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Abstract Physics of counterpropagating optical beams and
spatial optical solitons is reviewed, including the formation of
stationary states and spatiotemporal instabilities. First, several
models describing the evolution and interactions between op-
tical beams and spatial solitons are discussed, that propagate
in opposite directions in nonlinear media. It is shown that co-
herent collisions between counterpropagating beams give rise
to an interesting focusing mechanism resulting from the inter-
ference between the beams, and that interactions between
such beams are insensitive to the relative phase between
them. Second, recent experimental observations of the coun-
terpropagation effects and instabilities in waveguides and bulk
geometries, as well as in one- and two-dimensional photonic
lattices are discussed. A variety of different generalizations of
this concept are summarized, including the counterpropagat-
ing beams of complex structures, such as multipole beams
and optical vortices, as well as the beams in different media,
such as photorefractive materials and liquid crystals.
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Counterpropagating optical beams and solitons

Milan S. Petrovié¢ 2", Milivoj R. Beli¢', Cornelia Denz®, and Yuri S. Kivshar*

1. Introduction

One of the simplest processes in nonlinear (NL) optics lead-
ing to a variety of complex physics phenomena is the mutual
interaction of two counterpropagating (CP) optical beams
in a medium, capable of nonlinearly changing the refractive
index of the medium. The underlying geometry is concep-
tually very simple (see Fig. 1): two beams enter a finite
medium from the opposite sides and, when they overlap
by their evanescent fields, the beams start interacting via
the mutual change of the optical refractive index. A con-
figuration of two waves interacting in a NL material is one
of the most frequent ones in laser physics and wave mix-
ing experiments. Numerous concepts in NL optics, such
as phase conjugation, Bragg reflection by volume gratings,
wave-mixing in photorefractive crystals, etc., are based on
this simple geometry. Nevertheless, this simple geometry
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Figure 1 General schematic of two counterpropagating waves
interacting in a finite-length nonlinear medium.

can give rise to an extremely complicated and sometimes
counterintuitive dynamical behavior, including both mutual
beam self-trapping and the formation of stationary states, as
well as complex spatiotemporal (ST) instabilities [1]. It is
for these reasons that CP beam configurations have achieved
a paradigmatic role in NL physics of optical systems.

Instabilities and chaos are typically expected to appear
in NL optical systems that feature coupling as well as feed-
back as necessary ingredients. Therefore, CP waves were
first studied in more complex systems than the configura-
tion described above, foremost in NL optical resonators. CP
beams in Fabry-Perot resonators have been studied by Ikeda
et al. [2,3]. They demonstrated that a ring resonator with
Kerr nonlinearity undergoes a series of bifurcations, as the
incident power is increased, leading to chaos and “optical
turbulence”. Similar ST instabilities were observed later in
simpler configurations with only a single mirror, known as
the single feedback systems, especially in the ones exhibit-
ing saturable nonlinearities, such as atomic vapors [4-7],
liquid crystals [8], and photorefractive (PR) media [9]. For
example, instabilities in the polarizations of CP beams were
observed in atomic sodium vapor [4, 5], when for higher
intensities the polarization first varies periodically and then
the system dynamics becomes chaotic (see also [10]). Sil-
berberg and Bar Joseph [1] were the first to demonstrate
that even without an external feedback, instabilities and
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chaos can be observed in the simplest geometry shown in
Fig. 1. In their configuration, the origin of instability was the
combined action of gain due to four-wave mixing and dis-
tributed feedback due to scattering from the grating formed
by the interference of the incident laser beams. This discov-
ery opened the possibility of considering CP beam config-
uration as a fundamental configuration to investigate NL
physics phenomena in optics.

Such a possibility was backed up by many subsequent
observations, showing that when taking into account trans-
verse extent of the interacting beams, an even more com-
plex behavior can emerge, including oscillatory transverse
instabilities [11, 12] and pattern formation [13—15] that re-
quire neither cavity nor finite response time. Sometimes,
these instabilities could be associated with interesting trans-
verse structures, such as polarization domain walls [16, 17],
supported by the mixing of two CP laser beams in a NL
isotropic dielectric medium. Since transverse instabilities of
CP optical beams lead to pattern generation, a natural ques-
tion arises in CP systems: which patterns may survive in
this geometry. Among the various pattern classes especially
singulary structures and localized states gained interest, ow-
ing to their strong NL nature most often associated with
subcritical bifurcations [18].

In addition to these localized states or dissipative (cav-
ity) solitons, which are stabilized due to the common action
of gain, loss, nonlinearity and diffraction, the propagation
and self-action of a single beam in a NL medium is also
known to generate spatial solitons [19]. Therefore, a natural
extension was to study the propagation and interaction of
CP spatial solitons and their generalizations, and to build
a connection between these solitons and the feedback or
cavity solitons, thereby attempting to answer fundamental
questions about the nature and relations of propagating and
dissipative solitons in media with NL optical refractive in-
dex.

Collisions between solitons are perhaps the most fasci-
nating feature of soliton phenomena, because the interacting
self-trapped wave packets exhibit many particle-like fea-
tures [20]. Solitons that propagate in the opposite directions
enable a natural mechanism of soliton collisions, result-
ing from the strong interaction of the two beams. The CP
solitons interfere and give rise to an effective grating. For
copropagating solitons, the grating is periodic in the trans-
verse direction, with a period much greater than the optical
wavelength; thus the interacting solitons go through very
few grating periods. For CP collisions in contrast the grat-
ing is in the propagation direction, hence the interacting
solitons go through many periods. Consequently, the inter-
action in the CP scheme is strongly affected by the mutual
Bragg scattering.

Moreover, in the case of incoherent interacting beams,
the CP scheme also allows for strong interaction, due to
cross-coupling of the beams via the common refractive in-
dex structure that is not present in the copropagating case,
as first discussed in [21]. This reference was also the first
to discuss various consequences of making the two solitons
collide head-on, such as the role of coherence, the possibility
of attraction and coalescence of soliton beams, the feedback

mechanism between the beams and its intrinsic nonlocality,
and even self-aligning of displaced beams as a possible ap-
plication. A numerical scheme for treating the system of CP
paraxial wave equations was also briefly described.

Owing to these reasons, CP solitons assumed a paradig-
matic role in the physics of NL optics; mutual self-trapping
of two CP optical beams was shown to lead to the formation
of a novel type of vector (or bimodal) solitons [22,23], for
both coherent and incoherent interactions. A more detailed
analysis [24] revealed that these CP solitons may display a
variety of instabilities, accompanied by nontrivial temporal
and spatial dynamics, leading to many subsequent studies
devoted to this fundamentally new subject.

This paper aims at reviewing the fundamental physics
of CP optical beams and spatial optical solitons, and their
paradigmatic role in NL optics, including the whole range
of NL physics phenomena, from the formation of stationary
states up to ST instabilities. It summarizes a number of
recent important results for the evolution and interaction of
optical beams and spatial solitons that propagate in opposite
directions, thereby emphasizing their general importance
for NL physics.

The paper is organized as follows. In Sect. 2 we present
the derivation of a one-dimensional (1D) model for the
beam propagation in a planar structure in PR NL crystals,
and then apply it to the analysis of mutual self-trapping
and modulational instability (MI) of CP beams and spatial
solitons. Section 3 is devoted to the analysis of 2D models,
where we discuss nontrivial rotational beam dynamics and
the transverse pattern formation. In Sect. 4 we present the
key experimental results for both one- and two-dimensional
geometries. The more special case of solitons counterpropa-
gating in optical lattices is discussed in Sect. 5, where we
summarize both theoretical and experimental results. Sec-
tion 6 is devoted to the discussion of various generalizations
of the concept of beam counterpropagation, including the
counterpropagation of multipole and vortex optical beams,
as well as the beam interaction in liquid crystals. Finally,
Sect. 7 concludes the paper.

2. One-dimensional systems

2.1. Theoretical models and background

Early theoretical descriptions of CP self-trapped beams,
in one transverse dimension and steady-state, were given
in [23], where bimodal CP solitons in Kerr media have been
treated, and in [22], where collisions of solitons propagating
in opposite directions, in both Kerr and local PR media, have
been addressed. Following a more general exposition [24],
we present here the basic equations for the propagation and
interactions of CP beams in saturable PR media. The tem-
poral behavior of CP self-trapped beams is included in the
equations by a time-relaxation procedure for the formation
of space charge field and refractive index modulation in
the crystal.

We develop first the local isotropic model of CP solitons
in Kerr-like and saturable PR media. It offers a simple the-
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oretical description of an otherwise difficult nonlocal and
anisotropic problem [21,25]. Still, it is capable of explain-
ing the main features of CP soliton formation. However, it
should be kept in mind that the complete picture requires the
inclusion of nonlocal anisotropic effects in PR crystals, in
particular the self-bending of beams. The influence of these
effects, e.g. self-bending, is less pronounced in copropagat-
ing solitons, because the beams bend together, whereas in
CP solitons considerable theoretical expertise and experi-
mental know-how is required to overcome these limitations
in observing CP solitons interacting over extended propaga-
tion distances [25,26]. Nonetheless, it has been shown, for
example, that by launching slanted beams symmetrically
across the crystal an extended interaction of incoherent soli-
tons can be achieved over a common parabolic trajectory,
even though the launching of individual beams in the same
conditions leads to an asymmetric situation [25]. We touch
upon theoretical nonlocal anisotropic propagation of wide
CP beams in short PR crystals in a later subsection, while
experimental results are covered in Sect. 4.

