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Abstract: We demonstrate the generation of large two-dimensional soliton lattices and
investigate their waveguiding properties for red and infrared wavelengths. The control of
these lattices is demonstrated, exploiting coherent and incoherent soliton interaction fea-
tures. For applications in bidirectional waveguiding, which is of interest in self-adjus-
tment of photonic devices, we investigate the formation of spatial solitons by counterpro-
pagating beams, including colliding coherent solitons and bidirectional vector-solitons.
The question of stability of these different configurations is addressed and dynamic sce-
narios are reported.

OCIS codes: 190.0190 (General); 190.4420 (Nonlinear optics, transverse effects in); 190.5330 (Photore-
fractive nonlinear optics); 190.5940 (Self-action effects); 190.5530 (Pul se propagation and solitons).

I ntroduction

Adaptive waveguides are of particular interest in al-optical information processing due to their potential to
redize large arrays as well as many configurations that allow different interconnection schemes. Optica
gpatial solitons have been proposed for these applications owing to their ability to guide waves and their
interaction capabilities, and demonstrations as waveguides [1], as directional couplers [2], light-induced Y
and X-couplers and beam splitters [3] have proven this potentia. In addition to these one- or two wave-
guide configurations, which involve only a limited number of spatid solitons, the parallel propagation of
severa spatial solitons — so-called soliton pixels, soliton arrays or soliton lattices — have been suggested for
applications in information processing [4,5]. Recently, several demonstrations showed that large arrays of
gpatial solitons can be formed in parametric amplifiers [6] or in photorefractive media for coherent [7,8],
and incoherent solitons [9]. Moreover, they have been suggested for image reconstruction applications
[7,10].

In this contribution, we combine the features of spatial photorefractive solitons to form stable constituents
during interaction and large pixel-like lattices with waveguiding features. Thereby, we realize waveguiding
in large arrays of soliton lattices at red and infrared wavelengths, and achieve control of these lattices by
phase-dependent interactions for both, copropagating and counterpropagating solitons. Most interaction
configurations have been realized up to now between solitons that co-propagate in the nonlinear material.
After having been investigated theoretically aready some time ago [11], it was only recently that
counterpropagating beams have been considered in photorefractive materias for the case of one transverse



dimension [12,13]. However, configurations of counter-propagation are of high application potentia in
bidirectiona, self-adjustable interconnections of arrays of waveguides. Here, we demonstrate the formation
and interaction of complex arrays of solitons in the counter-propagation geometry for coherent interactions.

L attices of spatial solitons

To create large two-dimensional lattices of photorefractive solitons, the conditions for stable and non-inter-
acting propagation need to be defined. A crucia point in the parallel propagation of photorefractive spatial
solitons is their anisotropic mutua interaction [14]. Because the refractive index modulation induced by
each single soliton reaches beyond its effective waveguide, phase-dependent coherent as well as separation-
dependent incoherent interactions as repulsion, attraction or fusion may appear between neighbouring array
elements [15]. These interaction effects aso affect the waveguiding features in a soliton channel. There-
fore, the parallel propagation of a multitude of solitons can only be achieved if the separation is carefully
chosen in such away to minimize al forms of interactions. In our experiments, we determined the critica
soliton distance, at which interaction occurs and fixed the distance to avalue that is beyond this limit.
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Fig. 1: Schematic setup for the creation, waveguiding and control of large lattices of photorefractive screening solitons.

To create lattices of solitons in a photorefractive crystal, the typical setup of soliton formation was
modified in such away that the laser beam derived from a frequency-doubled Nd:Y AG-laser emitting at A
=532 nm illuminates a spatia light modulator which imprints the image of a spot array onto the beam (see
fig. 1). The spatid light modulator in turn is imaged onto the front face of a photorefractive SBN60:Ce
crystal (5 x 5 x 20 mm?®, with the propagation direction along the 20 mm axis asin typical soliton formation
experiments). In order to exploit the dominant electro-optic coefficient rz3 of our SBN probe, the incident

Fig. 2: Redlization of a9 x 9 spatial soliton lattice. a) Front face of the photorefractive SBN-crystal (image of the spot array
created by a spatial light modulator, b) interference pattern due to linear propagation at the exit face of the crystal, ¢) and d)
array of 81 spatial solitons at the exit face of the crystal after 5 and 30 min of formation, respectively.



laser beam was linearly polarized parallel to the c-axis of the crystal. For the creation of soliton lattices and
testing of its waveguiding properties, regular patterns of up to 25 x 25 spots each with a diameter of about
20 um and an intensity of about 110 nW are imaged onto the front face of the crystal (Fig. 24). In the linear
case - without applied eectric field - the beams diffract on their way through the crystal and display a
typical interference pattern (Fig. 2b). Applying an external electric field of aout 1 kV/cm and using a
supplementary white light source to create an artificial dark conductivity in such a way to achieve spatia
photorefractive screening soliton formation, self-focusing forms | attices of solitons (Fig. 2c).

