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Introduction 
In this worked example, we present a two component Generalized Linear Mixed Model 
(GLMM) modelling a counting response with exceedingly many zeros. The emphasis 
will be on model construction and validation. To our knowledge only ADMB (if the 
likelihood functions are coded directly) and the GLIMMIX procedure in SAS allows for 
a flexible modelling of two-component GLMMs, so the statistical analysis will be done 
in SAS V9.2. However, the analysis did not proceed as smoothly as we hoped, and we 
will comment on some of the problems we encountered. 

Data example 
The evergreen tree Ilex aquifolium reaches its north-eastern distribution border in 
Denmark, where the natural population is present in Jutland and Funen but not on the 
eastern islands. However, recent field observations have revealed presence of Ilex 
aquifolium in most eastern parts of Denmark. This range expansion seems to be related 
to climate change and land use. Skou et al. (2011) studied the interplay between the 
range expansion and the insect herbivore Phytomyza ilicis (Diptera: Agromycidae) in a 
transplant experiment, in particular the hypothesis of enemy release during range 
expansion of Ilex aquifolium. In that study several response variables were collected and 
analysed, but in this example we will only discuss one of the counting responses, which 
required special attention in the statistical analysis due to exceedingly many zeros. The 
dataset that we analyse here contains the variables shown in Table 1. 

The transplants were of the genotype Blue Angel or Madame Briot and were 
planted at 1 and 10 meter distances from a host tree in the studied populations with 
natural genotype. Thus, the variables genotype and distance are connected in the sense 
that genotype=natural implies distance=0 and vice versa. The continuous variable 
popstandard is a proxy for the size of the 18 studied populations, which are labelled by 
the variable location. The populations are classified by the variable class according to 
being a natural population in Jutland (naturalJ), an escape population in Jutland 
(escapeJ), or an escape population on the eastern island Zealand (escapeZ). Since the 



proxy popstandard is constant within each population, it is necessary to use location as 
a random effect, if we want to study the effect of the population size. From each 
population several leaves from one host tree and up to 20 transplants were collected, 
and the number of feeding scars from the insect herbivore was counted. The individual 
trees within the populations are identified by the variable label, which is a random 
effect nested in the random effect location. In total 3503 leaves from 306 trees from 18 
locations were investigated, out of which 420 leaves from 50 trees from 17 locations 
had feeding scars. The response variable scars contains the counts from the individual 
leaves. The marginal distribution of scars has exceedingly many zeros (Fig. 1), and 
hence it is not possible to model this neither by a data transformation nor by a counting 
distribution including a dispersion parameter like the negative binomial. 
 

Table 1 Names and characteristics of the variables in the dataset. 
Variable Levels Effect 
genotype 3 (natural, Blue Angel, Madame 

Briot) 
Fixed 

distance 3 (0, 1, 10) Fixed 
class 3 (naturalJ, escapeJ, escapeZ) Fixed 
popstandard Continuous and positive Fixed 
location 18 (Bjerringbro, …, Stenholt) Random 
label Up to 21 trees within each 

location 
Nested random 

scars Counts (0, 1, 2, …) Response 
 

 
Figure 1 Histogram of the response variable scars. 

 

Two component GLMM 
In Skou et al. (2011), the number of feeding scars was modelled by a two component 
GLMM. The first component is a binomial GLMM that models the number of leaves 
with a strictly positive number of feeding scars against the number of leaves without 
feeding scars. The second component is a Linear Mixed Model (LMM) that models the 
logarithm of the number of feeding scars if scars were present. These two GLMMs 
make sense by themselves, one should just keep in mind that the normal component 
should be interpreted conditionally on the binomial component. However, if the link 
functions for the two components are chosen such that they have the same 
interpretation, then it makes sense to test the hypothesis that the two components share 



the same parameters. If this hypothesis is not rejected, then the data is summarized by a 
single set of parameters and the associated interpretation. In our case, we will use a log 
link for the binomial GLMM in conjunction with the identity link for the LMM on the 
log-transformed positive counts. In the affirmative case, the interpretation will be given 
in terms of joint ratios of the risk of finding feeding scars and of the ratio between the 
numbers of scars when present. 