We consider two CP light beams in a PR crystal, in the
paraxial approximation, under conditions suitable for the
formation of screening solitons. The optical field is given as
the sum of CP waves F exp(ikz + iwr) + Bexp(—ikz + iwt),
k being the wave vector in the medium, F and B are the
slowly varying envelopes of the beams. The light intensity /
is measured in units of the background light intensity, also
necessary for the generation of solitons. After averaging in
time on the scale of the response time 7y of the PR crystal,
the total intensity is given by

1+1=(1+1){1+¢e[mexp(kz)+c.c]/2}, (1)

where Iy = |F|> +|B|*, m = 2F B* /(1 + ) is the modulation
depth, and c.c. stands for complex conjugation. Here the
parameter € measures the degree of temporal coherence
of the beams relative to the crystal relaxation time. For
€ =0, i.e., when the relative phase of the beams varies
much faster than 7y, the beams are effectively incoherent. In
the opposite case € = 1, the intensity distribution contains
an interference term that is periodically modulated in the
direction of propagation z, chosen to be perpendicular to
the ¢ axis of the crystal, which is also the x axis of the
coordinate system. Beams are polarized in the x direction,
and the external electric field E,, necessary for the formation
of self-trapped beams, also points in the x direction. The
electric field in the crystal couples to the electro-optic tensor,
giving rise to a change in the index of refraction of the form
An = —ngreffE /2, where ng is the unperturbed index, reff is
the effective component of the electro-optic tensor, and E is
the x component of the total electric field. It consists of the
external field and the space charge field E,. generated in the
crystal, E = E, + E.

The intensity modulates the space charge field, which is
represented in the normalized form

Ey/E. = Eg+ 3 [E1 exp(2ikz) +c.c], )

where Ej is the homogeneous part of the x component of the
space charge field, and E| (x,z) is the slowly varying part of

the space charge field, proportional to €. It is E that screens
the external field, and E; is the result of the interference
pattern along the z direction.

In the isotropic approach, one assumes a local approx-
imation to the space charge field, and looks for a solution
with the saturable nonlinearity £ = E, /(1 +I). Substituting
Egs. (1) and (2) in this expression, and neglecting higher har-
monics and terms quadratic in m, the steady-state solutions
Eo=—1Iy/(1+1p) and E; = —em/(1+1y) are obtained. The
temporal evolution of the space charge field is introduced
by assuming relaxation-type dynamics

Iy
IEy+Ey= — ,
T Ey + Eo T+ (3a)
Em
IEI+E = — 3b
ToE1+ E; T+ (3b)

where the relaxation time of the crystal 7 is inversely pro-
portional to the total intensity T = 7o/(1 + 1), i.e., the il-
luminated regions in the crystal react faster. The assumed
dynamics is that the space charge field builds up towards the
steady state, which depends on the light distribution, which
in turn is slaved to the slow change of the space charge field.
As it will be seen later, this assumption does not preclude a
more complicated dynamical behavior.

Selecting synchronous terms in the NL paraxial wave
equation, leads to the propagation equations in the form:

i0.F + 0*F =T'|[EoF +E1B/2] (4a)

—id.B+0’B=T[EB+E[F/2], (4b)
where the parameter I" = (kngxo)?7eE, is the dimension-
less coupling strength, and the scaling x — x/xo, z — z/Lp,
(F,B) — (F,B)exp(—il'z) is used. Here xo is the typical
beam waist and Lp = ka(z) is the diffraction length. Propa-
gation equations are solved numerically, concurrently with
the temporal equations. The numerical procedure consists
in solving Egs. (3) for the components of the space charge
field, with the light fields obtained at every step as guided
modes of the induced common waveguide.

2.2. Counterpropagating solitons

We consider first the interactions in a configuration where
the two CP beams are launched parallel to each other, but
with a transverse spacing between them [22]. The parame-
ters are chosen such that the formation of spatial solitons is
preferred. The coherent interaction between these parallel
CP beams is shown in Figs. 2a—c. Figs. 2d—f show an inco-
herent interaction between the same beams. For comparison,
the same beams in copropagating scheme are simulated
in Figs. 2g—i. Fig. 2g [2h] shows a coherent interaction in
which the relative phase between the launched beams is
0 [r]. Fig. 2i shows an incoherent interaction. Clearly, the
outcome of the interaction between the beams in the CP
scheme is very different from the one in the copropagating
scheme, in both the coherent and incoherent cases. First, in
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Figure 2 (online color at: www.Ipr-journal.org) (a)—(c) Coher-
ent interactions between the CP (a),(c) forward and (b) back-
ward solitons. (d)—(f) Incoherent interactions between the CP
(d),(f) forward and (e) backward solitons. For comparison, inter-
actions between coherent in-phase (g) and « out of phase (h),
and incoherent (i) copropagating solitons. The plots show in-
tensities. The arrow indicates the propagation direction of each
beam. The propagation distance is 2.5 Lp. Adopted from [22].

the copropagating scheme, the mutual force between the
solitons is proportional to the relative phase between them,
hence the interaction can be attractive [Fig. 2g] or repulsive
[Fig. 2h]. In contrast, in the CP case the relative phase oscil-
lates on a scale much shorter than the soliton period, thus
the relative phase does not play any role.

The second major difference between the counter- and
copropagating cases has to do with the radiation. The coher-
ent interaction in the CP scheme radiates [Figs. 2a and b],
which again proves that this system is nonintegrable. On
the other hand, the incoherent interaction between the CP
solitons does not radiate much [Figs. 2d—f]. Finally, one
can see that a portion of the forward beam couples into
the region where the backward beam is propagating. In the
incoherent interaction, the forward beam gradually tunnels
into the backward soliton region, hence the forward inten-
sity at the backward soliton region increases monotonically
[Fig. 2f]. This behavior represents an example of directional
coupling or resonant tunneling. For coherent interactions the
dynamics are more complex, as the intensity coupled from
the forward beam to the region “under” the backward beam
oscillates [see the sidebands in Fig. 2¢], and, in contradis-
tinction to the incoherent case, light does not accumulate in
the “sidebands”.

Head-on collision of the beams with initial soliton pro-
files, after temporal relaxation to a steady state, results in
the formation of a CP soliton [24]. Shooting initial beams
with arbitrary parameters generally leads to the z dependent
or nonstationary character of the beam propagation. In some
domain of the initial parameters, for example with the rela-

Figure 3 Bidirectional waveguide. (a) Total intensity distribu-
tion; (b) right-propagating and (c) left-propagating beams. Pa-
rameters: € = 1, I = 5, initial peak intensities |Fy|* = |BL|> = 1.
The size of data windows is 10 beam diameters transversely by
2 diffraction lengths longitudinally. Reprinted from [24].

tive angle of beam scattering 6 close to 7 and small initial
transverse offset, the time-relaxation procedure converges to
the stationary in time structures, which are identified as the
steady-state self-trapped waveguides, or as bent CP solitons.
The formation of a single bidirectional waveguide is shown
in Fig. 3. Two coherent Gaussian beams are launched at
different lateral positions perpendicular to the crystal edges,
0 = &. Both beams diffract initially, until the space charge
field is developed in time, to form the waveguide induced
by the total light intensity, Fig. 3a. This induced waveguide
traps both beams, Figs. 3b and c¢. When the initial transverse
separation is four or more beam diameters, the beams hardly
feel the presence of each other, and focus into individual
solitons. For the separation of two beam diameters, the in-
teraction is strong enough for the beams to form a joint
waveguiding structure, as is shown in Fig. 3.

2.3. Split-up transition

Consideration of a wider region of control parameters leads
to a more complex picture. To capture the transition from
a CP soliton to a waveguide more clearly, the head-on
collision of two identical Gaussian beams was considered
in [27,28]. In the absence of the other, each beam focuses
into a soliton. The situation when they are both present,
and when the coupling constant I" and the crystal length
L are both varied, is displayed in Fig. 4. It is seen that in
the plane (L,T) of control parameters there exists a critical
curve below which the stable CP solitons exist (the first
curve in Fig. 4). At that critical curve a new type of solution
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Figure 4 Critical curves in the parameter plane for the exis-
tence of stable CP solitons, bidirectional waveguides and unsta-
ble solutions. Below the first curve CP solitons exist, between
the curves bidirectional waveguides appear. At and above the
second curve unstable solutions emerge. Insets depict typical
beam intensity distributions in the (x,z) plane at the points indi-
cated. The points are numerically determined, the curves are
inverse power polynomial fits. Reprinted from [28].

appears, after a symmetry breaking transition, in which the
two components no longer overlap, but split and cross each
other. We term this phenomenon the split-up transition [24].
A few examples are depicted in the insets in Fig. 4. As the
beams split, a portion of each beam remains guided by the
other, forming bidirectional waveguides. Both the solitons
and the waveguides are steady-state solutions. As one moves
away from the first critical curve, into the region of high cou-
plings and long crystals, a new critical curve is approached,
where the steady-state waveguides lose stability. The second
critical curve is also drawn in Fig. 4, and the insets to the
curve show typical unstable beam profiles. The shape of
these curves suggests an inverse power law dependence, and
the theory confirms such a dependence. At and beyond the
second critical curve, dynamical solutions emerge.

2.4. Anisotropic nonlocal theory

Anisotropic nonlocal theory of the space charge field, in-
duced by the coherent CP beams in biased PR crystals, is
more involved than the isotropic theory [21,29]. It yields
significantly different results from the isotropic local model,
especially when the crystal € axis is tilted with respect to the
direction of the propagation of the beams. A more complete
description of CP beams requires inclusion of both the drift
and the diffusion term.

