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Abstract

A time-dependent model for the formation of self-trapped optical beams in
photorefractive media by counterpropagating laser beams is analysed. It is
shown that dynamically the beams may form stable steady-state structures
or display periodic and irregular temporal behaviour. Steady-state solutions
of non-uniform cross section are found, representing a general class of
self-trapped waveguides, that include counterpropagating spatial vector
solitons as a particular case. Two critical curves are identified in the plane of
parameters, the first one separating vector solitons from the stable
bidirectional waveguides and the second one separating stable waveguides
from the unstable ones. Dynamically stable rotating beam structures are
discovered that have no analogues in the usual steady-state theory of spatial

solitons.
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photorefractive crystal

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Thus far spatial screening solitons [1] have been considered
almost exclusively in the copropagation geometry. A few
exceptions exist, notably the investigations by Haelterman
et al [2], in which bimodal counterpropagating (CP) solitons
in Kerr media have been treated, and by Cohen et al [3], in
which collisions of solitons propagating in opposite directions,
in both Kerr and local photorefractive (PR) media, have
been addressed. Both accounts have been in one transverse
dimension (1D) and steady-state. However, it is known
that CP wave mixing geometries in PR media are prone to
instabilities [4—6]. In fact, such geometries are often employed
for transverse optical pattern formation in 2D [7]. On the
other hand, one may easily envisage interest in the stable self-
adjustable bidirectional connection of two arrays of beams
across a PR crystal. It is therefore of interest to investigate the
behaviour of CP beams in PR crystals in 2D, under conditions
favourable to the formation of self-trapped optical structures.

1464-4266/04/050190+07$30.00 © 2004 IOP Publishing Ltd  Printed in the UK

In this paper we review some of the known features of
CP self-trapped beams in PR media and add new results. We
analyse equations for the propagation and interaction of CP
beams, similar to the equations for the bimodal CP solitons
in Kerr media [2], or the colliding screening solitons in
PR crystals [3]. We formulate a time-relaxation procedure
for the determination of space charge field and refractive
index modulation in PR crystals, which serve as an input
to the propagation equations. We display numerically the
temporal formation of bright spatial screening vector solitons
formed by CP beams, and discuss their interactions in (1 + 1)
and (2 + 1) spatial dimensions. Beyond soliton solutions,
we introduce a more general class of steady-state induced
waveguides, that arise through a symmetry breaking transition
of solitons. Additionally, situations where the interacting
beams do not converge to a stationary structure, but alternate
between different states, are reported. Dynamical effects are
found important for understanding the behaviour of CP beams.
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Finally, stable rotating beam structures are presented that have
no analogues in the copropagating geometry. Such dynamical
states cannot be accessed by the usual steady-state [1] theories
of spatial solitons.

Section 2 of the paper introduces the model. The
refractive index change is connected to the space charge field,
and introduced into the paraxial propagation equations. In
section 3 results concerning the (1 + 1)D case are presented.
Stable and time-dependent solutions in the form of simple
bidirectional waveguides and dipole-mode vector solitons are
depicted. The symmetry breaking transition of CP solitons
into bidirectional waveguides is found, and a critical curve in
the plane of parameters determined. A second critical curve in
the parameter plane is identified, separating stable waveguides
from the unstable ones. Differences between coherent and
incoherent interaction of CP beams are highlighted, and
a transverse symmetry-breaking dynamical solution with
complicated beam structure is presented. Section 4 deals
with the (2 + 1)D results in the form of dipole-mode vector
solitons and rotating dipoles. An example of colliding vortices
with opposite topological charges is shown, leading to a stable
rotating state. Section 5 brings conclusions.

2. The model

2.1. Refractive index modulation

We consider CP light beams in a PR crystal, in the paraxial
approximation, under conditions suitable to the formation of
spatial screening solitons [8]. As a working example we
adopt experimental data [9] on the Nd:YAG laser at 532 nm,
illuminating an SBN:Ce60 crystal. The optical field is given as
the sum of waves F exp(ikz+iwt)+ B exp(—ikz+iwt) counter-
propagating along the z direction, k being the wavevector in
the medium, and F and B are the slowly varying envelopes
of the beams. The light intensity / is measured in units of
the background light intensity, necessary for the generation of
solitons. After averaging in time on the scale of response time
79 of the PR crystal, the total intensity is given by:

1+1 =+ Ip){1 +e[mexpikz) +c.c.]/2}, (1)

where Iy = |F|?>+|B|*, m = 2FB*/(1 + I)) is the modulation
depth and c.c. stands for complex conjugation. Here the
parameter ¢ measures the degree of temporal coherence of
the beams related to the crystal relaxation time. For ¢ = 0,
i.e. when the relative phase of the beams varies much faster than
79, the beams are effectively incoherent. In the opposite case
& = 1, the intensity distribution contains an interference term
which is periodically modulated in the direction of propagation
z, chosen to be perpendicular to the c-axis of the crystal, which
is also the x-axis of the coordinate system. Beams are polarized
in the x direction, and the external electric field E., necessary
for the formation of self-trapped beams, also points in the x
direction.

