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Abstract: We demonstrate the generation of large two-dimensional soliton lattices and 
investigate their waveguiding properties for red and infrared wavelengths. The control of 
these lattices is demonstrated, exploiting coherent and incoherent soliton interaction fea-
tures. For applications in bidirectional waveguiding, which is of interest in self-adjus-
tment of photonic devices, we investigate the formation of spatial solitons by counterpro-
pagating beams, including colliding coherent solitons and bidirectional vector-solitons. 
The question of stability of these different configurations is addressed and dynamic sce-
narios are reported. 
OCIS codes: 190.0190 (General); 190.4420 (Nonlinear optics, transverse effects in); 190.5330 (Photore-
fractive nonlinear optics); 190.5940 (Self-action effects); 190.5530 (Pulse propagation and solitons).  

Introduction 

Adaptive waveguides are of particular interest in all-optical information processing due to their potential to 
realize large arrays as well as many configurations that allow different interconnection schemes. Optical 
spatial solitons have been proposed for these applications owing to their ability to guide waves and their 
interaction capabilities, and demonstrations as waveguides [1], as directional couplers [2], light-induced Y 
and X-couplers and beam splitters [3] have proven this potential. In addition to these one- or two wave-
guide configurations, which involve only a limited number of spatial solitons, the parallel propagation of 
several spatial solitons – so-called soliton pixels, soliton arrays or soliton lattices – have been suggested for 
applications in information processing [4,5]. Recently, several demonstrations showed that large arrays of 
spatial solitons can be formed in parametric amplifiers [6] or in photorefractive media for coherent [7,8], 
and incoherent solitons [9]. Moreover, they have been suggested for image reconstruction applications 
[7,10].  
In this contribution, we combine the features of spatial photorefractive solitons to form stable constituents 
during interaction and large pixel-like lattices with waveguiding features. Thereby, we realize waveguiding 
in large arrays of soliton lattices at red and infrared wavelengths, and achieve control of these lattices by 
phase-dependent interactions for both, copropagating and counterpropagating solitons. Most interaction 
configurations have been realized up to now between solitons that co-propagate in the nonlinear material. 
After having been investigated theoretically already some time ago [11], it was only recently that 
counterpropagating beams have been considered in photorefractive materials for the case of one transverse 



dimension [12,13].  However, configurations of counter-propagation are of high application potential in 
bidirectional, self-adjustable interconnections of arrays of waveguides. Here, we demonstrate the formation 
and interaction of complex arrays of solitons in the counter-propagation geometry for coherent interactions.  

Lattices of spatial solitons 

To create large two-dimensional lattices of photorefractive solitons, the conditions for stable and non-inter-
acting propagation need to be defined. A crucial point in the parallel propagation of photorefractive spatial 
solitons is their anisotropic mutual interaction [14]. Because the refractive index modulation induced by 
each single soliton reaches beyond its effective waveguide, phase-dependent coherent as well as separation-
dependent incoherent interactions as repulsion, attraction or fusion may appear between neighbouring array 
elements [15]. These interaction effects also affect the waveguiding features in a soliton channel. There-
fore, the parallel propagation of a multitude of solitons can only be achieved if the separation is carefully 
chosen in such a way to minimize all forms of interactions. In our experiments, we determined the critical 
soliton distance, at which interaction occurs and fixed the distance to a value that is beyond this limit.  
 

To create lattices of solitons in a photorefractive crystal, the typical setup of soliton formation was 
modified in such a way that the laser beam derived from a frequency-doubled Nd:YAG-laser emitting at λ 
= 532 nm illuminates a spatial light modulator which imprints the image of a spot array onto the beam (see 
fig. 1). The spatial light modulator in turn is imaged onto the front face of a photorefractive SBN60:Ce 
crystal (5 x 5 x 20 mm3, with the propagation direction along the 20 mm axis as in typical soliton formation 
experiments). In order to exploit the dominant electro-optic coefficient r33 of our SBN probe, the incident 
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Fig. 2: Realization of a 9 x 9 spatial soliton lattice. a) Front face of the photorefractive SBN-crystal (image of the spot array 
created by a spatial light modulator, b) interference pattern due to linear propagation at the exit face of the crystal, c) and d) 
array of 81 spatial solitons at the exit face of the crystal after 5 and 30 min of formation, respectively.  
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Fig. 1: Schematic setup for the creation, waveguiding and control of large lattices of photorefractive screening solitons. 



