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Abstract

We study the existence and stability of multi-component spatial optical solitons in anisotropic nonlocal photore-
fractive media. For the case of three components, we find numerically the whole family of composite solitons with two
perpendicular dipole components, and show their stability for a wide range of parameters. We confirm our theoretical
results by an experimental observation of these novel types of composite optical solitons in a photorefractive strontium
barium niobate crystal. © 2002 Elsevier Science B.V. All rights reserved.

PACS: 42.65.Tg; 05.45.Yv; 42.65.Hw

Recently, there has been growing interest in the
study of composite (or vector) optical solitons
[1,2]. Such solitons are optical beams that consist
of several components that self-trap together when
propagating in a nonlinear medium. Essential for
the formation of this kind of vector soliton is the
absence of coherent wave-mixing effects, i.e., the
interference of beams must be suppressed during
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their nonlinearity-mediated interaction. This has
first been suggested [3,4] and realized [5] with the
beams carrying orthogonal states of polarization.
Later, this concept has been generalized to include
all kinds of optical self-trapped beams that are
mutually incoherent with each constituent beam
being a corresponding component of a generalized
multi-dimensional ‘““vector beam” [6].

As is well accepted, the fundamental optical
soliton induces an optical waveguide in a nonlin-
ear medium and propagates self-consistently as its
fundamental mode [7]. In the same way, compo-
nents of the composite (vector) soliton represent
various (higher) modes of the self-induced wave-

0030-4018/02/$ - see front matter © 2002 Elsevier Science B.V. All rights reserved.

PII: S0030-4018(02)01728-5


mail to: wzk111@rsphysse.anu.edu.au

502 K. Motzek et al. | Optics Communications 209 (2002) 501-506

guide. Because of their mutual temporal incoher-
ence, mode beating is absent here and the total
intensity distribution as well as the induced
waveguide structure remain stationary along the
propagation direction.

Composite (1+1)-dimensional optical solitons
have been first experimentally demonstrated by
Mitchell et al. [8]. They typically consist of multi-
hump beams propagating in a stationary manner
in a self-focusing (or defocusing) medium. In two
spatial transverse dimensions, composite solitons
were shown to exist in two fundamental forms.
The first one displays a cylindrical symmetry and
consists of an optical vortex of Laguerre—Gauss-
ian-type co-propagating with a fundamental
Gaussian beam [9]. Subsequently, it has been
shown that such an object experiences symmetry-
breaking instability which transforms it into a
stable entity, the so-called dipole-mode vector soli-
ton [10]. The latter consists of a dipole, i.e., a beam
in the form of two out-of-phase lobes, co-propa-
gating with an elliptically shaped nodeless beam
[10]. The natural repulsion of the out-of-phase
lobes in the dipole component is counteracted by
an attractive force provided by the fundamental
component leading to the formation of a stable
composite object, slightly elongated along the di-
pole’s axis. These dipole-mode solitons have re-
cently been observed in photorefractive nonlinear
crystals [11,12].

As a matter of fact, the dipole-mode vector
soliton is only a particular (one of the simplest)
example of a large family of multipole vector soli-
tons made by an incoherent superposition of a
fundamental and various multipole beams [13-15].
However, among various different types it is par-
ticularly the dipole-mode vector soliton that dis-
plays a surprising robustness with respect to
perturbations.

So far only two-component vector solitons have
been investigated experimentally in both, one [8]
and two spatial dimensions [11-15]. Recently,
Desyatnikov and Kivshar [16] considered a new
type of composite soliton in an isotropic medium
formed by the mutual trapping of two perpendic-
ularly oriented dipole components [16]. They pre-
dicted a decay of this structure into three
fundamental solitons flying away along the normal

directions. Additionally, numerical and experi-
mental studies by Ahles et al. [17] for photore-
fractive nonlinearity revealed that although such a
double dipole vector soliton can propagate in a
stable manner over a distance of several diffraction
lengths, it is unstable and eventually breaks up.
Desyatnikov et al. [18] have shown that the two-
dipole soliton can be stabilized by introducing a
third, mutually incoherent nodeless component.
Similar to its role in the dipole-mode vector soli-
ton, the fundamental component provides an at-
tractive force consolidating the whole structure.

The theoretical analysis of the three-component
solitons presented in [18] applies only to an iso-
tropic nonlinearity. On the other hand, photore-
fractive crystals, which are frequently used to
demonstrate the formation of various types of
spatial solitons, may exhibit a strong anisotropy
and nonlocality in their nonlinear response. Both
these effects have been shown to affect significantly
the properties of the spatial solitons and their in-
teraction [14,19,20]. Here, we study the general
properties of the three-component composite sol-
itons in a photorefractive nonlinear medium.
Firstly, we demonstrate the soliton generation and
explore numerically the parameter space for which
they are stable. Secondly, we show that these so-
lutions may become unstable and display a sym-
metry-breaking instability. Both the stable soliton
formation as well as the breakup of the composite
beam have been observed experimentally.

