
nondiffracting beams is a solution of the time invariant
Helmholtz equation, which is separable into a transverse and
a longitudinal par’t.18 Hence, a set of solutions consists of the
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product of two independent wave functions: a two-
dimensional wave function, accounting for a transverse in-
tensity modulation, and a one-dimensional wave function,
depicting the longitudinal field distribution connected to a
constant intensity. In literature, four different two-
dimensional coordinate systems were termed previously, in
which solutions of the transverse Helmholtz equation exist. !
Thus, fundamental nondiffracting beams are classified by
four miscellaneous beam families, namely, discrete nondif-
fracting beams in the Cartesian coordinates, Bessel beams in
circular cylindrical coordinates, Mathieu beams in elliptic
cylindrical coordinates, and Weber beams in parabolic cylin-
drical coordinates.'”?" All these beams share one character-
istic: in the case of a fixed wavelength A, the wave vectors k
of the contributing partial light waves are distributed on the
surface of a cone with an opening angle 6. This angle deter-
mines the transverse part of each wave vector by k;
=27 sin @/\, where |k|>=k;+k{ with k, denoting the longi-
tudinal component of the wave vector k. In addition, the
projection of the wave vectors into the k,-k, plane implies
the spatial frequencies in the Fourier plane, lying on a ring of
radius k[=(k§+k§)”2. Figure 1 illustrates schematically a

k [——

)

FIG. 1. (Color online) Schematic illustration of the Fourier space spectrum
of a sixfold nondiffracting beam. Beam component’s direction of propaga-
tion lies on the surface of a cone with an opening angle 6. Projection into the
ky-ky plane illustrates intensity peaks arranged on a ring with radius k.
Inserted one-dimensional modulated intensities correspond to equally col-
ored arrows [cf. Eq. (1)].
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FIG. 2. (Color online) Simulation of intensity and phase distribution of a
kagome lattice. (a) Intensity distribution: details show the building blocks of
a kagome lattice (upper: hexagon; lower: hour glass). (b) Phase distribution:
magnified detail depicts three vortices with total topological charge of zero;
dashed rectangle in the right picture implies building block.

cone in Fourier space, whose surface includes the k-vectors
of six plane waves. In the Fourier plane, one can find six
intensity peaks, pictured by the solid circles in the k,-k,
plane.

In this connection, transverse periodic or quasiperiodic
intensity distributions are allocated to the family of discrete
nondiffracting beams. The three-dimensional static complex
field distribution ¥ of the kagome beam, revealing periodic
modulated transverse intensity, takes the form of a summa-
tion of three one-dimensionally modulated nondiffracting co-
sine beams (cf. intensity distributions in Fig. 1, right) in de-
tail

\I’(x,y,z) = \Ifo . {COS(kt[x COS(7T/6) +y Sin(77/6)])e2i77/3
+ cos(k[x cos(m/6) — y sin(7/6)])e >3
+ cos(ky)}e™r. (1)

In this equation, W, establishes the amplitude, which is equal
for all plane waves and spatially constant.

Corresponding to Eq. (1), Fig. 2 illustrates the simulated
intensity [cf. Fig. 2(a)] and phase distribution [cf. Fig. 2(b)],
I(x,y)=|¥(x,y,2)]> and ¢(x,y,z)=arg[¥(x,y,z)]. As can be
seen in Fig. 2(a), the intensity distribution features the typi-
cal kagome structure as a combination of two distinctive
shapes building up the kagome lattice: a hexagon consisting
of six intensity maxima at the vertices of the shape as well as
an hourglass structure composed of five intensity maxima.
The appropriate phase distribution of the kagome lattice rep-
resents a periodic tessellation of similar building blocks in-
cluding three vortices of topological charge: —1, +2, and
—1. Figure 2(b) depicts the KLB phase distribution and one
single building block. Consequently, the whole beam carries
no angular momentum as the charge summation of the build-
ing block equals zero.