In the anisotropic approximation, the NL refractive
index change 8n®> can be decomposed into the form:
dn? = 8n3 + n’[exp(2ikz) + exp(—2ikz)]/2. The modu-
lated (8n2,) and unmodulated (5n(2)) parts are the functions
of the space charge field and the nonzero components of the
electro-optic tensor. The propagation equations of the beam

envelopes in the paraxial approximation are now given by:

i0.F + L0IF = 6niF + 16n’B, (5a)

—id.B+ $9}B = dn§B+ 1(8nk)"F. (5b)

To see the propagation behavior that is a mixture of the
self-focusing and pattern formation, the counterpropagation
of two wider beams in an anisotropic nonlocal medium is
simulated in Fig. 5. Figs. 5a and b show how the profiles
of the beams change as they propagate. Fig. 5c shows the
profile of the forward beam as it leaves the crystal. It has
split into three beams, reminiscent of the breaking of a
uniform beam into stripes in the experiments on pattern
formation in CP beams. The solid line in Fig. 5d shows the
backward beam as it leaves the crystal. For comparison,
the dashed line shows what the beam would look like if
the nonlinearity were absent. One can see that on the one
hand the backward beam gets amplified while propagating
through the crystal; on the other hand the self-focusing effect
of the nonlinearity is also clearly visible. The effect of the
self-bending is weak, due to the short propagation distance.
However, its effects are clearly visible in the asymmetry of
the beam profile in Fig. 5c.

(d)" (b)l |
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Figure 5 Counterpropagation of two beams in a 1 mm long
crystal. The crystal is tilted by o = 10° with respect to the prop-
agation direction. (a) shows the evolution of the forward beam
(propagating from bottom to top); (b) shows the backward beam
(propagating in the opposite direction). (c) shows the profile
of the forward beam as it leaves the crystal. In (d) the dashed
line shows the backward beam leaving the crystal after linear
propagation, whereas the solid line shows it after nonlinear
propagation. Adopted from [29].
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2.5. Modulational instability

As mentioned, the configuration of two waves interacting in
a NL material is one of the most used in laser physics and
NL wave mixing experiments. Instabilities, self-oscillations,
and chaos, which are the fundamental processes in NL op-
tics, can be observed very often in such systems. In [1] it
was demonstrated, for the first time, that self-oscillations
and chaos can be obtained in an optical system without any
external feedback. Authors have predicted that in the scalar
approximation, CP waves interacting in a NL Kerr medium
characterized by a noninstantaneous response, can undergo
oscillatory and chaotic temporal evolution, above a certain
input intensity threshold. When the vector nature of light is
included in the theoretical consideration [4], it was found
that the polarizations of CP light waves in an isotropic Kerr
medium become temporally unstable, as the total intensity
exceeds a certain threshold. Periodic and chaotic temporal
behavior can occur in the output polarizations, as well as
in the output intensities. Temporal instabilities in the polar-
izations of CP laser beams in atomic sodium vapor were
investigated in [5]. For intensities slightly above the insta-
bility threshold, the polarizations fluctuate periodically. For
higher intensities, the fluctuations become chaotic and the
system evolves on a strange attractor.

Continuous-wave and oscillatory transverse instabilities
were predicted for CP waves in Kerr media [11], for both
the focusing and defocusing nonlinearities; neither cavity
nor finite response time were required. Temporal dynamics
of the polarization state of CP waves in NL optical fibers
was studied in [16]. It was shown that in the presence of
uniform twist, the dynamics may be reduced to an inte-
grable chiral field representation. Dynamical instabilities
of CP beams in a NL two-level system were investigated
numerically in [10]. When the incident intensities are in-
creased, this system becomes unstable and exhibits complex
behavior, including quasi-periodic motion and chaos. In [17]
the spatial polarization instability of two intense CP laser
beams in an isotropic NL dielectric fiber was investigated
experimentally. It was demonstrated that the distribution of
polarization states along the fiber can be identified with a
polarization domain wall soliton.

Dynamical instabilities of CP self-trapped beams in PR
media were reviewed in [30]. A route to chaos is described,
including split-up instability, period doubling cascade, win-
dows of intermittency, and fully developed chaos (Fig. 6).
An experimental method to stabilize unstable CP solitons
using photonic lattices is developed by the same group;
it is presented in the section dealing with the solitons in
optical lattices.

3. Two-dimensional systems
3.1. Theoretical background
Consideration of counterpropagation in two transverse di-

mensions in bulk media offers a more realistic and com-
plete picture. Theoretical descriptions of CP self-trapped

Deviation Ax/w,

3
L/L,

Figure 6 (online color at: www.lpr-journal.org) Bifurcation
diagram, displaying transition to chaos in a 1D model of CP self-
trapped beams. Insets depict characteristic time dependence of
the beams along the diagram, at one of the crystal faces. The
steady beam (green) is the entering beam, the unsteady beam
(red) is the exiting beam. One can note steady-state CP soliton
(upper left), single split-up transition (lower left), double split-up
transition (upper middle), period four oscillation (lower right),
and chaotic response (upper right). Adopted from [30].

beams in 2D and time are provided in [28] and in [31].
The derivation of equations is similar to the 1D case [see
Egs. (1)—(4)], the major difference being the appearance of
the transverse Laplacian A, , in 2D equations and different
boundary conditions. However, the differences in physics
and results are considerable, especially if one takes into
account the anisotropic nature of the PR effect in 2D. We
will confine our attention here to the isotropic approxima-
tion of the system in 2D. Again, the differences from the
nonlocal anisotropic situation in PR crystals are confined
to the absence of beam bending and non-circular beam pro-
files at the exit faces, however the essential features of CP
soliton formation and interactions, including the unexpected
dynamical effects, are retained in the local isotropic theory
and are confirmed by careful experimentation [32].

By assuming that the CP beams are incoherent (i.e. € =
0, making the E; term disappear), the propagation equations
are given by

i0.F + A, ,F =TEgF,
—id.B+A,,B=TEyB,

(6a)
(6b)

and the temporal evolution of the system (or the time depen-
dence of Ey) is determined by Eq. (3a).

The most important completely new effect in 2D, in the
form of dynamical spontaneous symmetry breaking, was
reported for the first time in [27], where the counterpropaga-
tion of two identical numerically calculated solitary beam
profiles was investigated. For a value of I & 14, correspond-
ing to a typical experimental situation, up to the length of
the medium of 0.65Lp no sign of instability is observed; the
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Figure 7 CP fundamental beams for a medium of length
L = 0.68Lp displaying the split-up transition. The left column
shows the forward and the right column the backward beam
(the arrows indicate the direction of propagation). The top row
is a snapshot after r = 257. Both beams propagate through the
medium as solitons. At r = 1507 (bottom row) the beams no
longer propagate as steady solitons, but instead deviate on their
way through the crystal. Reprinted from [27].

beams propagate as a CP soliton. However, at L = 0.68Lp
the solitary solution becomes unstable (Fig. 7). Att =257t
the beams still propagate as solitons through their jointly
induced waveguide, but the white noise included in the sys-
tem excites an eigenmode that grows in time. At = 100t
both beams start to deviate inside the medium from the
straight initial trajectories. Since the initial problem is ro-
tationally symmetric, the direction into which the beams
deviate is random in the isotropic approximation. The in-
tensity distribution at t = 1507, presented in the bottom
row of Fig.7, shows a steady state of the system. This is
an example of the split-up transition in 2D. The numerical
results show that the length of the medium and the power
of the beams play an important role in the stability of CP
solitons: decreasing/increasing the length (or the power)
stabilizes/destabilizes the solitons.

These results seem to contradict the results obtained
for the solitons in copropagating geometry. Two mutually
incoherent solitons always attract each other, therefore one
would expect that the two CP beams always form a stable
soliton. This is not the case. To find an explanation of the
nature and the cause of the transverse split-up instability,
the CP beams were considered as particles whose motion
along the z axis is subject to the forces caused by the re-
fractive index change in the medium. Because the medium
18 noninstantaneous, it was assumed that the motion of the
“center of mass” of the beams is determined by the light
distribution a time 7 ago. The second assumption was that
the attractive force acting on the center of mass of each
beam is proportional to the distance from the center of the
waveguide induced in the medium by the beams. A sim-
ple harmonic oscillator-type theory of beam displacement
that can account for the transverse shifts, derived in two
independent ways, was presented in [27] and [31].

3.2. Pattern formation and linear stability
analysis

When excited beyond certain instability thresholds, very
different physical systems display similar self-organized
behavior that is described by the universal order parameter
equations. A common necessary ingredient is the MI of spa-
tially uniform ground state, which leads to the spontaneous
formation of extended periodic spatial structures. These pat-
terns often exhibit simple geometric structure, such as rolls,
rhombi, and hexagons. Linear stability analysis provides a
threshold for the static instability in such systems.

NL optical materials are well suited for the observation
of transverse MI, especially in the CP geometry. The first
complete CP pattern formation considerations and stability
analysis in 2D was given in [33] for the counterpropagation
in a Kerr medium (in 1D see [11]). It was demonstrated by
a NL perturbation analysis that two very different pattern-
forming modes coexist in this system. One is a hexagon-
forming mode, and is dominant in the self-focusing media.
The other is a roll-pattern mode, but it was found that rolls
are unstable. Instead, square patterns emerge, and seem
to be dominant in the self-defocusing media [33]. When
the two beams are slightly frequency-detuned [14], coun-
terpropagation in PR two-wave mixing also gives rise to
the transverse MI. The patterns that develop from the initial
stage of MI are found to be predominantly rolls. For induced
slight misalignment, full hexagonal patterns develop.