As a fundamental example of multi-component
beams of a nontrivial geometry (see discussions in
[18]), we consider the propagation of three mutu-
ally temporally incoherent optical beams with the
slowly varying amplitudes E(x,y,z), (j = 1,2,3) in
a biased photorefractive crystal. In this notion,
j = 1 represents the fundamental Gaussian beam,
j = 2 is the dipole beam oriented along the vertical
y-axis and j = 3 denotes the dipole beam whose
axis points along the horizontal x-axis. Assuming
that the biasing field is applied along the hori-
zontal axis and the beams propagate along the
other axis, the beam evolution is described by the
system of equations
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where 7 stands for the photorefractive coupling
coefficient and @ denotes the electric potential in-
duced in the crystal by the propagating beams. This
potential satisfies the following equation (see [21])

emn(1D), (2)
where the total light intensity / = X,|E;|> is mea-
sured in units of the background (or dark) illu-
mination [y, and E. represents the externally
applied electric field.

We look for the stationary soliton solutions to
the system of equations (1) and (2) in the form
E;(x,y,z) = a;(x,y) exp(id;z) with A, being the
propagation constant of the jth beam. Inserting
this ansatz into Eqgs. (1) and (2) yields the follow-
ing set of equations:

o

, 1
fAjaj+§Viaj:aaj. (3)

V¢ +VoVin(l +1) =E.

This can be solved by using an iterative numerical
procedure suggested by Petviashvili [22], which is
generalized here to describe the case of several
beams [23]. As a starting point of our investiga-
tions, we calculate a solitary solution with equal
power in all its three components and with a
maximum intensity of the order of unity. From
there, we explore the whole family of the solutions
by varying the propagation constants of both di-
pole components (4,,43). The graph in Fig. 1
shows the whole family of solutions by illustrating
the power of the single components versus 4,. It
can be seen that the solitary solutions range from
structures dominated by the fundamental mode
(E)) and the dipole parallel to the external electric
field (£3), for small values of 1, = 0.11 (see Fig.
1(a)), to structures with power concentrated pre-
dominantly in the dipole perpendicular to the ex-
ternal field (E;), for larger values of 4, = 0.17, as
shown in Fig. 1(b). The frames in Figs. 1(a) and (b)
depict the transverse intensity profile of the single
components of the composite soliton solutions,
with dark regions corresponding to high intensity.

Fig. 2 shows the family of soliton solutions for
the case when the propagation constant of the
dipole parallel to the biasing field (43) is varied.
Our simulations show that soliton solutions with
very small power in the dipole component parallel
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Fig. 1. Partial, P;, and total, P, powers of a three-component
composite soliton as a function of 1, for 1, =0.2 and
A3 = 0.056. Top: two examples of the soliton structure for (a)
22 =0.11 and (b) 4, = 0.17.

to the external field do not exist, even as A3 — 0.
This is a consequence of the anisotropic structure
of the waveguide induced in the nonlinear crystal
by the fundamental beam and the dipole perpen-
dicular to the external field. It appears that such a
waveguide does not support the TE;y, mode, i.e.,
the mode whose structure corresponds to a dipole
parallel to the applied field. In order to support
such a mode the corresponding dipole component
has to carry significant energy to appreciably
modify the waveguide. An example of such a sol-
itary solution is shown in Fig. 2(a). As Fig. 2(b)
shows, for large values of 1; the powers of the two
dipoles, P, and P; are comparable whereas that of
the ground mode, P, becomes negligibly small. As
a result, the soliton solutions become basically
identical to those obtained by considering just two
orthogonal dipoles as discussed in [17].

To check the stability of the steady-state soliton
solutions described above we propagated them
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Fig. 2. Partial, P;, and total, P, powers of a three-component
soliton as a function of /; for 1; = 0.2 and 4, = 0.129. Top: two
examples of the soliton structure for (a) A3 =0.03 and (b)
Az = 0.14.

numerically using the original system of equations
(1) and (2). We found that the solutions shown in
Figs. 1 and 2 are stable for 4, (43) smaller than 0.15
(0.06). In this region they are rather robust and
withstand even strong initial perturbation. When
perturbed, the soliton propagates as a single entity,
only exhibiting strong internal oscillations of its
constituent components. The solutions depicted in
Figs. 1 and 2 become unstable for 4, (1;) exceeding
0.15 (0.06). In this case the solutions are charac-
terized by a relatively weak fundamental Gaussian
component (P;) that is not capable of stabilizing
the two orthogonal dipole beams.