The electric field in the crystal couples to the electro-optic
tensor, giving rise to a change in the index of refraction of the

form
3

1o
An = _EreffEtotv (2)

where ngo is the unperturbed index, rey is the effective
component of the electro-optic tensor (in this case r33), and

E\y is the x-component of the total electric field. It consists of
the external field E. and the space charge field E. generated
in the crystal, Ei = E¢ + E..

2.2. Space charge field

The light intensity modulates the space charge field, which is
represented in the normalized form

Ey/E. = Eo + 3[E exp(2ikz) +c.c.] 3)

where Ej is the homogeneous part of the x-component of the
space charge field, and E (x, z) is the additional slowly varying
part of the space charge field proportional to ¢, |0.E;| <
2k|E{|. It is Ej that screens the external field, and E; is
the result of the interference pattern along the z direction. It
vanishes together with the intensity modulation for incoherent
beams, i.e. in the limit £ = 0.

In a simplified approach, one assumes a local, isotropic
approximation to the space charge field, and looks for a solution
with saturable nonlinearity E., = E./(1 + I). Substituting
equations (1) and (3) in this expression, neglecting higher
harmonics and terms quadratic in m, we obtain as a steady-
state solution

10 em

Ey=——— E,=— . 4
0 1+107 : 1+10 ()

The temporal evolution of the space charge field is
assumed to be a relaxation-type dynamics [10]

)

GEy+ Eg = ——, 5

10, Eg + Eo T+ 1 (5a)
em

1,E\+E = ———, (5b)
1+ 1

where the relaxation time of the crystal t is inversely
proportional to the total intensity T = 1o/(1 + I),
i.e. illuminated regions in the crystal react faster. The assumed
dynamics is that the space charge field builds up towards the
steady-state, which depends on the light distribution, which in
turn is slaved to the slow change of the space charge field. As
will be seen later, this type of dynamics does not preclude a
more complicated dynamical behaviour.

2.3. Propagation equations

Selecting synchronous terms in the nonlinear paraxial wave
equation, one obtains propagation equations of the form

i0.F + (0] +9;)F =T[EoF + E|B/2], (6a)

—i0.B + (3; +0;)B =T[EoB + E{F/2], (6b)

where I' = (knoxo)*reis Ee is the coupling strength, and the
rescaling (x,y) — (x/xo,y/x0), 2 — z/Lp, (F,B) —
(F, B)exp(—il'z) is used. Here x( is the typical beam
waist and Lp = 2kx{ is the diffraction length. Propagation
equations can be put in a universal dimensionless form
that contains no parameters or coupling constants. All the
parameters are then hidden in the scaling quantities and the
initial and boundary conditions. We prefer the form given
here, with one explicitly given intensive control parameter I.
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Figure 1. Bidirectional waveguide in the (x, z) plane. (a) Total
intensity distribution in a stable configuration, for I' = 3 and the
propagation distance L = 10Lp. (b)—(d) Unstable configuration for
the same I" and for L = 15Lp. (b) Developing modulational
instability at time = 207j. (c) Unstable configuration at t = 607.
(d) Unstable configuration at t = 907. Initial peak intensities are
Ir = Iy = 1.5, & = 0, transverse data size 10 beam waists.

The corresponding extensive control parameter is the crystal
length L.

The propagation equations are solved numerically,
concurrently with the temporal equations. The numerical
procedure consists in solving equations (5) for the components
of the space-charge field in time, with the light fields obtained
at every step as guided modes of the induced common
waveguide. This is achieved by an internal spatial relaxation
loop, i.e. nested within the temporal loop, based on a
beam-propagation method for the right- and left-propagating
components. Both loops are iterated until convergence, which
however is not necessarily reached in the temporal loop. In
that case a time-dependent, dynamical state is obtained. The
procedure is described in [6, 11].