The described phenomena are much more dependent on
the geometry than on the particular form of the nonlinearity.
We will present here only one recent result concerning the
transverse split-up instability of CP solitons (see Fig. 7).
Patterns developing in wider hyper-Gaussian CP beams will
be covered in Sect. 6. In the standard MI theory one follows
the dynamics of weak perturbation to a wave and looks for
instances of exponential growth of the perturbation. Such a
growth promotes the amplification of sidebands and leads
to the appearance of localized transverse structures. This
approach is used much in the theory of transverse optical
patterns [15]. Here however, the whole object - a CP soliton
- undergoes a sudden transverse shift to a new position.
Using the linear stability analysis, the split-up instability
is explained as a first-order phase transition, caused by the
spontaneous symmetry breaking, and the threshold curve is
determined [32].

One should note that stability analysis is more properly
applied to very broad CP beams. In the case of split-up
instability, the stability analysis is applied to a low-aspect-
ratio geometry, and we are aware of its limited validity. It is
known in many systems with dissipative feedback that the
instability of solitons and pattern forming systems follow
different bifurcation routes. Here the instability of propa-
gating solitons and the pattern formation in wide CP beams
(addressed in Sect. 6) are approximately treated by the same
stability analysis and the same threshold conditions. Quali-
tative agreement is found.
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One starts at the steady state plane-wave solution of the
system of Egs. (3a) and (6):

Fo(z) = Fo(0)e 7 By(z) = Bo(L)eTEOE ) (7)

where Eg = —1Iy/(1+1o) and Iy = | Fy|> +|Bo|?. The primary
threshold is determined by the linear instability of the steady
state plane-wave field amplitudes Fy(z) and By(z), and the
homogeneous part of the space charge field Ey. To perform
the stability analysis, we made a change of variables,

F:FQ(1+f), B:Bo(l+b), E:E0(1+€), 8)
along with the change in the boundary conditions f(0) =
b(L) = 0. Neglecting higher harmonics and terms quadratic
in the perturbations f, b and e, and following the procedure
described in [14], the threshold condition is obtained in a
form:

=0, ®

v, w, 2

where W, = k°L, ¥, = Vk*L2 —4ATk2L2, k being the
transverse wavenumber. We chose |Fp|> = |By|?, so that
A = |Fy|?/(1+2|Fy|?)?. This equation has the same form
as the threshold condition in [33], except that the form and
the meaning of variables W and W, is different.

For each value of A there are two values of |Fy|* (or
\BL|?) on the threshold curves represented in Fig. 8. For this
reason we found it more convenient to plot the threshold
intensity as a function of the square of the transverse wave
vector (Fig. 9); for each pair of values of I" and L then one
obtains different threshold curves. Also provided in Fig. 9
are the arrows which depict how much the CP solitons jump
transversely in the k space in numerical simulations, after
a split-up transition. The left end of an arrow points to the
peak value of k% in the steady state, the right end points to
the maximum value of the total transient change in k>. The
end points are calculated by independent numerical runs of
the full simulations. For the given control parameters (I' = 4
and L = 5Lp) only single or double split-up transitions are
observed. It is seen that the arrows provide a qualitative
agreement with the form and the position of the lowest
branch of the threshold curve, which signifies the first split-

up transition.
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Figure 8 Threshold curves obtained from Eq. (9). Reprinted
from [32].
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Figure 9 Threshold intensity versus the square of the trans-
verse wave vector k2, for ' = 4 and L = 5Lp. Arrows cover
the regions of jump in k2 of the solitons in the inverse space,
obtained numerically. Reprinted from [32].

4. Experimental demonstrations
4.1. One-dimensional solitons

The first experimental observations of spatial vector solitons
in the counterpropagation geometry were reported by Kip et
al. [34] for incoherent, and by Cohen et al. [35] for coherent
optical fields. The experimental setup for coherent interac-
tion is shown in Fig. 10. An Ar" laser beam at 488 nm is
split equally into two beams, 1 and 2, that are focused to
narrow stripes (15-um FWHM) on the opposite faces, A and
B, of an SBN:60 crystal (4.5mm x 10mm X Smm) in the
configuration used earlier for the generation of PR screening
solitons [36]. Two cameras image the two faces of the crys-
tal. Importantly, the light gathered by each camera consists
of both the transmitted beam and the back-reflected beam.
Figs. 11a,b show the results of [35] for the image and
intensity profiles taken by camera A at the input face B and
at the output face A, respectively, when beam 1 is blocked
and the nonlinearity is off. No soliton is formed. When the
two beams propagate together with the nonlinearity (with an
external voltage of 900 V), the beams mutually self-trap, as
shown in (¢). The FWHM of this combined beam is 15 um,
equal to the FWHM of each of the input beams at both
surfaces. Thus the combined wave, consisting of both CP
beams, forms a vector soliton at the specific value of the
nonlinearity, determined by the applied field, the intensity
ratio, and the crystal parameters (refractive index and the
electro-optic coefficient). To exemplify the fact that the

]
A Camera A
V)
A
Beam 1 [:I Crystal
Laser B
] Al
L7 2V Camera B

Figure 10 Experimental setup for the generation of coherent
CP solitons [35].
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Figure 11 Experimental images and intensity profiles taken by
camera A (see Fig. 10). Intensities of beam 2 in linear medium
for (a) the input and (b) the output surfaces of the crystal when
beam 1 is blocked (c) Total intensity of the CP vector solitons
at the left face of the crystal. (d) Intensity at the left surface
when beam 1 is blocked and the nonlinearity is on (adopted
from [35]).

vector soliton is formed by both CP components, Cohen
et al. [35] blocked beam 1 and observed the output of beam
2 without changing the voltage.

Further experimental studies of collisions between PR
spatial solitons propagating in the opposite directions, per-
formed by the same group [25], demonstrated that each of
the interacting solitons significantly affects the self-bending
of the other, exhibiting effective attraction for one beam and
repulsion for the other. In particular, Rotschild et al. [25]
were able to switch between coherent and incoherent in-
teractions by introducing a piezoelectric (PZ) mirror into
the experimental setup, affecting one of the optical paths.
Importantly, by varying the distance between the beams, the
authors did not observe noticeable changes during the coher-
ent collision between solitons. The coherent effects that oc-
cur during the collision arise from the interference between
the beams, translated into a reflection grating. Rotschild
et al. [25] tested the presence of such a reflection grating
when the solitons are truly counterpropagating, by blocking
one of the beams. The existence of this grating proved the
occurrence of a stable coherent interaction between the CP
beams. When the PZ mirror is vibrating, the grating does
not form; i.e., the soliton interaction is incoherent, and no
reflection is observed from the grating.

4.2. Solitons in bulk media

The first experimental study of CP solitons in a bulk medium
was conducted by Jander et al. [37], who also observed a
dynamical instability in the interaction of CP self-trapped
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Figure 12 Experimental setup for the study of instabilities of CP
solitons [37]. Two beams are rendered mutually incoherent with
an oscillating PZ mirror and focused on the opposite faces of a
Ce:SBN60 crystal. Both crystal faces are imaged onto a CCD
camera, allowing for synchronous observation of reflections of
both the exit and input beams (Ms, mirrors; Ls, lenses; PH,
pinhole; PBS, polarizing beam splitter; BS, beam splitter). Inset:
CP soliton interaction in the numerical model (see details in
(37]).

beams in a PR medium, predicted earlier in the theoretical
modeling of the time-dependent beam dynamics [24]. Jander
et al. [37] noticed that, while the interaction of copropagat-
ing spatial optical solitons exhibits only transient dynamics
and eventually results in a final steady state, the CP geom-
etry demonstrates a dynamical instability mediated by an
intrinsic feedback. Experimental observations were found to
be in qualitative agreement with the numerical simulations.

Jander et al. [37] studied the dynamics of mutually inco-
herent CP solitons in cerium-doped strontium barium nio-
bate (Ce:SBN:60) crystal, using experimental setup shown
in Fig. 12. The crystal is biased by an external dc field
along the transverse x direction, coinciding with the crys-
tallographic ¢ axis. Both beams are obtained from a single
laser source and rendered mutually incoherent by a mirror
oscillating with a period significantly shorter than the re-
laxation time constant of the PR material. Propagating in
different directions, both beams individually self-focus, and
the nonlinearity is adjusted such that each of the beams
individually forms a spatial soliton. To demonstrate both
above and below threshold behavior with a single crystal
sample, Jander et al. [37] utilized two medium lengths by
rotating the crystal about its ¢ axis, thus yielding L; = 5 mm
and L, = 23 mm.

Initially, both beams are adjusted such that their inputs
and outputs overlap on both ends of the crystal, if propagat-
ing independently and in a steady state, including the shift
through the beam bending. This configuration was chosen
to minimize the possible effects of beam bending on the
stability of a fully overlapping state in the form of a CP
vector soliton, shown in Fig. 13a. For comparison with the
numerical simulations, experimental data are reduced to one
transverse dimension: The images obtained on the exit faces
of the crystal are projected onto the x axis. As these data are
plotted over time, one gets a representation of the dynamics
of the beam exiting the crystal face [as shown in Figs. 13a,b].
Changes parallel to the y axis are not represented, since most
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Figure 13 Temporal plot of system dynamics. (a) Below thresh-
old (L; = 5mm), the resulting stable and stationary state con-
sists of two symmetrically overlapping solitons. (b) Above thresh-
old (L, = 23 mm), irregular dynamics is observed [37].

of the observable dynamics is confined to the x axis, owing
to the significance of the c¢ axis for the PR effect.