We studied the generation of the three-compo-
nent dipole solitons experimentally using a SBN
photorefractive crystal and the experimental setup
similar to the one described in [11]. Two mutually
incoherent light beams (wavelength of 532 nm)
derived from Nd:YAG lasers were transmitted
through microscope glass slides to imprint the

desired m-phase jumps across the beams. In this
way two perpendicularly oriented dipole compo-
nents were created. They were superimposed and
combined with an additional, mutually incoherent
Gaussian beam and subsequently focussed onto
the input facet of a 10-mm long SBN crystal biased
with a DC field. To control the degree of satura-
tion the crystal was illuminated with a wide beam
derived from the white light source. The initial (i.e.
at the input face of the crystal) degree of satura-
tion was estimated to be of the order of unity in all
our experiments. The outgoing light intensity dis-
tribution was monitored finally by a CCD camera.
In Fig. 3 we show an example of the three-com-
ponent soliton. The initial power in the funda-
mental and the dipole beams were 2, 2.2 and
1.8 uW, respectively.

The top row of this figure shows the initial in-
tensity distribution of the constituent components
while the bottom row depicts the intensities of
each component after 10 mm of propagation
through the biased photorefractive crystal. It can
be clearly seen that the light self-traps and forms a
stable vector soliton. The parameters of this ex-
perimentally observed soliton are very close to the
numerical example shown in Fig. 2(a) with
A3 =0.03. Solutions depicted in Fig. 2 with
/3 < 0.06 were numerically confirmed to be stable
even when they become subject to numerical noise.
As discussed earlier, the Gaussian component is
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Fig. 3. Experimentally observed three-component dipole vector
soliton. Top row: input intensity distribution of each individual
component. Bottom row: output intensity distribution of the
single components after 10 mm propagation in the crystal. The
initial power of the components are: P, =3.3, P, =1.8, P, =
2.2 uW, and the biasing field E. = 2 kV/cm.
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essential to create a vector soliton that contains
two perpendicularly oriented dipole beams. We
demonstrate this stabilizing role of the funda-
mental component in Fig. 4. It shows the output
intensity distribution of two co-propagating di-
poles immediately after the stabilizing Gaussian
component has been blocked in Fig. 4(a). Since the
photorefractive material acts noninstantaneously
to intensity fluctuations, Fig. 4(a) just represents
the contribution of the two dipole constituents to
the three-component vector soliton. Fig. 4(b) de-
picts the situation a couple of seconds after the
Gaussian beam has been blocked. Now, the two
dipole components propagate separately and do
not form a confined light structure any longer. It is
evident that the presence of the additional
Gaussian beam provides an attractive force which
tightly binds both dipoles (and the whole three-
component structure).

Although the three-component vector solitons
are in general very robust, they develop an insta-
bility if their parameters (powers) lie outside the
stability region. In Fig. 5 we show an example of
such a situation. The propagation constants for
the soliton solution depicted in Fig. 5(a) are
A1 =0.2, and 1, = 43 = 0.13. Fig. 5(a) shows the
initial intensity distribution. The numerical prop-
agation of this light structure reveals a symmetry-
breaking instability that leads to a breakup into
three fragments after five diffraction lengths in Fig.
5(b). For comparison, Fig. 6 presents an experi-
mentally observed unstable propagation of the

Fig. 4. Experimental demonstration of the stabilization of two
orthogonal dipoles by a fundamental beam. Total intensity
distribution of two dipole components propagating over a
distance of 10 mm in the presence (a) and in the absence of the
additional Gaussian beam (b). The initial conditions are the
same as in Fig. 3.
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Fig. 5. Example of an unstable three-component soliton. Nu-
merically calculated intensity distribution of a multi-component
soliton (a) for 4; = 0.2 and 4, = 23 = 0.13 and its breakup (b)
after propagating five diffraction lengths.
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Fig. 6. Example of an unstable three-component soliton. Ex-
perimentally observed decay of a three-component beam with
beam powers P, =4.8, P, =32, P, =2 pW and an external
electric field of 2.5 kV/cm.

three-component beam over the distance of 15
mm. The powers of the constituent components
are P, =428, P, =32, P;=2 uW, respectively.
The incident light intensity distribution is similar
to the one depicted in Fig. 3 (top row), but the
relative beam powers have been slightly modified
and the propagation length has been extended by
making use of an equivalent but longer crystal
sample. It is evident that the stable vector soliton
does not form but instead the whole structure ex-
periences a symmetry-breaking instability and de-
cays into three beamlets. Notice the very close
similarities between numerical and experimental
results even though the initial conditions in the
experiment differ slightly from those calculated
numerically by the Petviashvili method.

In conclusion, we have shown that novel types
of multi-component spatial optical solitons, earlier
predicted for isotropic nonlinear media, can exist
in anisotropic nonlocal media associated with
photorefractive nonlinearity. In particular, we
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have studied in detail the existence and stability of
the three-component optical solitons which consist
of a fundamental beam co-propagating with two
orthogonally oriented dipole components, which
represent the lower-order modes of the self-in-
duced waveguide. Numerical simulations show
that these solitons are stable in a wide range of
their parameter space, but they are eventually
subject to a peculiar symmetry-breaking instabil-
ity. We have observed the formation as well as the
breakup of these solitons in experiments with a
photorefractive crystal. Our experimental obser-
vations are in good agreement with the theoretical
predictions.
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