We emphasize that the KLLB is a fundamental discrete
nondiffracting beam, which, as well as the famous hexagonal
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and honeycomb nondiffracting lattice beams,” has a sixfold
symmetry. However, in contrast to the accordant lattices of
those beams, the photonic kagome lattice reveals a com-
pletely different band structure,” intimately connected with
differing band gaps, and nonlinear light propagation re-
sponse. Theoretically, ideal nondiffracting beams are infi-
nitely expanded, carrying infinite energy. Consequently, they
are not feasible in experiment. Rather, experimental nondif-
fracting beams, also termed as pseudonondiffracting beams
(PNBs), are restricted to finite apertures of the used optical
elements and beam diameters. According to that, there exists
a finite volume of interference of all contributory field com-
ponents forming the PNB, whose volume depends on the
structural size and beam apertures. Although the longitudinal
expansion of a PNB is finite, it is several times larger than
the diffraction length of a wave field with comparable struc-
tural size of the modulated amplitude.17 As one accounts for
the finite aperture and volume to simulate nondiffracting
beams, the wave fields are handled as Helmholtz—Gauss
beams, which are paraxial solutions of the Helmholtz
equation.'9 Nevertheless, we solely concentrate on the simu-
lation of ideal nondiffracting beams, receiving the phase in-
formation of adequate size for the experimental realization of
nondiffracting wave fields with maximum volume, limited
only by our optical setup. The procedure is as follows.

An established and highly flexible method to implement
complex nondiffracting beams is the utilization of a spatial
light modulator (SLM).23 In order to generate a KLB, we use
a setup consisting of a frequency-doubled Nd:YAG (YAG
denotes yttrium aluminum garnet) laser at a wavelength of
532 nm and a high resolution phase SLM, which is 15.36
% 8.64 mm? in size. The SLM is served by a computer gen-
erated phase picture based on Eq. (1). In combination with
an appropriate Fourier filter system that solely transmits the
first diffraction order of the SLM, this setup can be used to
implement any discrete nondiffracting wave field. To inves-
tigate the generated field distribution, we employ a camera
for transverse intensity examination, on one hand. On the
other hand, we analyze the phase distribution of the gener-
ated KLB via superimposing the lattice beam with a plane
wave reference beam, which is polarized perpendicularly to
the lattice beam. In this connection, a set of polarizer and
quarter-wave plate allows for the measurement of the Stokes
parameters, which, in turn, reveals the beam’s phase
distribution.”

Figures 3(a) and 3(b) depict both the transverse intensity
and the phase distribution of an experimentally implemented
KLB with #=0.6°, which reveals a structural size in the
regime of tens of micrometers. An excellent agreement of
experimental and simulated intensity and phase distributions,
respectively, can be observed by comparing Figs. 2 and 3.
Thus, all the intensity vertices forming the distinctive
kagome lattice can be found clearly in Fig. 3(a). Besides, the
fascinating vortex structure is resolved in Fig. 3(b), in which
the single and double charged vortices can be identified evi-
dently. As a result, the experimental pictures prove the de-
sired generation of the transverse KLB field distribution.

In the second part of our experimental investigation, we
ensure the nondiffracting property of the beam. By mounting
the camera onto a translation unit with a total shift distance
of 10 cm, we are able to explore the intensity development of
the nondiffracting beam in the direction of propagation.
Therefore, we reconstruct the intensity distributions of the
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FIG. 3. (Color online) Analysis of the KLB with §#~0.6°. (a) Transverse
intensity distribution: lines mark positions of the planes shown in (c) and
(d). (b) Phase distribution: vortex positions marked by circle arrows, num-
bers indicate topological charge. [(c) and (d)] Longitudinal intensity distri-
bution of the x-z and y-z intersection plane, respectively. Lines in (c) and (d)
indicate the longitudinal beam center [cf. (a)].

generated beam in the x-z or y-z plane by stacking appropri-
ate columns or rows of experimental intensity pictures, re-
spectively, belonging to different propagation positions. Fig-
ures 3(c) and 3(d) show the resulting intensity distributions
of the observed kagome lattice, verifying a nondiffracting
beam propagation length of at least 4 cm. To survey our
experimental observations, we note that we have the ability
to generate a highly extended nondiffracting beam with
kagome lattice symmetry. Consequently, this beam can be
utilized to structure matter two-dimensionally on a longitu-
dinal scale, which is approximately three orders larger than
the transverse modulation.

In conclusion, we have developed a fundamental discrete
nondiffracting beam that reveals a kagome lattice structured
transverse intensity distribution and features all advanta-
geous properties of a nondiffracting beam such as a transla-
tion invariant intensity distribution and the self-healing ef-
fect. We have generated and analyzed a KLLB experimentally
and found that a transverse structure size of some tens of
micrometers yields a longitudinal distance of translation in-
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variant intensity of about 4 cm. Due to the very good agree-
ment between computational simulations and experimental
observations of the transverse intensity and phase distribu-
tions, we are convinced that the demonstrated KLB is highly
applicable for photonic applications. All observed properties
make this nondiffracting beam a perfect tool for matter struc-
turing in order to create largely expanded photonic kagome
lattices.
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