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Incoherent vector vortex-mode solitons in
self-focusing nonlinear media
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We suggest a novel type of composite spatial optical soliton created by a coherent vortex beam guiding a
partially incoherent light beam in a self-focusing nonlinear medium. We show that the incoherence of the
guided mode may enhance, rather than suppress, the vortex azimuthal instability, and we also demonstrate

strong destabilization of dipole-mode solitons by partially incoherent light.
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Optical vortices are associated with phase disloca-
tions of diffracting coherent optical beams.! When
optical vortices propagate in self-defocusing non-
linear media, a vortex core with a phase dislocation
becomes self-trapped, and the resultant stationary
singular beam is known as an optical vortex soli-
ton.?® However, in self-focusing nonlinear media,
optical vortices can exist as ringlike optical beams
that carry a phase singularity,* which are known to be
unstable and decay into several fundamental optical
solitons.>®

If a vortex-carrying beam is partially coherent, the
phase front topology is not well defined, and statis-
tics are required for quantifying the phase. However,
such a partially incoherent vortex beam can be stabi-
lized in a self-focusing nonlinear medium when the de-
gree of spatial incoherence exceeds a certain threshold
value, as was recently demonstrated theoretically and
experimentally.®

Waveguides induced by optical vortices in both
linear and nonlinear regimes are of special interest
because this type of waveguide is robust and can be
made reconfigurable.”® Moreover, vortex-induced
waveguides can guide large-amplitude beams beyond
the applicability limits of linear guided-wave theory,
and, together with a guided beam, they can form a
vortex-mode vector soliton or its dipole-mode gener-
alization.’®~!> Recent theoretical studies, including
rigorous stability analysis,!? suggested that the stable
propagation of spatial vortexlike stationary structures
in a self-focusing medium may become possible in the
presence of a large-amplitude guided beam.

The main purpose of this Letter is twofold. First we
demonstrate, for the first time to our knowledge, that
the initially coherent vortex beam can guide partially
incoherent light in a self-focusing nonlinear medium
and be stabilized by it against azimuthal instability,
creating a novel type of stable incoherent soliton. Sec-
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ond, we demonstrate that in some cases the incoher-
ence of the guided beam may even enhance, rather
than suppress, the vortex azimuthal instability.

We consider the mutually incoherent interaction
of two optical beams propagating in a self-focusing
saturable nonlinear medium described by the coupled
equations

.0
i A u+ Flig)u =0,
dz
. 0V
15 + A v+ F(liet)v=0, (1)

where u and v are the dimensionless amplitudes of two
fields, F(I) = I/(1 + oI), where o characterizes the
nonlinearity saturation effect, and I = |ul? + |v|?
is the total beam intensity. Spatial coordinate z is
the propagation direction of the beams, and A | stands
for the transversal part of the Laplace operator. The
model [Eqgs. (1)] describes the interaction of two mutu-
ally incoherent beams in photorefractive nonlinear me-
dia when both the anisotropy of a nonlinear response
and diffusion effects are neglected. Different types of
composite vector soliton in such a model have been pre-
dicted theoretically and were observed experimentally
in photorefractive crystals.10~12

We consider the case when one of the beams, say u,
carries a spatially localized, initially coherent optical
vortex of the form u(r,¢;z) = u(r)exp(i¢)exp(iBiz),
where B; is the vortex propagation constant, vortex
amplitude function u(r) vanishes for r — o, and r and
¢ are the radius and the phase, respectively, in cylin-
drical coordinates.

When the second field, v, is also coherent, it can
be written in the form v(r, z) = v(r)exp(iB2z), where
v(r) is the beam’s amplitude and B2 is the second
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propagation constant. However, when field v is
generated by a partially incoherent source this simple
presentation is no longer valid, and we study the beam
propagation numerically by employing the coherent
density approach.’®* This approach is based on the
fact that partially incoherent field v is represented by
a superposition of mutually incoherent components v;
tilted with respect to the z axis at various angles in
such a way that I, = > ; |v;]?, where |v;|? = G(j9)L,,
and

G(0) = (m0y) V2exp(—62/62 (2)

is the angular power spectrum. Thus the coherence
of a partially incoherent light beam is determined by
the parameter 6y; i.e., less coherence means larger 6.
Here j¥ is the angle at which the jth beam in the com-
ponent v is tilted with respect to the z axis. For our
numerical simulations we used a set of 1681 mutually
incoherent beams, all initially tilted at different angles.