For short propagation length (L; = 5 mm), the output
beams on both crystal surfaces initially shift their posi-
tions, converging to an overlapping steady state, the vector
soliton, see Fig. 13a. In the case of a significantly longer
medium (L, = 23 mm) the beams initially self-focus sepa-
rately [Fig. 13b] and attract and overlap. However, this state
is unstable and yields to irregular repetitions of repulsion
and attraction. This process does not feature any visible
periodicity and is observed for time spans that are orders of
magnitude longer than the time constant of the system.

More detailed experimental and numerical studies by
Petrovic et al. [32] revealed that the CP incoherent beams
can form 2D spatial solitons, but they also exhibit an in-
teresting dynamical behavior in both dimensions. Stable
solitons are readily observed over the 5 mm propagation
distance, with an applied field of 1.3kV/cm and the initial
beam peak intensity of about twice the background intensity.
When the propagation distance is increased from 5 mm to
23 mm, for identical other conditions, a symmetry break-
ing transition from the stable overlapping CP solitons to
unstable transversely displaced solitons is observed. The
beams still self-focus approximately into solitons, but they
do not overlap anymore [Figs. 14a,b]. At the exit face most
of the beam intensity is expelled to a transversely shifted
position (about 1 beam width), while a fraction of the beam
remains guided by the other beam. This is another evidence
of the split-up transition. At higher applied fields (stronger
nonlinearity) the beams start to move. The motion is such
that the exiting beam rotates about or rapidly passes through
the input beam, or dances irregularly around. No such long-
lasting temporal changes are observed in the copropagation
geometry. All these dynamical phases can qualitatively be
reproduced by numerical simulation, as discussed above, in
qualitative agreement with the experimental results.

H
20 um

Figure 14 (online color at: www.Ipr-journal.org) Counterprop-
agating soliton after a split-up transition: Forward propagating
component in the steady state. (a) Exit face of the crystal, ex-
perimental. (b) The corresponding numerical simulation [32].

The existence and stability of CP dipole-mode vector
solitons in a PR medium was studied experimentally by
Schroder et al. [38], who also investigated their transient dy-
namics. A dipole-mode vector soliton consists of two mutu-
ally incoherent beams: an optical dipole and a fundamental-
mode beam. The individually propagating dipole does not
form a spatial soliton, owing to repulsion of the dipole
components. However, if a fundamental-mode beam that
is incoherent to the dipole is launched between the dipole
components, they will be trapped by means of incoherent
attraction. This vector soliton differs considerably in many
aspects from its counterpart in the copropagating geometry.
For example, the time scale of the transient dynamics is
significantly longer. During the formation the beams split,
and a trapped and an untrapped part of the dipole can be
observed experimentally [38].

5. Solitons in optical lattices

Currently, we witness an explosion of interest in the local-
ized CP beams in photonic crystals and optically induced
photonic lattices [19]. Both 1D and 2D geometries are exten-
sively studied in a number of recent publications, and many
aspects of counterpropagation are addressed. An incom-
plete list includes Tamm oscillations and localized surface
modes at the interface between homogeneous medium and
waveguide arrays; instabilities and stabilization influence
of optical lattices; soliton propagation aided by reflection
gratings; the behavior of CP vortices upon propagation in
photonic lattices; Bloch oscillations and Zener tunneling;
the questions of angular momentum transfer, conservation,
and non-conservation in such systems; etc. In a few subsec-
tions, we will review some of these aspects.

5.1. One-dimensional lattices

Interaction of CP discrete solitons in a nonlinear 1D waveg-
uide array was investigated experimentally and numerically
in [39]. Solitons of equal input powers were launched in the
same channel, but propagating in the opposite directions.
Similar scenario to the CP soliton propagation in bulk is
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observed. For small input powers the interaction between
solitons is weak, and almost independent propagation in the
same channel is seen. When the input power is increased,
soliton instability sets in, and for a sufficiently high value
the spontaneous symmetry breaking occurs, resulting in a
discrete lateral displacement of the two solitons. A further
increase in power leads to the temporally irregular behavior,
with fast spatial fluctuations as compared to the buildup
time. Numerical modeling [39] corroborated the existence
of the three different regimes: stable propagation of vector
solitons at low power, instability for intermediate power lev-
els, leading to a transverse shift of the two discrete solitons,
and an irregular dynamical behavior of the two beams at
high input powers.

The existence of Tamm oscillations at the interface be-
tween a homogeneous medium and a 1D NL waveguide
array, with either cubic or saturable, self-focusing or self-
defocusing nonlinearity, was demonstrated in [40]. Light
gets trapped in the vicinity of the edge of the array, owing
to the interplay between repulsion at the edge and Bragg
reflection. Approximate analytical expressions for the repul-
sive potential are given for different types of nonlinearities.
Tamm oscillations reduce to the surface Bloch oscillations,
when the repulsive potential is a linearly decreasing function
of the distance from the edge of the waveguide array.

The impact of an optically-induced photonic lattice on
the dynamics of CP solitons in a biased PR crystal, as well
as the stabilization of CP solitons by photonic lattices, were
studied in [41]. Numerical results there demonstrate that
an optically-induced lattice of an appropriate period and
strength can suppress or even completely arrest the insta-
bility. It is found that CP solitons launched both on-site
and off-site can be stabilized. The rate of decrease of tem-
poral dynamics of CP solitons launched on-site strongly
depends on the lattice strength and its period. In the case
of small periodicity and high peak intensity of the lattice,
spatiotemporal oscillations are observed, with characteris-
tics dissimilar from those exhibited by CP solitons in bulk
media. Experimental results [41] demonstrate that, in most
cases, soliton dynamics, i.e. spatiotemporal oscillations, are
suppressed with the increasing strength of the optical lat-
tice. Also, the decrease in dynamics is noted experimentally
for the 1D lattice whose periodicity is comparable to the
beam diameter.

5.2. Solitons supported by reflection gratings

The existence of linear 1D reflection grating in a NL optical
medium implies periodicity along the optical propagation
direction. In the presence of an intensity-dependent nonlin-
earity, the interference between the two CP beams produces
a second longitudinal grating. Combining these effects with
the standard diffractive broadening suppression, a twofold
compensation mechanism can arise, allowing for the CP
soliton formation. Solitons forming in a reflection grating
in the presence of Kerr nonlinearity were investigated theo-
retically in [42-46].

Bright and dark 1D solitons counterpropagating along
the reflection grating were analytically investigated in [42].
It was shown that, depending on the Bragg matching be-
tween the light and the Fourier component of the grating,
three different regimes of soliton existence arise. In the first
regime, when the deviation from exact Bragg matching is
small, both bright and dark solitons can exist. The other two
regimes occur for greater deviations from the exact Bragg
matching. Deviations above Bragg matching allow only
bright, and deviations below Bragg matching allow only
dark solitons. In the two regimes the solitons are insensitive
to the mutual phase difference.

Transverse and soliton instabilities due to counterprop-
agation through a reflection grating in Kerr media were
considered in [43]. It was shown that the presence of the
grating broadens and narrows the stability region of plane
waves in focusing and defocusing media, respectively. Co-
unterpropagation of spatial optical solitons in a linear reflec-
tion grating, in the presence of a longitudinally modulated
Kerr nonlinearity, was investigated in [44]. The existence
of symmetric soliton pairs supported by an effective Kerr-
like nonlinearity is predicted analytically. In addition, two
families of solitons are introduced, in which the phase con-
jugation coupling exactly balances the Kerr holographic
focusing. Properties of a general family of dark reflection
solitons in defocusing Kerr media were considered in [45].
Two families of solitons counterpropagating along the grat-
ing direction in a modulated Kerr medium (asymmetrical
one-solitons and coherent-incoherent two-solitons) were
introduced in [46].

5.3. Two-dimensional lattices

Self-trapped CP beams in fixed optical photonic lattices
were for the first time investigated in [47]. When the prop-
agation in photonic lattices is considered, the propagation
equations are given by Egs. (6) (assuming Ey — E), and
Eq. (3a) for the space charge field is modified, to include
the transverse intensity distribution of the optically induced
lattice array /,:

I+1,

TOE+E=——5_
e 1+1+1,°

(10)
where I = |F|> +|B|? is the total beam intensity. Sponta-
neous symmetry breaking of the head-on propagating Gaus-
sian beams is observed, as well as discrete diffraction and
the formation of discrete CP vector solitons. In the case of
launched vortices, beam filamentation is reported, and subse-
quent pinning of filaments to the lattice sites [47]. Dynami-
cal properties of mutually incoherent self-trapped CP beams
in optically induced photonic lattices, for different incident
beam structures and different lattice configurations, were
investigated numerically in a number of papers [48-54].

