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Abstract
We describe different types of self-trapped optical beam carrying phase
dislocations, including vortex solitons and ring-like soliton clusters. We
demonstrate numerically how to create such nonlinear singular beams from
the interaction of several fundamental optical solitons. Mutual trapping of
several solitons can be regarded as a synthesis of ‘soliton molecules’, and it
corresponds to a transfer of an initial orbital angular momentum of a system
of solitons to a spin momentum of an optical vortex.
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1. Introduction

Phase dislocations carried by the wavefront of a light beam
are associated with the zero-intensity points where the light
intensity vanishes. The phase of the wave is twisted around
such points creating a structure associated with an optical
vortex. Optical beams with phase dislocations play an
important role in linear singular optics [1].

In self-focusing nonlinear media, an intense finite-
extent laser beam becomes localized due to the self-trapping
mechanism which can compensate for the beam diffraction.
The nonlinear self-action of light may result in the formation
of stationary structures with both intensity and phase remaining
unchanged along the propagation direction. Such self-trapped
stationary structures of light beams are termed spatial optical
solitons [2]. When such solitons have phase singularities,
they determine the internal structure of the beam; they can
be stabilized by the light self-action generating nonlinear
self-trapped optical beams carrying phase dislocations.
Examples of such beams include vortex solitons [3–5] with
point screw dislocations, multipole vector solitons [6] with
π-edge dislocations, and more complicated ‘necklace’-type
beams [7–9] and soliton clusters [10] with a combination of
a screw dislocation at the beam centre and, generally, ϑ-edge
dislocations, where ϑ is the phase jump between neighbouring
peaks in the intensity distribution [10].

The fundamental optical solitons show a fascinating
combination of the properties of classical wavepackets together

with a number of particle-like properties demonstrated in their
elastic and inelastic interactions and mutual scattering, when
each of the solitons preserves its identity. Moreover, the
coherent interaction between the solitons depends strongly
on a relative phase which provides an additional degree of
freedom to control the interaction. We may draw an analogy
between the spatial soliton and the ‘atom of light’, and then
the soliton collision and interaction can be treated in terms
of the effective forces acting between these effective ‘atoms’.
Following this concept, the higher-order multi-hump optical
beams can be regarded as bound states of ‘atoms’ trapped by a
common potential induced in a nonlinear medium. A balance
of the interaction forces acting between the solitons is the
necessary condition for the formation of the soliton ‘clusters’
or ‘molecules of light’.

In this paper we investigate the excitation of higher-order
beams, including optical vortices and soliton clusters, through
the inelastic soliton scattering and mutual trapping of initially
well separated fundamental solitons, the effect resembling a
synthesis of ‘soliton molecules’. In addition, we propose the
application of this effect in the context of ‘soliton algebra’ [11]
regarding the fundamental spatial solitons as the information
carriers, and the transformation of an optical pattern induced
by the soliton interaction as all-optical soliton switching.

2. Optical vortex solitons and soliton clusters

Optical vortices were introduced as the first example of a
stationary light beam with the phase twisted around its core;
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Figure 1. Intensity and phase distributions for the optical vortex
soliton and soliton cluster composed of four fundamental beams.
Note that in terms of the azimuthal coordinate θ = tan−1(y/x), the
vortex phase is given as a linear function mθ with integer m, while
the staircase-like phase of the cluster is a nonlinear phase
dislocation.

the twist is proportional to 2π with integer m, the so-called
topological charge of the phase dislocation [3]. The physical
model analysing the evolution of the slowly varying field
envelope E is described by the nonlinear Schrödinger equation,

i
∂E

∂z
+ �⊥ E + f (I)E = 0, (1)

where �⊥ is the transverse Laplacian, and z is the propagation
distance measured in the units of the diffraction length.
Function f (I) describes the nonlinear properties of an optical
medium, and it is assumed to depend on the total beam
intensity, I = |E |2. The simplest spatially localized solution
of equation (1) carrying a phase dislocation, i.e. the vortex
soliton, can be written in the form: E(r, θ, z) = A(r)eimθ+iβz ,
where A(r) and β are the beam amplitude and propagation
constant, respectively, while r and θ are the polar coordinates
in the transverse plane.

In self-focusing nonlinear media, such vortex beams are
subject to the azimuthal modulational instability, which results
in splitting of the doughnut ring-like structure into a certain
number of the fundamental solitons. The number of splitters
and their dynamics are determined by the topological charge
of the phase dislocation corresponding to the beam angular
momentum (see, e.g., [4] and references therein).

The simplest higher-order scalar stationary solutions
found for the model (1) are a family of the radially symmetric
solitons which includes radial modes with nodes in the
form of concentric rings. The important characteristic of
these states is the soliton spin determined as a ratio of two
conserved quantities, the beam angular momentum and the
beam power. For the vortex soliton, the spin coincides with
the topological charge m of the phase dislocation carried by
the vortex. Because of the condition of the field periodicity,
the topological charge m is quantized and has integer value.
The fundamental spatial solitons and their higher-order radial
states have zero spin.