3. One-dimensional results

3.1. Counterpropagating solitons and waveguides

‘We consider first the results in (1+1) spatial dimensions. Head-
on collision of beams with appropriate initial conditions and
parameter values, after temporal relaxation to a steady-state,
results in the formation of a CP soliton, similar to the one
found in [3]. Shooting initial beams with arbitrary parameters
generally leads to a z-dependent non-stationary character of the
beam propagation. In some domain of the initial parameters,
for example with the relative angle of beam scattering 6 close
to 7 and small initial transverse offset, our time-relaxation
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Figure 2. Counterpropagating dipole-mode vector soliton, (x, z)
cross section. Left column, the dipole component, propagating to
the right. Right column, the fundamental beam, propagating to the
left. (a) and (b) Stable configuration for I' = 10/3 and the beam
intensities /[ = Iy = 2. (c) and (d) Unstable configuration for the
same ", but for an increased intensity of the dipole beam, I =5, at
time 1 = 507. (e) and (f) The same configuration as in (c) and (d),
but at # = 1007y. The propagation distance is 40 Lp, € = 0. The
transverse size of data windows is 20 beam diameters. The unstable
configurations repeat themselves after approximately 1307 steps.

procedure converges to stationary structures, which we denote
as steady-state self-trapped waveguides.

The formation and dynamics of a single bidirectional
waveguide is shown in figure 1. Two incoherent Gaussian
beams are launched at different lateral positions perpendicular
to the crystal edges, & = m. When the initial separation
is 4 or more beam diameters, the beams hardly feel the
presence of each other, and focus into individual solitons. For
the separation of 1 beam diameter the interaction is strong
enough for the beams to form a joint waveguiding structure.
Both beams diffract initially, until the space charge field is
developed in time to form the waveguide induced by the total
light intensity, and this induced waveguide traps both beams
(figure 1(a)). If, however, the propagation distance is increased
from 10Lp to 15Lp, a modulational instability develops,
which prevents the beam configuration from converging
(figures 1(b)—(d)). It changes continually, without repeating
configurations in the limited time of observation. Such
dynamical states are impossible to reach by the usual steady-
state analyses of spatial solitons [1].

One can easily generalize this approach, by introducing
higher-order CP solitons, similar to the multihump vector
solitons in copropagating geometry (see, e.g. [12]). In figure 2
we present a particular case of a dipole-mode CP soliton. A
dipole beam is launched from the left, and a power-matched
single beam from the right. Such a bimodal CP soliton
has been studied in [2] and has been found to be stable in
the copropagating geometry [12]. A stable dipole-mode CP
soliton is presented in figures 2(a) and (b). When the intensity
of the dipole component is increased from 1.5 to 5, after an
initial convergence to a dipole-mode soliton, a modulational
instability develops, which forces a periodic repetition of
the beam configuration after approximately 1307, intervals.
Typical phases are depicted in figures 2(c)—(f).

We would like to note here that not only for increasing
propagation distances, i.e. for larger crystal thicknesses, and
forincreasing beam intensities, but also for increasing coupling
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Figure 3. Critical curves in the parameter plane for the existence of
stable CP solitons, bidirectional waveguides and unstable solutions
(1D). L is given in units of Lp, and I is a dimensionless quantity.
Below the first curve CP solitons exist, between the curves
bidirectional waveguides appear. At and above the second curve
unstable solutions emerge. Insets depict typical beam intensity
distributions in the (x, z) plane at the points indicated. The points
are numerically determined, the curves are inverse power
polynomial fits.

strengths the development of longitudinal modulational
instabilities in time is observed, even for the initial beams
corresponding to the exact steady-state solitons. Modulational
instability is a topic of ongoing research and beyond the
framework of the present paper. Linear stability and
nonlinear dynamical analyses will be reported elsewhere. Here
we present threshold curves and a characteristic dynamical
behaviour, obtained numerically.

3.2. Symmetry breaking transition

To capture the transition from a CP soliton to a waveguide
more clearly, we consider the head-on collision of two identical
Gaussian beams. In the absence of the other, each beam
focuses into a soliton. We are interested in what happens when
they are both present, and when the coupling constant I" and the
crystal length L are both varied. The situation is displayed in
figure 3. Itis seen thatin the plane (L, I') of control parameters
there exists a critical curve below which stable CP solitons exist
(the first curve in figure 3). At that critical curve a new type
of solution appears, in which the two components no longer
overlap, but split and cross each other. A few examples are
depicted in the insets in figure 3. As the beams split, a portion
of each beam remains guided by the other, therefore we term
these solutions bidirectional waveguides. Both the solitons
and waveguides are steady-state solutions.