To obtain propagation without mutual interaction, we take care that the initial distance between single
solitons is just large enough to prevent soliton interactions. Therefore, the horizontal and vertica initial
separations are chosen to be Ax = 100 um and Ay = 124 um. Slight deviations from the symmetry are due
to inhomogeneities of the crystal. A distance smaller than the critical distance for coherent interactions
between the solitons in either case would cause the solitons to interact and eventually fuse due to their own
mutual attractive force. Such a Situation is shown in Fig. 3, where the distance was reduced by enhancing
the number of solitonsin the same transverse area.
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Fig. 3: Interaction of solitonsin large lattices for distances smaller than the critical distance of independent propagation. &)
12 x 12 solitons, with Ax = 70 um, Ay = 85 um, b) 17 x 17 solitons, Ax = 60 um, Ay = 75um, c) 25 x 25 solitons, Ax = 50
pum, Ay = 65 pm (all values + 3 um due to pixel mismatch between input configurations and the SLM device).

In our numerical smulations based on the paraxial approximation to the propagation of an optical beam in
an anisotropic saturable medium, a similar behaviour was found: paralel propagation of solitons with a
given mutua distance can be adjusted to be amost without interaction (Figs. 4a, 4b), whereas separations
below the critical lengths lead to fusion of columns of beams (Figs. 4c, 4d) in the array. In order to achieve
a closer package in such a soliton array while maintaining propagation without interaction, the phase

Fig. 4: Numerical simulation of large soliton lattices for z = 35 mm of propagation, an electric field of 900 V/cm with an
effective electrooptic coefficient of 210 pm/V, and an initial mutual distance at z = 0 of @) Ax = Ay =80 um, b) Ax = Ay =
70 um, ) Ax = Ay = 60 um, d) ) Ax = Ay = 50 yum.



relationship between different beams of the array
can be exploited. By engineering the reative
phases between different rows of beams to
alternate between 0 and Tt at the entrance face of
the materia, a propagation with reduced
interaction can be stabilized. Fig. 5 shows a
situation for alarger eectric field and a smaller
separation distance between solitons in the
lattice. However, the resulting interaction is
Fig. 5: Stabilization of soliton lattices by phase engineering of  |[ower due to the phase relationship between

the relative phases of the beams. @) Phase relationship at the neighbouring solitons that prevents interaction.
entrance face of the nonlinear material (Ax = Ay = 35um). b)

Soliton lattice for z = 35 mm propagation (E =1,3 kV/cm).
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Waveguiding in soliton lattices

To test for the waveguide properties of the single channels of such a soliton array, the wavelength
selectivity of the photorefractive effect in our SBN:Ce probe [16] is exploited to scan the soliton array with
an intense probe beam without significantly destroying single soliton channels. The wavelength of the
probe beam was either A = 633 nm or A = 1550 nm. Positioning the red or infrared probe beam
successively to the positions of the previously induced solitons on the crystals front face, we find the probe
beam to be guided in each of the soliton channels solely. Scans of this array with the red or infrared probe
beam are shown in Fig. 6. To obtain information of the complete array, every single channd is scanned
separately, and the individual images are superimposed eectronically. Infrared beams have been visualized
using an infrared converter system [17].

Naturaly, larger arrays of solitons can also be formed. Their number is mainly limited by the aperture of
the photorefractive crystal and the resolution of the inducing spatia light modulator. Examples of different
soliton lattices that can be achieved are shown in fig. 7, where the distances between neighbouring solitons
where chosen to ensure non interacting solitons. In larger arrays, severa applications of parallel soliton and
waveguide formation can be considered. As an example, digitized images consst of large arrays of
pixellike spots arranged on a square lattice. In the linear regime, such an image can be reconstructed only in
arange that is limited by the depth of focus of the imaging optics due to the blurring effects of diffraction.