Novel types of higher-order self-trapped optical beam
can be introduced as azimuthally modulated self-trapped
structures in the form of the so-called ‘necklace’ beams [7, 8].
However, it was found that a combination of the edge-
phase dislocation with π-out-of-phase neighbour peaks cannot
produce a stationary state, and the structure becomes slowly
expanding [7]. Such a stabilization is indeed possible for
a more complicated system including the attraction between
several incoherent beams [6, 9]. Another approach to this
problem is to combine the screw dislocation in the origin
of a ring-shaped beam with the edge dislocation within the
necklace [8]. The screw dislocation introduces a centrifugal
force to the ring, being also responsible for spiralling and
mutual repulsion of the solitons in the case of vortex break-
up [4], and the edge dislocations prevents noise-induced
instability break-up of the ring. Because of a nonzero angular
momentum, the whole structure rotates with its propagation.
As a result, the stabilization of the ring-shaped multi-hump
beams requires a complex phase distribution characterized by
a fractional value of the soliton spin [8, 9].

A phase distribution required for the formation of quasi-
stationary higher-order self-trapped optical beams was found
in references [10] where the concept of soliton cluster was
introduced. In this approach, the azimuthally modulated beam
is regarded as a bound state of the interacting fundamental
solitons. Because of the phase-sensitive interaction, the
requirement of the balance of the interaction forces between the
solitons determines the beam phase in the form of a staircase-
like screw dislocation. Figure 1 compares the vortex phase
dislocation (left column) with the phase of a four-soliton
cluster, having well defined π/2 steps between the soliton
positions (right column). It was found [10] that a radially
stable dynamical bound state is formed if these phase jumps
satisfy the condition ϑ = 2πm/N , with N � 4m being the
number of solitons in the ring.

Stability of the soliton clusters has been tested
numerically for different nonlinear media, including cubic
saturating, competing cubic self-focusing and quintic self-
defocusing, and competing quadratic and cubic self-
defocusing nonlinearities [10]. The idea has also been
extended to higher dimensions, covering the case of the spatio-
temporal vortex solitons and light bullets. The common
outcome of these studies is the confirmed robustness of the
soliton clusters to random noise and strong radial perturbations.
In the latter case, the pulsating states viewed as the radial
excitations of a ‘soliton molecule’ have been observed.
Nevertheless, soliton clusters are subject to modulational
instability, and they are unstable with respect to azimuthal
perturbations. The remarkable feature of this instability
is that the number of fundamental solitons flying off the
main ring after the splitting is determined mainly by the
topological charge m instead of the initial number N of
solitons, similar to the case for the vortex solitons. For
what follows, we stress the fact that the conservation of the
angular momentum of an optical beam in an isotropic medium
determines the dynamics of splitters after break-up, so the
initial ‘spin’ angular momentum of the vortex or cluster can
be viewed as being transformed into the orbital momentum of
the spiralling splitters [4].
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Figure 2. Switching from N = 6 to 3 solitons. After reaching the
minimum radius at z = 30, the dynamically unstable three-lobe
cluster is formed with its subsequent break-up into three
fundamental solitons flying away. Note that symmetry-breaking
instability is accompanied by power and angular momentum losses
due to nonsolitonic radiation emission.

3. Soliton molecules

Recent progress in both theoretical and experimental studies
of the higher-order optical spatial solitons brought the soliton
community to the gates of the direct search for all-optical
soliton-based switching schemes, when the initial data carried
by the light distribution on the front face of the nonlinear
medium can be processed, in a predictable and controllable
way, by employing the light self-action effects. One of the
examples of such an approach is the recently proposed concept
of the ‘soliton algebra’ [11], based on the instability-induced
break-up of optical vortices to a controllable number of the
fundamental solitons. This idea also represents an example
of a nontrivial approach to the soliton instability, when the
symmetry-breaking instability, usually regarded as a serious
disadvantage in using spatial solitons, is employed as a key
physical mechanism for all-optical soliton switching from a
given initial state (optical vortex) to the known final state
defined by a certain number of fundamental solitons. This
approach can be generalized to a broad variety of scalar and
vector higher-order metastable solitons.

The symmetry-breaking soliton instability may serve as
a physical mechanism for all-optical switching with only
one disadvantage—it is a one-way process describing the
transition from an initial higher-order state (a soliton molecule
or cluster) to a number of simple stable states (dipole mode
and fundamental solitons). Below, we propose the opposite
process, viewed as the excitation or ‘synthesis’ of higher-order
states from a predefined number of initially separated solitons,
or ‘atoms of light’, in a nonlinear bulk medium. Indeed,
introducing molecules of light would not be self-consistent
without the possibility of mutual trapping of the free atoms or
molecule synthesis.

To demonstrate this phenomenon, we numerically
propagate the ring-shaped arrays of initially well separated
coherently interacting fundamental solitons in a saturable
nonlinear medium. Figure 2 shows a characteristic example of
a set of six solitons which have their relative phases growing
in steps of ϑ = π/3 along the ring, being initially directed
to collide with each other. This initial condition corresponds
to the inversion of the instability-induced ring break-up, so
the solitons move towards the ring instead of flying away.