5.3.1. Vortex beams

Rotational properties of mutually incoherent self-trapped
vortex beams in optically induced fixed finite photonic lat-
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Figure 15
nonlocal rotation of vortices in triangular lattice for various prop-
agation distances. For propagation distances between these
values chaotic behavior is observed. Input vortices have the op-
posite topological charge + 1. Intensity distribution of the forward

(online color at: www.lpr-journal.org) Local and

field at its output face is presented for parameters: I' = 17, lat-
tice spacing d = 28 um, FWHM of lattice beams 12.7 pm, input
FWHM of vortices 26.2 um, maximum lattice intensity I, = 51,
|Fo|? = |BL|* = 5I,. Reprinted from [48].

tices with a central defect were considered numerically
in [48]. The defect is introduced either by omitting a lattice
site in the center, or by defining a specific defect function.
An interesting example of rotation of vortex filaments in
the presence of a defect in the triangular photonic lattice is
presented in Fig. 15. Although it looks as if the vortex fila-
ments are rotating only within the defect in the center of the
lattice, they also rotate away from the center, by tunneling
between the lattice sites. We call this tunneling the nonlocal
rotation, as opposed to the local rotation within the defect.
The tunneling rotation is corroborated by the fact that, for
all the cases presented in Fig. 15, the angular momentum of
the vortex calculated over the whole lattice is considerably
greater than the angular momentum of the vortex calculated
only over the central part of the lattice. Nonlocal rotation in
a periodic array, such as the triangular/hexagonal photonic
lattice, can exists only for some values of the propagation
distance L. Lattice supports nonlocal rotation only for some
values of the propagation distance, with the “period” equal
to Lp (Fig. 15). For the propagation distances between these
values, chaotic behavior is observed, as well as the nonprop-
agating modes.

Rotating CP structures in the non-periodic but rotation-
ally symmetric circular photonic lattices were discussed
also in [48]. Results for the head-on counterpropagation of
two centered vortices with the opposite topological charges
in a circular photonic lattice, with a negative defect in the
center, indicate rich dynamical behavior as a function of
the control parameters I" and L. For lower values of I or
L stable structures are seen, in the form of well-preserved
vortex core, centered at the defect, and filaments focused
onto the neighboring lattice sites. Above this region stable
rotating tripoles and quadrupoles exist. For higher values
of the parameters irregular rotating structures and unstable
structures (i.e. constantly changing structures of unrecog-
nizable shape) are identified. The rotating structures with
filaments pinned to the lattice sites can exist only in the
presence of lattice and have no analogs in the CP vortices
propagating in bulk media.
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Figure 16 (online color at: www.lpr-journal.org) Gaussian-

beam-induced rotation for the triangular photonic lattice: inten-
sity distribution of backward beam at its exit face of the crystal,
presented at different times. The second row shows isosurface
plots of a rotating structure at characteristic times. Parameters:
I'=25, input FWHM of CP Gaussian beams 11 ym, beam power
3.80, propagation distance L = 2Lp = 8 mm, input beam inten-
sity |Fo|> = |BL|> = 11, lattice spacing d = 28 um, FWHM of
lattice beams 12.7 um, and maximum lattice intensity I = 201,.
Adopted from [49].

5.3.2. Gaussian beams

Time-dependent rotation of CP mutually incoherent self-
trapped Gaussian beams in periodic optically induced fixed
photonic lattices was investigated numerically in [49, 50].
In these papers lattice arrays with the square or triangu-
lar arrangements of beams were considered, with the cen-
tral lattice beam absent. Head-on CP Gaussian beams were
launched into the center of the lattice, parallel to the lattice
beams. For both photonic lattices the periodic rotation was
found (see Fig. 16 for triangular lattice) in a very narrow
region of control parameters. Each Gaussian beam collapses
to a displaced soliton-like beam, and after transient dynam-
ics starts to rotate indefinitely. Since for the parameters of
such stable periodic solutions there exist no stable steady
states, and since in numerics Eq. (10) becomes equivalent
to the scalar nonlinear delay-differential equation, this phe-
nomenon is recognized as a supercritical Hopf bifurcation.
The central parts of Gaussians rotate regularly in the cen-
ter of the lattice, owing to the defect, and along the whole
crystal. Filaments away from the center rotate with the same
frequency about the symmetry axis of the lattice, by tunnel-
ing between the lattice sites, but only close to the exit face
of the crystal.

Gaussian-beam-induced rotating structures present soli-
ton solutions, because they preserve shape along the main
symmetry direction during the rotation. The physical origin
behind the nonlocal rotation is incoherent interaction and
spontaneous symmetry breaking, while the rotation is real-
ized through the tunneling. Observed rotating structures are
stable in the presence of up to 5% noise added to the input
beam intensity and phase. Spontaneous symmetry breaking
via noise determines the direction of rotation, both direc-
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tions occurring with 50% probability. For the same control
parameters, CP Gaussian beams show very irregular dy-
namical behavior in the absence of lattice, but very stable
propagation is found in the presence of lattices without de-
fects.

5.3.3. Stable rotating solitons

For geometries and parameters which allow stable rotation,
the existence of 2D soliton solutions was investigated by
considering Eqs. (6) and (10) in the steady state [49]. Due to
their symmetry, the above equations suggest the existence
of a fundamental 2D soliton solution of the form:

F =u(x,y)cos(0)e™*, B=u(x,y)sin(6)e ™, (11)
where U is the propagation constant and 6 is an arbitrary
projection angle. An appropriate choice for the CP beams
is O = 7 /4; the same analysis can be applied to the coprop-
agating geometry, but with the choice 6 = 0. When this
solution is substituted in Egs. (6), they both transform into
one, degenerate equation:

|ul? +1,

/.Lu+Au+Fu1+|u|2+Ig—0. (12)
The soliton solutions of Eq. (12) can be found using the
modified Petviashvili iteration method. Because of the CP
geometry, these soliton solutions are stable only up to some
critical value of the propagation distance. Gaussian input
beams and the same parameters as in the full numerical
simulations are used in search of the stable soliton solutions.
The propagation constant u is varied, in order to find the
beam power (P = [ [ |u|>dxdy) corresponding to the stable
rotating structures. Fig. 17 depicts the power diagram, to-
gether with the characteristic soliton solutions for the case
of triangular photonic lattice; the filled circles represent the
characteristic types of symmetric discrete soliton solutions.
By increasing the propagation constant u these solutions
become more localized and asymmetric. Only for the beam
powers corresponding to the less localized symmetric soli-
ton solutions, and for the lower values of i, can one find
rotation induced by Gaussian beams in numerical simula-
tions.

5.3.4. Angular momentum transfer

The transfer of orbital angular momentum (AM) from vortex
beams to an optically induced photonic lattice was demon-
strated numerically in [54]. An optically induced photonic
lattice is, in fact, a complex propagating laser beam, which
means that the propagation equations for the total system
of interacting incoherent CP beams in the computational
domain should be of the form:

i0.F = —AF +TEF ,
i0.B=AB—TEB,

i0.G; = —AG;+TEGy, (13a)
i0.G, = AG, —TEG),,  (13b)

AFEEO

20 ;

10 |

24 MU

Figure 17 (online color at: www.lpr-journal.org) Power diagram
of soliton solutions for the triangular photonic lattice. Various
symbols indicate different kinds of soliton solutions, character-
ized by the corresponding profiles. Reprinted from [49].

where Gy and G, are the envelopes of the forward and
backward propagating lattice beams, and I = |F|? 4 |B|? and
I, = |G¢|* + |Gy|? are the corresponding beam intensities;
the temporal evolution of the space charge field is given by
Eq. (10), as before.

Numerical results for the transfer of AM in the inter-
acting CP beams are presented in Fig. 18. It was found
that the transfer of orbital AM is minimal in the inter-
acting CP lattices, and that the total AM — meaning the
sum Lz(F) + Lz(Gy) + Lz(B) + Lz(G},) of all momenta
along the propagation z axis — is not conserved in this
case. More precisely, the difference of AM of CP beams
Lz(F) + Lz(Gy) — Lz(B) — Lz(Gy) is conserved, whereas
their sum is not. Even though any real optically induced
photonic lattice is an interacting beam, in a number of pa-
pers it is treated approximately as a fixed lattice. It was
found in [54] that the transfer of orbital AM can be substan-
tial in the fixed periodic lattices, and that there is always a
considerable loss of AM. Only in the fixed radially periodic
lattices there is no problem with the conservation of AM of
propagating light — it is a conserved quantity there.

Different behavior noted in the interacting and fixed
lattices can rigorously be explained [54]. By using the stan-
dard definition for the z component of the orbital AM,
Lz(F) = —5 [ [ dxdyF*(x,y)(xdy — yd,)F(x,y) + c.c., the
derivative of the difference of AM for the assumed CP ge-
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Figure 18 (online color at: www.Ipr-journal.org) Transfer of
angular momentum in the interacting CP beams. (a) Forward
lattice at the input and output faces, and the vortex at the output
face. (b) Different normalized angular momenta. Parameters:
I'=3, L=2.5Lp = 10mm, lattice spacing 28 um, FWHM of
input vortices 24.6 um, FWHM of input lattice beams 9 pm, max-
imum input intensity |Fy|?> = |BL|> = 51, and the maximum in-
put lattice intensity |G |*(z = 0) = |Gp|*(z = L) = 201,. Adopted
from [54].

ometry of propagation in the steady state is given by:

dLz(F) N dLz(Gy) dLz(B) JLz(Gp)

0z 0z 0z dz
oo 21 2 2 2 2
[ papr [ age P GoF 410+ i)
0 0 ¢

27 4
0 (14)

- /O pdpT[In(1+1+1,)~1-1]| *,
where p and ¢ are the cylindrical coordinates. The dif-
ference of AM is conserved in the case of interacting CP
lattices, because the space charge field E is then an explicit
function of I + I,, the integration in ¢ is over a perfect
derivative, and the integral in Eq. (14) is 0. However, for
the fixed periodic lattices the terms involving Gy and G,
are absent, while E still contains / + I, and the integration
in Eq. (14) is not over a perfect derivative, so the integral
does not vanish. Therefore, the difference in AM is then not
conserved. (Note that for the fixed radially periodic circu-
lar lattices the difference in AM is conserved.) The same
Eq. (14) proves the nonconservation of the sum of AM in
the general CP case: the integral then contains the difference

of intensities, while E still contains the sum, so it can not
be equal to 0.