Fig. 6: Probing a soliton array by waveguiding a probe beam of a different wavelength in the individual soliton channel. a)
soliton array formed at A = 532 nm, b) probing the array with A = 633 nm in individual soliton channels, c) soliton array
formed at A = 532 nm, d) probing a part of the array with A = 1550 nm, visualized with an infrared-to-visible light converter
[17]. The results are electronically added to show waveguiding of numerous solitonsin the array simultaneously.



However, if these arrays of spots are propagating in a
nonlinear, solitonic regime, we are able to enlarge the range of
focus depth to the length of the soliton formation, i.e. to the
length of the nonlinear crystal. This idea [10] has aso been
demonstrated in our system with a regular pattern of 25 spots

[8].

I nteraction in soliton lattices

Fig. 7: Examples of different configurations of ~ TO use these soliton arrays for applications in information
photonic lattices induced by spatial photore-  technology, it is highly desirable to have means of
fractive solitons. & Hexagonal lattice with  manjpulating individual waveguides in order to combine
holes, b) square lattice with arow left out. different channels, separate them or induce energy exchange
between them. For this purpose, well-known interaction scenarios of spatial photorefractive solitons can be
exploited. Two different principles can be employed to induce these interactions in large soliton arrays. In
the first approach, another beam can be created in the SLM configuration between the regular spots of the
soliton array, thereby forming a soliton that has a relative distance to neighbouring solitons below the
critica distance. Varying the phase of this soliton by changing the SLM steering voltage, phase-sensitive
coherent or incoherent interaction that may lead to fusion or repulsion of different solitons can be redized.
In a second approach which we utilize here, a supplementary control beam derived from the Nd:Y AG-laser
is focused onto the front face of the SBN crystal. While in this experiment the array solitons had an
intensity of 55 mW/cm? each, the separate controlling beam, which was positioned between two spots of
the array, had an intensity of about 160 mW/cm?. In fig. 8, the back face of the crystal with the
uncontrolled array is shown. Once the control beam was positioned between the central lower two solitons
and the electric fidld was applied the new soliton array formed. Due to the additiona beam between the two
lower central channels, the refractive index in
between these channels is increased causing the
two solitons to attract and eventualy fuse. Fig. 8b
shows the red probe beam guided in each channel
of the controlled array separately (again single
snapshots were added electronically). Here, the
fuson of the two lower middle channels is
obvious. Therefore, the case of coupling the probe  Fig. 8: Optical control of soliton lattices. a) Uncontrolled
beam into the central or the lower middle channgl  lattice, b) controlled lattice probed at A = 633 nm. The dight
on the front face of the crystal leads to guiding it Size mismatch _of bpth figures_is due to wavelength depend-
into the same output, respectively. ence of aberrationsin the imaging system.

Counter propagating solitons

So far, the formation and interaction of photorefractive screening solitons have been studied mainly in
the co-propagation geometry. However, due to the application potential of counterpropagating soliton
lattices as beam couplers, interest in experimental realizations of this configuration has grown recently
[12,13]. Here, we develop a numerical description of the counterpropagating soliton configuration for
one transverse dimension, taking into account the periodic modulation of the space field induced by the
interference of the counterpropagating beams. The interaction of the two beams, which includes
feedback and dynamical effects, makes counterpropagating solitons different from their copropagating



counterparts. Therefore, the resulting space charge field consists of two components, an unmodul ated
part Ey of the transverse component and a modulated part E;, which is proportional to the modulation
depth m of the interference of both beams having the wave vector k. In order to describe the impact of
these fields on the beam propagation, we formulate the space charge field in anormalized way relative to
the externally applied electric field Eqx

E.. = E, +0.5(E exp(-2ikz) +cc.) (1)