To specify the two components we make two new datasets. For the binomial 
component the variable y counts the number of leaves with scars>0 and the variable 
total counts the total number of leaves investigated for each tree. For the normal 
component we only include the observations with scars>0 for which we define 
y=log(scars). The initial models in both components are given by an analysis of 
covariance design including the factorial effects of genotype, distance, class, 
genotype*distance and the associated interactions with the continuous covariate 
popstandard. 

Validation of binomial component 
The Pearson chi-square statistic for overdispersion in the conditional distribution given 
the predicted random effects has a ratio of 0.35 to the degrees of freedom. Thus, there is 
no indication of non-modelled overdispersion. In order to validate the log link and 
linearity against the continuous covariate popstandard we investigate the cumulative 
residuals as proposed by Lin et al. (2002). This method is not implemented in PROC 
GLIMMIX, but it is available in PROC GENMOD. However, since PROC GENMOD 
didn’t converge when the interaction genotype*distance*popstandard was included in 
the model, we were forced to exclude this term in the validation step. Figure 2 shows 
the observed cumulative residuals. If the model is valid, then the observed cumulative 
residuals should be similar to the simulations from the model. 

Although the model fit could be better we will not invalidate the model. The 
associated Kolmogorov-Smirnov goodness-of-fit test based on 1000 simulations give 
p=0.062 for the log link and p=0.140 for linearity. 

To investigate the distribution of the random effects we fit the GLMM with 
PROC GLIMMIX using the Laplace approximation. Doing this we get predictions for 
the random effects in terms of maximum a posteriori estimates. These estimates are 
displayed in Fig. 3. Although we do not expect these plots to have precise diagnostic 
power we see that the random effects of location are close to a normal distribution. 

Validation of the normal component 
Figure 4 shows diagnostic plots of the normal component of the model. Neither of these 
plots gives raise to concern. In the residual plots the levels of the variable distance have 
been coded (blue circles=0, green crosses=1, red pluses=10), and we see that there is no 
indication of variance heterogeneity, say, against this variable. 

The normal quantile plot in Fig. 4 provides an example, where the normal 
distribution is rejected by the standard goodness-of-fit tests (Shapiro-Wilks p=0.0061, 
Kolmogorov-Smirnov p<0.0100, Cramer-von-Mises p=0.0060, Anderson-Darling 
p<0.0050) despite our clear decision not to invalidate the model. 
 
 
 
 



  

Figure 2 Cumulative residuals against the linear predictor and against the continuous covariate 
popstandard together with 20 simulations from the model. 

 
 
 

 
 

 
 
 

 
 

Figure 3 Normal quantile plots of a posteriori estimates of the levels of the random effects of location 
and label. 

 
 
For the normal component the variance component for location estimates to 

zero. Since there is no random effect of location, we only display the normal quantile 
plot for the Best Linear Unbiased Predictions (BLUP) for label (Fig. 5). 

There is a single outlier in this plot, namely the host tree from the population in 
Hornbysand situated on Zealand. From this tree, 116 leaves were investigated and 38 
leaves had feeding scars. If this tree is removed from the dataset, then the variance 
components for the normal component both estimate to zero. In this worked example, 
we have chosen to remove this particular tree from the statistical analysis and proceed 
with a normal component without random effects. 
 
 



 
 

 
 

 
 

 
 
 

Figure 4 Some diagnostic plots of the normal model component: marginal residual plot, conditional residual 
plot, studentized conditional residual plot, normal quantile plot of conditional residuals. 

 
 

 
 

Figure 5 Normal quantile plot of Best Linear Unbiased Predictions for the random effect of label. 
 



Building the two component model 
To combine the binomial and the normal components into a joint model, we stack the two 
datasets on top of each other and adjoin four new variables (response, link, binomial, normal) 
that take the values (binomial, log, 1, 0) for the binomial component and (normal, identity, 0, 
1) for the normal component (Table 2).  
  