5.4. Experimental demonstrations

A simple realization of a periodic NL medium is the one-
dimensional system, in which the NL arrays consist of par-
allel, weakly coupled waveguides. In these arrays, discrete
soliton interaction has been investigated for parallel beams,
showing soliton attraction, repulsion, oscillatory behavior of
the two beams, and soliton fusion [55,56]. Similar to what
has been observed for spatial CP solitons in bulk media,
both instability of the interacting discrete solitons, leading
to discrete spatial shifts, and irregular dynamical behavior
for high nonlinearities can be observed in photonic lattices.
Experimental results of Smirnov et al. [39] reveal the ex-
istence of three regimes, namely, the stable propagation of
vector solitons, an instability regime leading to discrete dis-
placements of solitons, and an irregular dynamics regime.
Fig. 19 presents numerical calculations which summa-
rize these three regimes. For a small intensity ratio the
two solitons propagate stably with only weak interaction,
whereas for a higher ratio instability grows and the soliton
formation is partly suppressed. For even higher intensity
ratio the two formed discrete solitons are displaced by one
channel to the left. If the intensity ratio is further increased,
no steady-state solution can be obtained anymore: The out-
put intensity on both faces starts to fluctuate rapidly over
recording times, similar to the results described in [28]. In
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Figure 19 (online color at: www.lpr-journal.org) Numerical sim-
ulation of the interaction of discrete CP solitons (left-hand side,
beam 1; right-hand side, beam 2) for three different intensity
ratios [39].
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Figure 20 Temporal evolution of the intensity distribution of
2D CP solitons in optical lattices, projected onto the x-axis
(parallel to the c-axis) for different lattice powers of (a) 250 uyW,
(b) 1.0mW, (c) 1.5mW, (d) 2.0 mW, and (e) 2.5 mW. The faint
horizontal lines at x = 0 mark the reflected beam at this crystal
face, which acts as a reference. The results for the other crystal
face show a similar behavior. Reprinted from [41].

experiment [39], the interaction of discrete CP solitons has
been studied in a LiNbO3; waveguide array. For small input
powers or intensity ratios, respectively, an almost indepen-
dent propagation of the two discrete solitons in the same
channel is achieved. When the input power (intensity ratio)
is increased, soliton instability occurs, and for sufficiently
high values spontaneous symmetry breaking with discrete
lateral displacement of the two solitons is observed.

These observations led to the extension of efforts on
stabilization of CP solitons in 2D volume systems by the
use of 1D and 2D photonic lattices (Koke et al. [41]). They
investigated the dependence of the instability dynamics on
the period and amplitude of the lattice, and presented ex-
perimental verification for the dynamic stabilization of the
bi-directional soliton states. Fig. 20 displays the arrest of
instabilities of 2D CP solitons in 1D photonic lattice. It is
evident that the ST oscillations are suppressed by increasing
the strength of the optical lattice. This evolution is accom-
panied by an increased trapping of light in the neighboring
lattice sites, as observed in the case of 1D CP solitons. In
contrast to the 1D case, an asymmetry of trapping in the
lattice channels is due to the beam-bending effect. Owing
to the change in the refractive index, the self-bent soliton

nput right facet
Figure 21 (online color at: www.lpr-journal.org) Stabilization of
the instability in two transverse dimensions: (a) two-dimensional
square lattice of 6 um period. (b) Input intensity distribution
for the forward (F) and the backward (B) propagating beams,
respectively. (c,d) Digitally combined beam profiles at the left
and right faces of the crystal, when each soliton propagates
independently. (e,f) Stabilization by the lattice on both faces of
the crystal, respectively [41].

gets partially reflected when it passes a lattice site, and
the reflected light travels along the waveguide written by
the lattice wave. Moreover, the weaker oscillations in the
y-direction are suppressed as the lattice peak intensity is
increased. It is worth noting that the experimental stabiliza-
tion of CP solitons has been achieved with lattice strengths
much lower than that found in numerical simulations.

In experiments, Koke et al. [41] used a 2D square lattice,
optically-induced in a PR crystal. They varied the lattice
period and power, and monitored the positions of the beams
at both faces of the crystal. The inputs of the forward and
backward propagating beams in their experiments have the
size of 19 um and 18 um, respectively [Fig. 21b]. In 10 mm
long crystal this corresponds to approximately 5 diffraction
lengths of linear propagation. For a small lattice period (3
um) the potential induced by the lattice was too weak to
arrest the instability of the CP beams. With the increased lat-
tice period (of 6, 9, and 12 um) the instability was practically
removed for a certain range of lattice strength. The large
lattice periods, however, strongly reduce the mobility of the
beams, as each beam can be fully trapped at a single lattice
site. Such trapping imposes a constraint on the formation
of bi-directional waveguides, which becomes sensitive on
the initial alignment of the beams. Thus, beams propagating
in different directions inside the crystal will not attract, as
their intensity overlap will be reduced by the trapping on
different lattice sites.

Without the lattice, both beams overlap weakly and their
individual propagation is strongly affected by the beam self-
focusing and self-bending. At bias electric field of 2kV/cm
and at powers of ] mW each beam forms a spatial soliton,
where the soliton size is equal to the input beam size. In
Fig. 21c,d we show the digitally combined input and output
of each beam, as they would propagate without interaction
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Dynamical behavior of mutually incoherent CP multipole
vector solitons in an SBN:60Ce PR crystal was investigated
in [57]. The dipole-dipole interaction from that paper is re-
produced in Fig. 22. In the case of dipole-dipole CP solitons,
two identical dipoles with the components out of phase were
counterpropagating. The dipoles were aligned perpendicular
to the external field, which points in the horizontal direction.
A transverse split-up occurred, the direction of the split-up
is preferentially along the direction of the external field, and
it also depends on the added noise [Fig. 22b]. Only in the
case when some noise is added to one of the beams was it
possible to observe skewed split-ups, in better agreement
with the experiment. For the case with no noise [Fig. 22c], in
the beginning oscillations were noticed along the y axis, and
after a short time these oscillations were damped. Compared
to the single CP soliton cases, the cases involving dipoles
are more stable and the transient dynamics last shorter.
The development of higher-order multipole structures
and patterns in CP beams in saturable Kerr-like media was
investigated in [58]. A systematic numerical study was car-
ried out, by varying the width of beams. The results of the
stability analysis, concerning the instability of plane waves,
were compared with the numerical results concerning broad
hyper-Gaussian beams (used as inputs in simulations) whose
width was varied. Qualitative agreement was found, due to
the similarity between the plane wave and the flat-top hyper-
Gaussian beam profile. We should again stress the fact that
the split-up transitions do not appear to be of this common
type of MI. The solitons themselves could be considered as
related to the filaments of MI, and, as such, should be stable
against the same kind of MI. Nonetheless, it is still of inter-
est to explore the cross-over region by increasing the size of

Figure 22 (online color at: www.lpr-journal.org) Dipole-dipole
interaction. (a) Experiment: the forward beam (upper) and
backward beam (lower), at the exit face of the crystal. The
corresponding numerical simulations of the backward beam:
(b) with an extra noise of 5% added to the input beam inten-
sity, (c) without noise. Parameters: maximum input intensity
|Fo|> = |BL|> = 1.31;, T = 7.17, L = 5.75Lp = 23 mm, initial
beam widths (FWHM) 20 um, and the initial distance between
the dipole partners 40 um. Reprinted from [57].
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Figure 23 (online color at: www.Ipr-journal.org) Circular saw
instability of the backward beam, presented in the direct and
in the inverse space (the second column), for AT'’L = 0.8 (close
to the absolute minimum of the threshold curve). Transverse
intensity distributions of the backward beam at the exit face
are presented at different times, for three values of FWHM,
recorded at the left edge of each of the rows. Circular saw-like
rotating blades become visible in a region of FWHM, after a
long transient development. Parameters: |F(0)|> = |B(L)[> =
I'=6.68, L=1.5Lp. The size of the transverse window in the
direct space is 400 x 400 um. Adopted from [58].

the soliton beams, until they display MI. A smooth transition
from the soliton split-up instabilities of narrow beams to the
pattern-forming transition of broad beams is observed.

An interesting consequence of the finite size effects is
the appearance of the circular saw instability, presented in
Fig. 23. It appears in the form of circular saw-like rotating
blades, visible in an intermediate region of beam widths,
and it is caused by the MI at the edge of the beam pro-
file. It happens very close to the absolute minimum of the
control parameter AL = /4 and is very robust. The ro-
tation of optical beams along the propagation direction in
saturable Kerr-like media generally appears through a bi-
furcation in the spatial domain. Here the bifurcation from
hyper-Gaussian beams into rotating structures is due to a
spatial symmetry breaking associated with a Hopf bifurca-
tion in the time domain.