Assuming a local, isotropic approximation of the space charge field and a saturable nonlinearity
Es = 1/(1+1) with | being the light intensity normalized relative to the background intensity, the tempo-
ral evolution of the space charge field is introduced assuming arelaxation-type dynamics
10,E +E, =1, /(1+1,), TQE, +E ==<mi(l +l,) )
with 1o = |F|? + |B|* and m = 2FB*/(1+1), and the relaxation time 7 of the crystal being inversely pro-
portional to the total intensity. ¢ describes the relative coherence of the forward and the backward propa
gating beams, i.e. €= 0 for incoherent and £= 1 for coherent interaction. Inserting these conditions in the
paraxial wave equation leads to the propagation equations for the forward (F) and backward (B) propa
gating beams. In the normalized form, setting x — X/Xo, z - z/Lp, (F,B) - (F,B) exp(-i/2) with the dif-
fraction length Lp = 2kxo?, and denoting the constant (knoxo)?r et Eex by ', where ny is the refractive in-
dex of the nonlinear material, xpisthe transverse beam waist, and r is the electro-optic coefficient, the
propagation equations are given by

+,F +32F =T(E,F +EB/2)
-i0,B+B =I(E,B+EF/2). ®

Solving these equations numerically, we find localized structures that are stationary in time and represent
self-trapped waveguides. Fig. 9 shows the counter-propagation of two coherent Gaussian beams that are
launched at different lateral positions. When the initial separation is less than four beam diameters, the
individual solitons begin to interact. For a separation about two beam diameters, the interaction is strong
enough for the beams to form a single waveguiding structure. Head-on collisions result in the formation of
a counterpropagating vector-soliton as was shown in [12].

@) (b)

Fig. 9: Counterpropagating self-trapped waveguide formed out of two coherent beams. @) Resulting spatial intensity dis-
tribution in steady state, b) right-propagating beam, c) left-propagating beam. The size of the data windows is 10 beam
diameters in the transverse direction and two diffraction lengths in the direction of beam propagation. The initial inte-

grated intensities are |FF = |Bf =1, the coupling strength isT™ = 5.
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Fig. 10: Intensity distribution of counterpropagating localized structures (a,d), created by the interaction of a right-
propagating dipole-mode beam (b,e) and a left-propagating soliton (c,f). In the top row, a counterpropagating dipole-mode
vector soliton isformed (I = 3,3) (&), whereas in the bottom row a modulation instability develops (I = 12) and forms self-
trapped waveguides (d). All other dataasin Fig. 9.

The generation of a photorefractive dipole-mode counterpropagating vector soliton is presented in Fig. 10
(a-c). A dipole beam is launched from the left, and a power-matched, coherent single beam from the right.
Such a bimoda counterpropagating soliton has aready been theoretically predicted and found to be stable
for Kerr nonlinearities [11,18]. If photorefractive nonlinearity in such a configuration is above a certain
threshold, modulation instabilities in the longitudina direction prevent soliton formation, leading to
stationary localized structures. Fig. 10 (d-f) shows an example of such a situation with the same initia
beamsasinfig. 10 (a-c), but with a coupling strength that is around four times larger than before.
Counterpropagating solitons also may form self-trapped structures that dynamicaly do not converge to a
steady-state, especialy when complex spatia structures counter-propagate for high nonlinearities. Fig. 11
shows a situation where three in-phase beams propagate to the right, and two out-of -phase beams propagate
to the left. Such a configuration represents anovel time- as well as z-dependent complex localized structure
that can not be described by the usua steady-state theory of spatid solitons. Its z-dependence can be
attributed to the general features of longitudinal waveguides, whereas the time-dependence is governed by
the dow response of the photorefractive medium.

Fig. 11: Unstable self-organized localized structure resulting after 116 time steps (a): three in-phase beams (b) entering the
material from the left counterpropagate with two out-of phase beams propagating from right to left (c). The total power
that entersto the left and to the right are equal, the coupling constant is given by I' = 10. All other dataasin fig. 9.




Conclusion

To summarize, we have discussed severa aspects of interaction of multiple solitons for applicationsin al-
optica waveguiding and interconnects. We have presented the formation of large two-dimensional lattices
of solitons that are able to guide light at different wavelengths. Moreover, a control of these channelsis
possible by exploiting different interaction features of coherent and incoherent photorefractive solitons. We
have shown how to use a supplementary steering beam in order to fuse selected solitons in the soliton
lattice. In the counterpropagating soliton geometry, the inclusion of time-dependent effects is crucid for
understanding the formation of waveguide structures. We demonstrated by our numerical anaysis the
generation of a counterpropagating vector soliton, and presented a nove class of localized, non-solitonic
stationary solutions. Moreover, dynamica states and the onset of longitudina modulationa instabilities
were depicted. Experimental investigations to exploit these novel states and dynamical scenarios are
currently in progress.
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