laser beam was linearly polarized parallel to the c-axis of the crystal. For the creation of soliton lattices and 
testing of its waveguiding properties, regular patterns of up to 25 x 25 spots each with a diameter of about 
20 µm and an intensity of about 110 nW are imaged onto the front face of the crystal (Fig. 2a). In the linear 
case - without applied electric field - the beams diffract on their way through the crystal and display a 
typical interference pattern (Fig. 2b). Applying an external electric field of about 1 kV/cm and using a 
supplementary white light source to create an artificial dark conductivity in such a way to achieve spatial 
photorefractive screening soliton formation, self-focusing forms lattices of solitons (Fig. 2c).  
To obtain propagation without mutual interaction, we take care that the initial distance between single 
solitons is just large enough to prevent soliton interactions. Therefore, the horizontal and vertical initial 
separations are chosen to be ∆x = 100 µm and ∆y = 124 µm. Slight deviations from the symmetry are due 
to inhomogeneities of the crystal. A distance smaller than the critical distance for coherent interactions 
between the solitons in either case would cause the solitons to interact and eventually fuse due to their own 
mutual attractive force.  Such a situation is shown in Fig. 3, where the distance was reduced by enhancing 
the number of solitons in the same transverse area.   

 
In our numerical simulations based on the paraxial approximation to the propagation of an optical beam in 
an anisotropic saturable medium, a similar behaviour was found: parallel propagation of solitons with a 
given mutual distance can be adjusted to be almost without interaction (Figs. 4a, 4b), whereas separations 
below the critical lengths lead to fusion of  columns of beams (Figs. 4c, 4d) in the array. In order to achieve 
a closer package in such a soliton array while maintaining propagation without interaction, the phase 
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Fig. 3: Interaction of solitons in large lattices for distances smaller than the critical distance of independent propagation. a) 
12 x 12 solitons, with ∆x = 70 µm, ∆y = 85 µm, b) 17 x 17 solitons, ∆x = 60 µm, ∆y = 75µm, c) 25 x 25 solitons, ∆x = 50 
µm, ∆y = 65 µm (all values ± 3 µm due to pixel mismatch between input configurations and the SLM device).  

(a) (b) (c) (d)

Fig. 4: Numerical simulation of large soliton lattices for z = 35 mm of propagation, an electric field of 900 V/cm with an 
effective electrooptic coefficient of 210 pm/V, and an initial mutual distance at z = 0 of a) ∆x = ∆y = 80 µm, b) ∆x = ∆y = 
70 µm, c) ∆x = ∆y = 60 µm, d) ) ∆x = ∆y = 50 µm. 



relationship between different beams of the array 
can be exploited. By engineering the relative 
phases between different rows of beams to 
alternate between 0 and π at the entrance face of 
the material, a propagation with reduced 
interaction can be stabilized. Fig. 5 shows a 
situation for a larger electric field and a smaller 
separation distance between solitons in the 
lattice. However, the resulting interaction is 
lower due to the phase relationship between 
neighbouring solitons that prevents interaction.   
 
 

Waveguiding in soliton lattices 

To test for the waveguide properties of the single channels of such a soliton array, the wavelength 
selectivity of the photorefractive effect in our SBN:Ce probe [16] is exploited to scan the soliton array with 
an intense probe beam without significantly destroying single soliton channels. The wavelength of the 
probe beam was either λ = 633 nm or λ = 1550 nm. Positioning the red or infrared probe beam 
successively to the positions of the previously induced solitons on the crystals front face, we find the probe 
beam to be guided in each of the soliton channels solely. Scans of this array with the red or infrared probe 
beam are shown in Fig. 6.  To obtain information of the complete array, every single channel is scanned 
separately, and the individual images are superimposed electronically. Infrared beams have been visualized 
using an infrared converter system [17].  
Naturally, larger arrays of solitons can also be formed. Their number is mainly limited by the aperture of 
the photorefractive crystal and the resolution of the inducing spatial light modulator. Examples of different 
soliton lattices that can be achieved are shown in fig. 7, where the distances between neighbouring solitons 
where chosen to ensure non interacting solitons. In larger arrays, several applications of parallel soliton and 
waveguide formation can be considered. As an example, digitized images consist of large arrays of 
pixellike spots arranged on a square lattice. In the linear regime, such an image can be reconstructed only in 
a range that is limited by the depth of focus of the imaging optics due to the blurring effects of diffraction. 
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Fig. 6: Probing a soliton array by waveguiding a probe beam of a different wavelength in the individual soliton channel. a) 
soliton array formed at λ = 532 nm, b) probing the array with λ = 633 nm in individual soliton channels, c) soliton array 
formed at λ = 532 nm, d) probing a part of the array with λ = 1550 nm, visualized with an infrared-to-visible light converter 
[17]. The results are electronically added to show waveguiding of numerous solitons in the array simultaneously. 