For a higher value of the control parameter AT'L = 2,
where one cannot expect that stability analysis is applica-
ble (see Fig.8), a more complex behavior in the form of
higher-order multipole structures was found (Fig. 24). For
the narrow width of incident beams, FWHM = 20 um, a
rotating displaced soliton was seen at the exiting faces of
the crystal, after a split-up transition. At a larger width
(FWHM = 100 um) a hexagonal structure was observed in
the beginning, which was followed by a regular rotation
of filaments. Since for the parameters of such stable peri-
odic solution there exist no stable steady state, and since
numerically Eq. (3a) is equivalent to a scalar nonlinear delay-
differential equation, this phenomenon is recognized as
the supercritical Hopf bifurcation. For FWHM = 140 um,
steady octagonal structure appeared. For the next FWHM,

www.lpr-journal.org

© 2011 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



LASER & PHOTONICS

REVIEWS
230 M. Petrovi¢, M. Beli¢, C. Denz, and Yu. Kivshar: Counterpropagating optical beams
; 40
641 17" t 301 200t ot 2_ stable vortex
r IFOI _'3 « stable tripole
0 35 coe e+ + 2 stable quadrupole
“ quadrupole into tripole
30 coe #+ + @ quadrupole into
20 AT quadrupole
- Ik + stable dipole
44 25 Soeer « rotating dipole
: ° g ;::;I + unstable
?o? 2 agiaat 4
0.9 sssttadaest,
100 . ] —
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dynamical multipole structures as the FWHM of the backward 5
beam is increased, presented at two instances, for the control 0 1 2 3 4 L 5
parameter AI'L = 2. The figure should be viewed as a two-
column picture. Parameters: |[F(0)> = |B(L)|> =3, T = 10.9, _ ‘ . .
L =3Lp. The size of the transverse window is 360 x 360um.  Figure 26 (online color at: www.lpr-journal.org) Typical be-

Adopted from [58].

after a set of various regular patterns, irregular structures
took place. It should be mentioned that all of these struc-
tures appear after a prolonged temporal development, when
the secondary instabilities set in and the interaction of NL
modes takes place.

6.2. Vortex beams

Colliding vortices with opposite topological charges were
considered in [28]. In this case the beams break up, generally
into more than two filaments. In Fig. 25 the case of two
CP counter-rotating vortices is displayed, which break into
three beamlets with phase shifts of 277/3. After a while the
beams form stable rotating structures that do not change in
time. When viewed in their exit faces, the beams form true
rotating propellers. Such stable rotating state is interesting
for developing transverse MIs over a fraction of diffraction

>
W -

Forward Backward

Figure 25 Iso-surface plots of two CP vortices, with charges
=+1. Upon collision the vortices break into three beamlets, which
co-rotate continually in the sense indicated by the arrows.
Adopted from [27].

havior of CP vortices in the parameter plane. The input vortices
have the same topological charge +1, and maximum input inten-
sities |Fy|> = |BL|> = 3. Insets list the possible outcomes from
vortex collisions. Reprinted from [59].

length, even though it is generated in an isotropic model.
Previously observed isotropic vortex vector solitons, with
copropagating components, tended to propagate for tens of
diffraction lengths before developing Mls.

Optical CP vortices in PR crystals were investigated nu-
merically in [59]. A general conclusion of numerical studies
there was that the CP vortices in a PR medium cannot form
stable CP vortex (i.e. ring-like) structures, propagating indef-
initely. For smaller values of I" or the propagation distance L
stable CP vortices were observed. Nevertheless, when they
break, they form very different stable filamented structures
in propagating over finite distances, corresponding to typical
PR crystal thicknesses, which are of the order of few Lp. Nu-
merical studies showed that the CP vortices with the same
topological charge tend to form standing waves, whereas
the vortices with the opposite charges tend to form rotating
structures. Some typical examples of collisions between sin-
gle head-on input vortices with the same topological charge
+1 are shown in Fig. 26, which represents the phase diagram
in the plane of control parameters. One can notice in the
figure a narrow threshold region which separates the stable
vortices from the other structures. The shape of the threshold
region follows the general I'L = const. form. Above this re-
gion stable dipoles, tripoles and quadrupoles are seen, in the
form of standing waves. For higher values of the parameters,
the following quasi-stable situations are identified: the trans-
formation of a quasi-stable quadrupole into a stable tripole,
several transformations of quadrupoles into quadrupoles,
and a stable rotating dipole. Above the quasi-stable region,
CP vortices produced unstable structures.

6.3. Counterpropagating beams in
liquid crystals

Nematic liquid crystals (NLC) exhibit huge optical nonlin-
earities, owing to large refractive index anisotropy, coupled
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with the optically-induced collective molecular reorienta-
tion. They behave in a fluid-like fashion, but display a long-
range order that is characteristic of crystals. Thanks to the
optically nonlinear, saturable, nonlocal and nonresonant re-
sponse, NLC have been the subject of considerable study
in recent years. The behavior of CP self-focused beams in
bulk NLC, both in time and in three spatial dimensions was
investigated in [60, 61], using an appropriately developed
theoretical model and a numerical procedure based on the
beam propagation method.

The evolution of slowly-varying beam envelopes F and
B, linearly polarized along x axis and propagating along z
axis in a NLC cell, is described by the following paraxial
wave equations:

oF
2ika— + AF + I3 g,[sin® 6 — sin?(6re)]JF =0, (15a)
Z
JdB
—2ik —— + AB + k€ [sin? 6 — sin®(Bies)]B =0, (15b)

0z

where F and B are the forward and backward propagating
beam envelopes, k = kong is the wave vector in the medium,
& = n? — n% is the birefringence of the medium, and A is
transverse Laplacian. The rest distribution angle Oy in the

presence of a low-frequency electric field is modeled by:

erest(zyv) = GO(V) + [ein - GO(V)]

“lexp(=z/2) +exp(=(L—-2)/2)],  (16)

with 6y(V)) being the orientation distribution due to the ap-
plied voltage far from the input interface. 6;, is the director
orientation at the boundaries z = 0 and z = L, where L is the
propagation distance and 7 is the relaxation distance. The
temporal evolution of the angle of reorientation is given by
the diffusion equation:

Pl 1
vy, = Kby + ok sin(20)[|F|>+ [B]*],  (17)

where 7 is the viscous coefficient and K is Frank’s elastic
constant. Here 6 is the overall tilt angle, owing to both the
light and the voltage influence.

It was found numerically [60,61] that the stable vector
solitons can only exist in a narrow threshold region of con-
trol parameters. Bellow this region the beams diffract, above
they self-focus into a series of focal spots. Spatiotemporal
instabilities were observed as the input intensity, the propa-
gation distance, and the birefringence were increased. The
effect of the input intensity variation on the CP Gaussian
beam propagation is presented in Fig. 27. For smaller inten-
sities [Fig. 27a] self-focusing is too weak to keep the beam
tightly focused, so it can not pass through unchanged, as a
spatial soliton. %By increasing the beam intensity [Fig. 27b]

[ -

t=0.1757

Figure 27 (online color at: www.lpr-journal.org) Beam prop-
agation, shown for one beam in the (y,z) plane, for different
input intensities: (a) I = 6 x 10°V2/m?, (b) I =7 x 10°V?/m?,
(¢) I =8x10°V?/m?, and (d) I =9 x 10'°V2/m?. In (c) the
beam intensity is also shown in the (x,y) output plane. Parame-
ters: input beam width (FWHM) 4 um, L = 0.5mm, and g, = 0.5.
Adopted from [61].

at one point stable soliton propagation is achieved. For still
higher intensities transverse motion of the beam is observed,
in the form of one [Fig.27c], or two consecutive jumps,
resembling beam undulations. For further increase of the
intensity unstable dynamical behavior of beams [Fig. 27d]
is seen.

An interesting experimental account on the interaction
of CP solitons in a NLC E7 cell is provided in [62]. Ex-
periments are performed to estimate the nonlocality of the
reorientational nonlinearity in thick samples. The attrac-
tion of spatial optical solitons — so-called nematicons [63]
— counterpropagating parallel to each other and at different
small distances is displayed. An experimental method to
estimate the width of the refractive index profile in a NLC
sample excited by a narrow laser beam is developed. It is
shown that the width of the index profile can nicely be fitted
by a Lorentzian curve. A rare experimental picture of a sta-
ble CP soliton pair, launched with a considerable transverse
displacement in a NLC, is presented in Fig. 28.

More recently, the interaction of counterpropagating ne-
maticons has been studied experimentally in the bias-free
liquid crystal cell [64]. It was shown that the presence of
a walk-off in the absence of bias may change dramatically
the character of the soliton interaction. Moreover, the depen-
dence of the nematicon interaction on the input power and
time provide a direct manifestation of long-range nonlocal
nonlinearity. In addition, the development of instability of
CP beams has been observed experimentally even in the
presence of a walk-off [64].
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Figure 28 Curved beam resulting from the fusion of two non-
local CP solitons. The fibres are artificially marked, the dashed
lines indicate the initial direction of the solitons. Reprinted
from [62].

7. Conclusions

We have summarized recent developments in the physics
of CP optical beams and spatial solitons, propagating in
nonlinear media. We have analyzed the formation of various
stationary modes, as well as spatiotemporal instabilities of
CP beams. We have employed several models for describing
the evolution and interactions of optical beams and spatial
solitons that propagate in opposite directions, but the ma-
jority of the results are presented for the model of saturable
PR nonlinearity. We have discussed the recent experimental
observations of the counterpropagation effects and instabili-
ties in waveguides and bulk geometries, as well as for one-
and two-dimensional photonic lattices. We have also dis-
cussed several generalizations of this concept, including the
CP beams of complex structures, such as multipole beams
and optical vortices, as well as counterpropagation in other
media, such as photonic and nematic liquid crystals.
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