As one moves away from the first critical curve, into
the region of high couplings and long crystals, a new critical
curve is approached, where the steady-state waveguides loose
stability. The second critical curve is also drawn in figure 3,
and the insets to the curve show typical unstable beam profiles.
The shape of these curves suggests an inverse power law
dependence, and the theory confirming such a dependence is
presented elsewhere [13]. At and beyond the second critical
curve, dynamical solutions emerge, some examples of which
have already been presented in figures 1 and 2. The time

Figure 4. (a) Incoherent, & = 0 and (b) coherent, ¢ = 1 interaction
of two pairs of CP beams, in steady-state and the (x, z) plane. The
initial offset is 4x, for the in-phase beams propagating to the right
and 2x, for the out-of-phase beams propagating to the left.
Parameters and layout as in figure 1.

dependence varies from periodic, such as the one in figure 2,
to aperiodic, such as the one in figure 1. A richer dynamical
behaviour is observed in 2D, as compared to 1D, since there
one has a larger phase space at disposal, and can launch beams
carrying angular momentum and/or topological defects in their
structure. Some examples are presented in later sections.

3.3. Coherent and incoherent interaction

Having observed different steady-state incoherent self-trapped
structures, we examine the difference between coherent and
incoherent interaction of beams. It should be stressed that
in this paper we are using an isotropic, local description of
saturable PR media. The anisotropic, nonlocal description
offers different results. In fact, in the anisotropic description
the influence of the modulated component of the space charge
field is reduced, and the coherent case appears similar to the
incoherent case. As will be seen in a moment, the difference
is not that pronounced in the isotropic approximation either.

Two steady-state solutions with the same boundary
conditions but for different degrees of mutual coherence ¢ are
shown in figure 4. CP beam components made of two pairs
of beams are launched with a lateral offset. The beams to the
right are in-phase, and aim at the centre of the opposite crystal
face. The beams to the left are out-of-phase, and launched in
parallel. Figure 4(a) displays the incoherent interaction, ¢ = 0.
The beams attract, focus and overlap tightly, but the ones to the
right are still capable of building an intense spot in between
the other two. However, in the coherent case ¢ = 1, shown
in figure 4(b), the beams focus and overlap less, and the ones
to the right are expelled from the region in between the other
two. Also, the timescale of the build-up dynamics is shorter
for the coherent beams than for the incoherent beams.

3.4. Dynamical symmetry breaking

Of special interest are those self-trapped structures that
dynamically do not converge to a steady state. Such structures
represent novel time-dependent, as well as z-dependent,
waveguides that cannot be described by the usual steady-
state theory of spatial solitons. Whereas the z-dependence
can be ascribed to the general definition of longitudinal
waveguide modes, the time-dependence is a novel feature,
caused by the slow response of PR crystals. In addition to the
presented incoherent and symmetric cases, another example is
depicted in figure 5, where a collision of the three against two
power-matched coherent beams is presented, which ends in
a dynamic symmetry-breaking transition to a spatiotemporal
chaotic state. The initial configuration is such that the three
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(b)

(c)

(d)

Figure 5. Symmetric unstable quasi-periodic self-organized beam
structure at different times, (x, z) cross section. (a) and (c) three
in-phase beams propagating to the right, (b) and (d) two
out-of-phase beams propagating to the left; (a) and (b) are at

t =407, (c) and (d) at t = 907y. The components have equal
powers, I' = 10, & = 1. Other parameters as in figure 1.

beams propagating to the right interfere constructively (a)—
(c), to overlap with the two counterpropagating out-of-phase
beams (b)—(d). These two beams, propagating to the left,
repel and overlap with the two outside-lying opposite beams.
During the time evolution of this dynamical state we observe
several alternations of transversely symmetrical structures,
similar to the ones shown in figure 5, and identified such
behaviour as a quasi-periodic self-oscillation, clearly seen in
figure 6 for t < 1167. At that point the development of
transverse symmetry-breaking instability is observed, which
results in irregular spatiotemporal dynamics, shown in figure 6
fort > 1167.

4. Two-dimensional results
4.1. Dipole-mode vector soliton

In (2+1) spatial dimensions we reconsider some of the (1+1)D
interesting cases, and then present some cases which have no
1D analogues. A general conclusion is that 2D configurations,
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similar to the 1D results, tend to form stable states for weaker
couplings and shorter propagation distances. For stronger
couplings and/or longer propagation distances, modulational
instabilities set in, leading to periodic, quasiperiodic or chaotic
states. We present here only the stable or rotating states
that cannot be accessed by the usual steady-state theory of
spatial solitons. We also confine our attention to incoherent
CP beams. The parameters for the 2D numerical runs are
the same for all the cases, and are: the coupling strength
I' = 19.1, the propagation distance L = Lp/3, the beam
width xo = 10 um. For these parameters one observes only
the steady-state configurations or the stable rotating ones.

