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We analyze theoretically and generate experimentally two-dimensional nonlinear lattices with periodic
phase modulation in a photorefractive medium. The light-induced periodically modulated nonlinear refrac-
tive index is highly anisotropic and nonlocal, and it depends on the lattice orientation relative to the crystal
axis. We discuss the stability of such induced photonic structures and their guiding properties. © 2005 Op-

tical Society of America
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The study of nonlinear effects in periodic photonic
structures recently attracted strong interest because
of the many novel possibilities for controlling light
propagation, steering, and trapping. Periodic modu-
lation of the refractive index modifies the linear spec-
trum and wave diffraction and consequently strongly
affectls the nonlinear propagation and localization of
light.

Photonic lattices can be optically induced by linear
diffraction-free light patterns created by the interfer-
ence of several plane waves.” However, the induced
change in the refractive index depends on the light
intensity, and in the nonlinear regime it is accompa-
nied by the self-action effect.® The nonlinear
diffraction-free light patterns in the form of stable
self-trapped periodic waves can propagate without
change in their profile, becoming the eigenmodes of
the self-induced periodic potentials. This behavior is
generic since nonlinear periodic waves can exist in
many types of of nonlinear system, and they provide
a simple realization of nonlinear photonic crystals.
Such structures are flexible because the lattice is
modified and shaped by the nonlinear medium; these
flexible lattices extend the concept of optically in-
duced gratings beyond the limits of weak material
nonlinearity. Moreover, nonlinear lattices offer many
novel possibilities for the study of nonlinear effects in
periodic systems because they can interact with local-
ized signal beams through cross-}ghase modulation
and form composite bound states.®

Nonlinear photonic lattices created by two-
dimensional arrays of pixellike solitons were recently
demonstrated  experimentally in  parametric
processes® and in photorefractive crystals with both

coherent’ and partially incoherent®>® light. For the
case of two-dimensional arrays of in-phase solitons
created by amplitude modulation, every pixel of the
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lattice induces a waveguide that can be manipulated
by an external steering beam.”® However, the spatial
periodicity of these lattices is limited by the attrac-
tive soliton interaction that may lead to their strong
instability. In contrast, the recently suggested two-
dimensional lattices of out-of-phase solitons are
known to be robust in an isotropic saturable model.!°
The phase profile of such self-trapped waves re-
sembles a chessboard with the lines of 7-phase jumps
between neighboring white and black sites.

In this Letter we study two-dimensional nonlinear
lattices with a chessboard phase structure in aniso-
tropic nonlocal self-focusing media and generate such
lattices experimentally in a photorefractive crystal.
We demonstrate that the light-induced periodically
modulated nonlinear refractive index is highly aniso-
tropic and nonlocal, and it depends on the lattice ori-
entation relative to the crystal axis. We discuss the
stability of such induced photonic structures and
their guiding properties. An advantage of using this
novel type of nonlinear periodic lattice when com-
pared with in-phase lattices or incoherent soliton
arrays®’ is that such lattices can be made robust
even with smaller lattice spacing.

Spatially periodic nonlinear modes appear natu-
rally because of the self-focusing effect and modula-
tional instability.! When self-focusing compensates
for the diffraction of optical beams, it may support
both isolated spatial solitons and periodic soliton
trains or stationary periodic nonlinear waves. The
latter include the well-studied cnoidal waves, solu-
tions to the nonlinear Schriodinger equation,

id,E+V?E+n(DE =0, (1)
where I=|E|? and V? =42+4.. Similar stable periodic

waves exist in different nonlinear models, including
quadratic and Kerr-type saturable nonlinearities.
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The family of two-dimensional nonlinear periodic
waves'® can also be extended to the case of rectangu-
lar geometry with two different transverse periods
because such anisotropic deformations of the square
lattice do not enhance its modulational instability.
Stabilization of phase-engineered soliton arrays was
reported recently for an anisotropic model.

In this Letter we consider photorefractive crystal
as an example of an anisotropic and nonlocal nonlin-
ear medium. In this case the nonlinear contribution
to the refractive index in Eq. (1) is given by

nI) =Tde, (2)

where electrostatic potential ¢ of the optically in-
duced space-charge field satisfies a separate equa-
tion:

V2e+V, oV, In(1+D)=4,In(1+1). (3)
Here intensity I is measured in units of the back-
ground illumination (dark) intensity necessary for
the formation of spatial solitons in such a medium.
Physical variables x, y, and Z correspond to their di-
mensionless counterparts as (¥,y)=xy(x,y) and Z
=2kxgz, where x, is the transverse scale factor and
k=2mny/\ is the carrier wave vector with linear re-
fractive index n,. Parameter I'=x2x?n2r € is defined
through effective electro-optic coefficient r 4 and ex-
ternally applied bias electrostatic field &.

Stationary solutions to the system of Eqs. (1)—(3)
are sought in the standard form E(x,y,z)
=U(x,y)exp(ikz), where real envelope U satisfies the
equation

—kRU+V>U +Td,0U=0. (4)

We look for periodic solutions, UX,Y)=UX+27,Y
+27), and solve Egs. (3) and (4) using the relaxation
technique11 with the initial ansatz in the form of a
linear periodic mode, Uj;,(X,Y)=AsinXsinY. We
find that at least two distinct families bifurcate from
linear wave Uj;,, depending on its orientation: a
square pattern parallel to the ¢ axis with (X,Y)
=(x,y) and a diamond pattern oriented diagonally
with (X,Y)=(xxy)/ V2. Figures 1(a) and 1(b) show the
field and refractive-index distributions in the low (&
=-19,A=0.9) and relatively high (k=-15, A
=3.6) saturation regimes for both families. In the
general case of I'# 1, these two families occupy a
band % e[-2,I'-2] with amplitudes A(k) and power
densities P(k) vanishing in the linear limit 2— -2
[see Fig. 1(c)]l. Here the power density is defined as
the power of a unit cell, P=4 [ [fU?dXdY. The main
difference between the two solutions, clearly seen in
Figs. 1(a) and 1(b), comes from the refractive
index: The regions with the effective focusing lenses
are well separated for the diamonds and fuse to the
effectively one-dimensional stripes for the square
pattern in the limit of strong saturation. In Fig. 1(c)
we plot maximal and minimal values (extrema) of the
refractive index, Extr(d,¢).