(a) (b)  
Fig. 5: Stabilization of soliton lattices by phase engineering of 
the relative phases of the beams. a) Phase relationship at the 
entrance face of the nonlinear material (∆x = ∆y = 35µm). b) 
Soliton lattice for z = 35 mm propagation (E =1,3 kV/cm).  



However, if these arrays of spots are propagating in a 
nonlinear, solitonic regime, we are able to enlarge the range of 
focus depth to the length of the soliton formation, i.e. to the 
length of the nonlinear crystal. This idea [10] has also been 
demonstrated in our system with a regular pattern of 25 spots 
[8].  

Interaction in soliton lattices 

To use these soliton arrays for applications in information 
technology, it is highly desirable to have means of 
manipulating individual waveguides in order to combine 
different channels, separate them or induce energy exchange 

between them. For this purpose, well-known interaction scenarios of spatial photorefractive solitons can be 
exploited. Two different principles can be employed to induce these interactions in large soliton arrays. In 
the first approach, another beam can be created in the SLM configuration between the regular spots of the 
soliton array, thereby forming a soliton that has a relative distance to neighbouring solitons below the 
critical distance. Varying the phase of this soliton by changing the SLM steering voltage, phase-sensitive 
coherent or incoherent interaction that may lead to fusion or repulsion of different solitons can be realized. 
In a second approach which we utilize here, a supplementary control beam derived from the Nd:YAG-laser 
is focused onto the front face of the SBN crystal. While in this experiment the array solitons had an 
intensity of 55 mW/cm2 each, the separate controlling beam, which was positioned between two spots of 
the array, had an intensity of  about 160 mW/cm2. In fig. 8, the back face of the crystal with the 
uncontrolled array is shown. Once the control beam was positioned between the central lower two solitons 
and the electric field was applied the new soliton array formed. Due to the additional beam between the two 
lower central channels, the refractive index in 
between these channels is increased causing the 
two solitons to attract and eventually fuse. Fig. 8b 
shows the red probe beam guided in each channel 
of the controlled array separately (again single 
snapshots were added electronically). Here, the 
fusion of the two lower middle channels is 
obvious. Therefore, the case of coupling the probe 
beam into the central or the lower middle channel 
on the front face of the crystal leads to guiding it 
into the same output, respectively.  

Counterpropagating solitons 

So far, the formation and interaction of photorefractive screening solitons have been studied mainly in 
the co-propagation geometry. However, due to the application potential of counterpropagating soliton 
lattices as beam couplers, interest in experimental realizations of this configuration has grown recently 
[12,13]. Here, we develop a numerical description of the counterpropagating soliton configuration for 
one transverse dimension, taking into account the periodic modulation of the space field induced by the 
interference of the counterpropagating beams. The interaction of the two beams, which includes 
feedback and dynamical effects, makes counterpropagating solitons different from their copropagating 
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Fig. 7: Examples of different configurations of 
photonic lattices induced by spatial photore-
fractive solitons. a) Hexagonal lattice with 
holes, b) square lattice with a row left out.  

Fig. 8: Optical control of soliton lattices. a) Uncontrolled 
lattice, b) controlled lattice probed at λ = 633 nm. The slight 
size mismatch of both figures is due to wavelength depend-
ence of aberrations in the imaging system.  



counterparts.  Therefore, the resulting space charge field consists of two components, an unmodulated 
part E0 of the transverse component and a modulated part E1, which is proportional to the modulation 
depth m of the interference of both beams having the wave vector k. In order to describe the impact of 
these fields on the beam propagation, we formulate the space charge field in a normalized way relative to 
the externally applied electric field Eext 

 (1) 

Assuming a local, isotropic approximation of the space charge field and a saturable nonlinearity  
Esc = 1/(1+I) with I being the light intensity normalized relative to the background intensity, the tempo-
ral evolution of the space charge field is introduced assuming a relaxation-type dynamics  