Figure 7 presents the formation of a stable dipole-mode
vector soliton in 2D. Our simulations indicate that if the CP
components have equal powers the vector solitons formed are
unstable even for relatively short thicknesses of the medium
(L ~ Lp). The instability breaks the symmetry in the
transverse plane, so that initially overlapping CP beams do not
overlap after some time. In figure 7 the propagation distance is
short enough for the formation of a stable displaced CP dipole-
mode soliton. The incident profiles on the front and back faces
of the crystal are the numerically calculated solitary solutions
for the copropagating dipole-mode vector soliton.

4.2. Rotating dipoles

When a fundamental beam is counterpropagated against a
vortex beam, there is no deviation of the beams during
propagation through the crystal (figure 8). In time, and away
from the z = L face, the vortex breaks into a dipole beam that
continually rotates clockwise or counterclockwise, depending
on the sign of the vortex topological charge. The fundamental
beam splits into a two-peaked beam that in each z-section of
the transverse plane (away from the crystal faces) corotates and
overlaps with the dipole beam coming from the vortex. The
temporal dynamics is shown in figure 8. At ¢ = 5t the vortex
has not yet broken into a dipole, and the fundamental is not
yet deformed. At¢ = 107y however, the vortex beam incident
upon the back face of the crystal leaves the crystal as a dipole.
This brings about the deformation of the fundamental beam,
which eventually splits into two beams. Note that the dipole
and the fundamental beam are shown at two different faces
of the crystal, z = 0 and z = L, respectively. Watching the
temporal changes, the dipole and the fundamental beam form
a stable corotating dynamical state of the system (actually, the
beams are counter-rotating in their propagation senses).
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Figure 6. Temporal evolution of the output intensity distribution of the two-lobe left-propagating beam at the left face of the crystal. The
dashed line at r = 1167, shows the place of symmetry breaking of figure 5, where the modulational instability breaks the transverse

symmetry.
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Forward
Beam - - /]\ z=L
d
Backward
Beam e L] /]\ z=0
d
solitary t=20
profile

Figure 7. Counterpropagating fundamental and dipole beam. Left
column, the incident profiles on the front and back faces of the
crystal. Right column, the exiting profiles on the back and front
faces of the crystal, after + = 207,. After that time the beam profiles
no longer change. Vectors d point the direction in which the beams
deviate during propagation.

=5 . °

t=10 ‘ &

t=11

t=12 - ..

z=L z=0

Figure 8. Temporal evolution of a fundamental beam and a CP
vortex at the back and front crystal face. Left column, the
fundamental beam, right column, the vortex, at different times,
expressed in units of 7.

4.3. Colliding vortices

In the case of colliding vortices with opposite topological
charges the beams also break up, but generally into more than
two fragments. In figure 9 the case of two counterpropagating
counter-rotating vortices is displayed, which break into three
beamlets with phase shifts of 27r/3. After a while the beams
form stable rotating structures that do not change in time.
When viewed in their exit faces, the beams form true rotating
propellers [14]. Such stable rotating states, the colliding
vortices and the rotating dipoles, are truly interesting for
developing transverse modulational instabilities over a fraction

—

Forward

Backward

Figure 9. Iso-surface plots of two CP vortices, with charges +1.
Upon collision the vortices break into three beamlets, which
corotate continually in the sense indicated by the loops.

of diffraction length, even though they are generated in an
isotropic model. Previously observed isotropic vortex vector
solitons, with copropagating components, tended to propagate
for tens of diffraction lengths before developing modulational
instabilities.

5. Conclusions

In summary, we have developed a theory of dynamical
self-trapped bidirectional optical beam structures. In
counterpropagating geometry, the inclusion of time-dependent
effects was found to be crucial for the formation of joint
waveguiding structures. We demonstrated the generation
of counterpropagating (1 + 1)D and (2 + 1)D vector
solitons numerically and proposed more general classes
of non-solitonic steady-state and rotating structures. A
symmetry breaking transition of CP solitons into bidirectional
waveguides is found, and a critical curve in the parameter plane
determined. A second critical curve is discovered, separating
stable waveguides from the unstable ones. The level of
temporal coherence of interacting beams influences the mutual
coupling due to the formation of a refractive index grating. In
addition to the generation of steady-state induced waveguides,
the dynamic alternation of states followed by a transverse
modulational instability, as well as the onset of longitudinal
modulational instabilities leading to spatiotemporal chaos
were observed.
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