Figure 3. Switching from N = 8 to 4 solitons. After reaching the
minimum radius at z = 18, the ring-like structure creates a
single-charged metastable vortex which breaks up subsequently into
four fundamental solitons.

We observe a highly inelastic collision of the solitons when
they strongly interact, overlapping and losing their identity.
Nevertheless, the initial phases of the solitons are tilted in
such a way that the total phase of the beams forms a screw
dislocation in the ring origin which prevents a simple fusion
of all solitons. Instead, the ring-shaped structure is formed.
A similar situation is observed in figure 3 with an array of
eight solitons and the formation of a metastable vortex ring.
Due to large amplitude modulations, these intermediate (or
metastable) structures never form ideal stationary states, and
they quickly split off to a set of new isolated solitons, with the
total number of splitters predefined by the initial conditions.
In this way, we were able to produce, as a final state, the
patterns with different numbers of solitons by changing initial
parameters, including the number and phase tilt of solitons.
Generally, the final number of solitons is determined by the
ring instability mode with the largest growth rate, and in a
saturable medium it is usually twice the topological charge [4].
At the same time, we were able to force the single-charged
‘meta-vortex’ in figures 2 and 3 to split to three and four
fundamental solitons, respectively. The intermediate meta-
state shows complex dynamics of the instability development
which may continue for several tenths of the diffraction length.
Thus, the whole picture of the soliton collision, ring formation,
and the ring splitting is somewhat similar to the ‘delayed-
action interaction’ recently reported for interacting composite
solitons carrying nonzero angular momentum [12]. We note
also that, in addition to the known transformation of ‘spin to
orbital’ angular momentum [4], in figures 2 and 3 we observe
a kind of ‘orbital–spin–orbital’ transformation. The change
of the field momentum shown in figure 2 is about 10% of the
initial value, and it occurs only at the break-up stage.

Highly unstable ring-shaped beams are formed as a
result of mutual trapping and inelastic interaction of coherent
solitons, as shown in figures 2 and 3. They represent
the intermediate steps in the process of nonlinear switching
between the states with different numbers of solitons. In the
context of the soliton algebra and all-optical switching, it might
be of interest to study in more detail and to determine the
quantitative parameters necessary to obtain the final state with
a given number of solitons. At the same time, the mutual
trapping of coherent solitons is found to be too sensitive to the
initial perturbations to produce metastable clusters.

Nevertheless, it is indeed possible to generate higher-order
optical beams, i.e. to synthesize the soliton molecules, from
interacting fundamental coherent and incoherent solitons. In
figure 4 we show the excitation of a long-lived four-lobe vector
cluster. We note that the four solitons in figure 4(b) at z = 0
are directed exactly to the centre so there is no azimuthal tilt
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Figure 4. Excitation of a four-lobe rotating vector cluster,
consisting of fundamental (row (a) and dotted lines) and modulated
(row (b) and dashed lines) mutually incoherent components. Solid
line: the total angular momentum. The arrows in row (b) show the
initial transverse velocities of interacting ‘atoms’ and rotation of the
final ‘molecule’.

of their phase. Because each soliton has a phase growing by a
jump ϑ = π/2 along the ring, similar to the cluster in figure 1,
this initial phase distribution guarantees the appearance of the
screw phase dislocation, even the corresponding value of the
total angular momentum is very small (a solid line in figure 4).
Because only the total angular momentum is conserved, not
the partial momenta of the components, there is a freedom for
components to symmetrically exchange angular momentum
during the beam propagation. After mutual trapping of all
solitons at z ≈ 25 the new vector cluster experiences strong
radial oscillations between the states with maximal (e.g. at
z = 30 and 60) and minimal partial angular momenta in the
components; see the diagram in figure 4. At the same time,
the π/2 phase jumps introduced initially between the solitons
(edge dislocations) survive these strong oscillations, and the
whole cluster preserves its structure for a distance exceeding
100 diffraction lengths. Therefore, we observe the formation
of a composite state, the soliton molecule, by colliding simple
solitons with a nontrivial phase pattern.

4. Conclusions

We have studied the scattering and mutual trapping of several
fundamental solitons and the generation of soliton clusters
and vortex solitons—the complex self-trapped states of light
carrying phase dislocations in the wavefront. Inelastic
collision of solitons has been shown to result in the formation of
ring-shaped beams or metastable vortices which subsequently
break up creating different numbers of fundamental solitons
dictated by the initial conditions. This kind of soliton delayed-
action interaction and the nonlinear transformation of the
number of fundamental solitons have been analysed in the

context of the soliton algebra and all-optical soliton switching.
We have also shown that the vectorial interaction between the
field components provides an additional mechanism of soliton
cluster stabilization. In particular, we have demonstrated the
formation of vector soliton clusters from colliding solitons,
a process which can be regarded as a synthesis of ‘soliton
molecules’.
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