In Fig. 1(d) we show the FWHM of a single inten-
sity spot in two orthogonal directions d,, character-
izing the degree of spatial localization of a cnoidal
wave.'? The ellipticity of every lattice site, &= =d,/d,
=1, depends on propagation constant k, s1m11ar to
the ellipticity of a single photorefractive soliton11 [see
Fig. 1(d)].

To test the lattice stability, we propagate numeri-
cally two types of initially perturbed periodic solution
and observe robust propagation for the distances ex-
ceeding the experimental crystal length. Figure 2
demonstrates an example of stable propagation for
the parameters close to our experimental situation.

To demonstrate experimentally both the existence
and the stability of these nonlinear periodic lattices
in anisotropic and nonlocal media, we use a setup
similar to that employed in Ref. 5. A linearly polar-
ized beam from a frequency-doubled Nd:YAG laser at
532 nm is sent to a liquid-crystal programmable spa-
tial light modulator to create a periodic light pattern
with a variable period and orientation. The output of
the modulator is then imaged by a high-numerical-
aperture telescope (demagnification of ~10) on the
front face of a 2.3-cm-long photorefractive SBN:60
crystal. The incident light is linearly polarized paral-
lel to the ¢ axis, thus experiencing strong photore-
fractive nonlinearity. The imposed pure phase modu-
lation transforms into an amplitude modulation of
the beam at the front face of the crystal, where noise
is reduced by proper spatial filtering. The crystal is
externally biased and uniformly illuminated with a
white light to control the dark irradiance. The gener-
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Fig. 1. (a) Square and (b) diamond self-trapped stationary

periodic patterns in the model in Eqs. (1)-(3) at I'=1. Fami-
lies of nonlinear waves are summarized in (¢) and (d); solid
(dashed) curves correspond to the square (diamond) pat-
terns. Both lines for A, P, and max(d,¢) coincide in (c).
Horizontal dotted lines in (d) correspond to the linear limit
'—o.



Refractive index

Intcns], GW
’ n m '

Fig. 2. Numerical results for the propagation of (a) square
and (b) diamond self-trapped patterns for '=11.8 in the
low-saturation regime with A=1 and £=-0.5. Intensities of
the lattice wave (LW) and the probe wave it guides (GW)
are shown after propagation of Z~23 mm. On the input the
lattice is perturbed by 20% of the random noise, and the
probe is a broad Gaussian beam.
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Fig. 3. Experimental results for the (a) square and (b) dia-
mond lattices. Left to right, output intensities of the lattice
after linear and nonlinear propagation and output of a
guided plane wave.
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ated periodic pattern represents a nondiffracting
beam and experiences robust linear propagation in
the crystal (at zero bias) with a negligible change in
the periodicity. The input of the generated periodic
wave is therefore identical to the linear output. A
typical example of the intensity pattern with a peri-
odicity of 31 um at the back face of the crystal is
shown in Fig. 3 (left column) for two different orien-
tations with respect to the crystal axis.

Applying an external dc electric field (&
=1000 V/cm) across the crystal provides appropriate
conditions for the formation of a single spatial soliton
of ~15-um size. Such a high voltage (nonlinearity)
influences the propagation of the periodic waves;
however, the output of the lattice does not change
qualitatively [Fig. 3 (middle column)]. Therefore the
only way to test whether the lattice propagates truly
nonlinearly is to probe whether it induces changes in
the crystal refractive index. To test this, we send a
broad plane wave through the crystal and observe its
modulation at the output. In practice, this is realized
by switching off the voltage on the modulator, thus
removing the modulation imposed on the light pat-
tern and generating a broad plane wave at the input
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of the crystal. This approach ensures that the plane
wave is propagating exactly along the induced
waveguides. Because of the slow response of the pho-
torefractive crystal, we can quickly monitor the out-
put of the plane wave without modifying the induced
refractive-index change. Output intensity distribu-
tions for two orientations of the lattice pattern are
shown in Fig. 3 (right column). The plane wave is in-
deed modulated by the induced periodic potential,
and we observe guiding of the probe beam at the
maxima of the refractive index. Besides inhomogene-
ities in the periodic pattern, the experimental pic-
tures shown in Fig. 3 are in a good agreement with
the corresponding numerical simulations presented
in Fig. 2 and demonstrate a qualitative difference in
the guided patterns for two different orientations of
the lattice. Closely related anisotropic enhancement
of discrete diffraction was demonstrated recently by
Chen et al.'?

In conclusion, we have studied theoretically and
generated experimentally two-dimensional nonlinear
photonic lattices in an anisotropic photorefractive
medium. We have found two distinct classes of self-
trapped robust spatially periodic waves with out-of-
phase neighboring sites, the square pattern oriented
parallel to the crystal axes, and the diamond pattern
oriented diagonally in the transverse plane. We have
demonstrated that the highly anisotropic refractive-
index distribution induced by the lattice differs sig-
nificantly from its isotropic counterpart and depends
strongly on the lattice orientation.
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