 
            (2) 

with I0 = |F|2 + |B|2 and m = 2FB*/(1+I0), and the relaxation time τ of the crystal being inversely pro-
portional to the total intensity. ε describes the relative coherence of the forward and the backward propa-
gating beams, i.e. ε = 0 for incoherent and ε = 1 for coherent interaction. Inserting these conditions in the 
paraxial wave equation leads to the propagation equations for the forward (F) and backward (B) propa-
gating beams. In the normalized form, setting x  → x/x0, z → z /LD, (F,B) → (F,B) exp(-iΓz) with the dif-
fraction length LD = 2kx0

2, and denoting the constant (kn0x0)
2reff Eext by Γ, where n0 is the refractive in-

dex of the nonlinear material, x0 is the  transverse beam waist, and reff is the electro-optic coefficient, the 
propagation equations are given by 

       
        
                         (3) 

 
Solving these equations numerically, we find localized structures that are stationary in time and represent 
self-trapped waveguides. Fig. 9 shows the counter-propagation of two coherent Gaussian beams that are 
launched at different lateral positions. When the initial separation is less than four beam diameters, the 
individual solitons begin to interact. For a separation about two beam diameters, the interaction is strong 
enough for the beams to form a single waveguiding structure. Head-on collisions result in the formation of 
a counterpropagating vector-soliton as was shown in [12].  

(a) (b) (c)
 

Fig. 9: Counterpropagating self-trapped waveguide formed out of two coherent beams. a) Resulting spatial intensity dis-
tribution in steady state, b) right-propagating beam, c) left-propagating beam. The size of the data windows is 10 beam 
diameters in the transverse direction and two diffraction lengths in the direction of beam propagation. The initial inte-
grated intensities are |F|2 = |B|2 =1, the coupling strength is Γ = 5. 
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The generation  of a photorefractive dipole-mode counterpropagating vector soliton is presented in Fig. 10 
(a-c). A dipole beam is launched from the left, and a power-matched, coherent single beam from the right. 
Such a bimodal counterpropagating soliton has already been theoretically predicted and found to be stable 
for Kerr nonlinearities [11,18]. If photorefractive nonlinearity in such a configuration is above a certain 
threshold, modulation instabilities in the longitudinal direction prevent soliton formation, leading to 
stationary localized structures. Fig. 10 (d-f) shows an example of such a situation with the same initial 
beams as in fig. 10 (a-c), but with a coupling strength that is around four times larger than before.  
Counterpropagating solitons also may form self-trapped structures that dynamically do not converge to a 
steady-state, especially when complex spatial structures counter-propagate for high nonlinearities. Fig. 11 
shows a situation where three in-phase beams propagate to the right, and two out-of-phase beams propagate 
to the left. Such a configuration represents a novel time- as well as z-dependent complex localized structure 
that can not be described by the usual steady-state theory of spatial solitons. Its z-dependence can be 
attributed to the general features of longitudinal waveguides, whereas the time-dependence is governed by 
the slow response of the photorefractive medium.  
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Fig. 10: Intensity distribution of counterpropagating localized structures (a,d), created by the interaction of a right-
propagating dipole-mode beam (b,e) and a left-propagating soliton (c,f). In the top row, a counterpropagating dipole-mode 
vector soliton is formed (Γ = 3,3) (a), whereas in the bottom row a modulation instability develops (Γ = 12) and forms self-
trapped waveguides (d). All other data as in Fig. 9. 
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Fig. 11: Unstable self-organized localized structure resulting after 116 time steps (a): three in-phase beams (b) entering the 
material from the left counterpropagate with two out-of phase beams propagating from right to left (c). The total power 
that enters to the left and to the right are equal, the coupling constant is given by Γ = 10. All other data as in fig. 9. 



Conclusion 

To summarize, we have discussed several aspects of interaction of multiple solitons for applications in all-
optical waveguiding and interconnects. We have presented the formation of large two-dimensional lattices 
of solitons that are able to guide light at different wavelengths. Moreover, a control of these channels is 
possible by exploiting different interaction features of coherent and incoherent photorefractive solitons. We 
have shown how to use a supplementary steering beam in order to fuse selected solitons in the soliton 
lattice. In the counterpropagating soliton geometry, the inclusion of time-dependent effects is crucial for 
understanding the formation of waveguide structures. We demonstrated by our numerical analysis the 
generation of a counterpropagating vector soliton, and presented a novel class of localized, non-solitonic 
stationary solutions. Moreover, dynamical states and the onset of longitudinal modulational instabilities 
were depicted. Experimental investigations to exploit these novel states and dynamical scenarios are 
currently in progress.  
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