Figure 1 compares the propagation of two-
component composite beams in two cases. In the
first case, shown in the upper two rows of Fig. 1, self-
trapped vortex u and beam v that it guides are both
coherent. In general, such a composite beam demon-
strates three different ways in which it could have
evolved (see, e.g., Ref. 12). When the amplitude of
guided beam v is small, vortex u decays as it does in the
scalar case.” For an intermediate value of the vortex
amplitude, the vortex is still unstable, but it evolves
into a structure with a rotating dipole component,
known as a dipole-mode vector soliton.!' Finally, for
relatively large amplitude of the guided beam both
the coherent and the partially incoherent vector-mode
soliton become stable; see Fig. 1.

The mutual interaction between the vortex beam
and the mode that it guides has the character of mutual
attraction, and it is expected to provide an effective
physical mechanism for stabilizing the vortex beam in
a self-focusing nonlinear medium. Indeed, it is well
known that a scalar self-trapped vortex beam becomes
unstable in a self-focusing nonlinear medium owing to
the effect of azimuthal modulational instability. In
this case the vortex splits into fundamental beams that
fly off the main vortex ring.® Bright solitons, how-
ever, are known to be stable in such media. As was
demonstrated for two-dimensional vortex solitons, mu-
tual attraction of the components in a two-component
system may lead to a counterbalance of the vortex in-
stability by the bright component if the amplitude of
the latter is large enough.!?

We studied the effect of partial incoherence of
a guided mode on vortex stabilization. As was
mentioned above, for an intermediate value of the
guided-mode amplitude the vortex structure does
not survive and, instead, the vortex is transformed
into a dipole-mode soliton."! An example of such
an evolution is presented in Fig. 2 (upper two rows).
Because of the initial phase dislocation carried by the
vortex, the resultant dipole rotates during its propaga-
tion. However, we can observe that, when the vortex
guides partially incoherent light, the resultant dipole
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soliton becomes more unstable and, in particular,
the instability of the vortex beam is enhanced by the
incoherence of the guided mode, as shown in Fig. 2
(lower two rows). The filaments no longer form a
rotating dipole-mode vector soliton but rather fly off
the main vortex ring.
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Fig. 1. Propagation of the vortex-mode two-component
composite soliton with B; = 1.0. Top, coherent guided
mode with Bz = 1.5. Bottom, the same for a partially
incoherent guided mode (at 8y = 0.7); both beams have the
same power as in the coherent case described above.
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Fig. 2. Comparison of the unstable propagation of coher-
ent and partially incoherent vortex-mode solitons. Top,
coherent vortex at 8; = 1.0 and coherent guided mode at
B2 = 1.45. The vortex-mode soliton evolves into a rotating
dipole-mode soliton. Bottom, the same for the partially in-
coherent guided mode (at 6y = 0.35); the vortex decays into
two separate beams.
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Fig. 3. Propagation of the dipole-mode vector solitons with
coherent and incoherent fundamental beams. The initial
profile of the beams corresponds to a solitary solution with
propagation constants B; = 1.0 for the dipole and By =
1.15 for the fundamental component. Top, the evolution
of the fundamental; bottom, that of the dipole. Although
the degree of incoherence is not very high (9, = 0.1°), it is
enough to destabilize the soliton and leads to the soliton’s
decay.
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We believe that this type of enhanced instability can
be illustrated by a simple physical argument. Indeed,
the incoherent fundamental beam can be thought of as
many beams that have different momenta in the trans-
verse plane; these momenta, pointing away from the
center of the beam, add to the momentum of the vortex
beam that decays faster than for the coherent case.

The situation is quite different when the soliton is
stable in the coherent case. Here the incoherence of
the fundamental guided mode seems to have a weak
effect on the propagation of the vortex soliton, and
it destabilizes the composite soliton only quite near
the stability threshold and only when the incoherence
is rather strong. Therefore the vortex-mode solitons
with an incoherent fundamental mode normally show
no sign of instability in a relatively broad range of the
system parameters (Fig. 1).

Thus, partial incoherence destabilizes the rotating
dipole-mode vector soliton that develops from the
azimuthal instability of the vortex. It also has a
destabilizing effect on the dipole-mode vector solitons,
which are stable in the coherent case. We simulated
the propagation of such solitons, varying the degree
of coherence of field v; an example is presented in
Fig. 3. The figure shows the propagation of the
dipole-mode soliton with an entirely coherent funda-
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mental component and the propagation of a soliton
whose fundamental component is mildly incoherent
(g = 0.1°). The fundamental and the dipole com-
ponents have equal power in both cases. It can be
seen that the soliton with the incoherent fundamental
component decays, whereas the coherent one remains
stable.

In conclusion, we have introduced a novel type of
composite spatial soliton consisting of a vortex guiding
copropagating partially incoherent light. The vortex
beam, known to be unstable in a self-focusing non-
linear medium, can be stabilized by a large-amplitude
guided mode above a certain value of its incoherence,
whereas for a low-amplitude bright component the in-
coherence may even enhance, rather than suppress, the
instability.
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