Table 2 Additional variables for the two component model. 
Variable Levels Effect 
response 2 (binomial, normal) Fixed + Selection of distribution 
link 2 (log, identity) Selection of link function 
binomial Continuous (0 or 1) Random 
normal Continuous (0 or 1) Random 

 
We have also added a new variable called gd, which simply is the concatenation of the 

variables genotype and distance. This variable is encoding the interaction genotype*distance, 
and it has 5 levels. Below we show a print out of the data from Stokkebro. Here 8 of the 47 
leaves from the host plant had feeding scars (see observation 29), and none of the leaves from 
the 12 transplants had feeding scars (see observation 30 to 41). The logarithms of the 8 
strictly positive counts of feeding scars are listed in observation 21 to 28. 
 
                                          P 
                                          o 
                                          p 
         g           L               D    s                    r                       b 
         e           o               i    t   F                e                       i 
         n           c               s    a   e                s                    n  n 
      L  o           a         c     t    n   e                p                 t  o  o 
      a  t           t         l     a    d   d                o      l          o  r  m 
 O    b  y           i         a     n    a   i                n      i          t  m  i 
 b    e  p           o         s     c    r   n  g             s      n          a  a  a 
 s    l  e           n         s     e    d   g  d             e      k          l  l  l     y 
 
 21   1  natural  Stokkebr  escapeJ  0   76  14  natural*0  normal    identity   1  1  0  2.63906 
 22   1  natural  Stokkebr  escapeJ  0   76  10  natural*0  normal    identity   1  1  0  2.30259 
 23   1  natural  Stokkebr  escapeJ  0   76   6  natural*0  normal    identity   1  1  0  1.79176 
 24   1  natural  Stokkebr  escapeJ  0   76   5  natural*0  normal    identity   1  1  0  1.60944 
 25   1  natural  Stokkebr  escapeJ  0   76  19  natural*0  normal    identity   1  1  0  2.94444 
 26   1  natural  Stokkebr  escapeJ  0   76   6  natural*0  normal    identity   1  1  0  1.79176 
 27   1  natural  Stokkebr  escapeJ  0   76  10  natural*0  normal    identity   1  1  0  2.30259 
 28   1  natural  Stokkebr  escapeJ  0   76  18  natural*0  normal    identity   1  1  0  2.89037 
 29   1  natural  Stokkebr  escapeJ  0   76   0  natural*0  binomial  log       47  0  1  8.00000 
 30   2  mb       Stokkebr  escapeJ  10  76   0  mb*10      binomial  log        9  0  1  0.00000 
 31   3  mb       Stokkebr  escapeJ  10  76   0  mb*10      binomial  log        6  0  1  0.00000 
 32   4  mb       Stokkebr  escapeJ  1   76   0  mb*1       binomial  log        4  0  1  0.00000 
 33   5  ba       Stokkebr  escapeJ  1   76   0  ba*1       binomial  log        4  0  1  0.00000 
 34   6  ba       Stokkebr  escapeJ  10  76   0  ba*10      binomial  log       10  0  1  0.00000 
 35   7  ba       Stokkebr  escapeJ  10  76   0  ba*10      binomial  log        4  0  1  0.00000 
 36   8  ba       Stokkebr  escapeJ  1   76   0  ba*1       binomial  log        6  0  1  0.00000 
 37   9  ba       Stokkebr  escapeJ  1   76   0  ba*1       binomial  log        7  0  1  0.00000 
 38  10  ba       Stokkebr  escapeJ  1   76   0  ba*1       binomial  log        4  0  1  0.00000 
 39  11  ba       Stokkebr  escapeJ  10  76   0  ba*10      binomial  log        8  0  1  0.00000 
 40  12  ba       Stokkebr  escapeJ  10  76   0  ba*10      binomial  log        2  0  1  0.00000 
 41  13  ba       Stokkebr  escapeJ  10  76   0  ba*10      binomial  log        7  0  1  0.00000 

 
The fixed effects from the two components are used in the joint model together with 

their interaction with response and together with the main effect of response. Doing this, the 
fixed effects vary freely in the two components in the initial model. In order to have separate 
variance components on the binomial and the normal responses, we use the dummy variables 
binomial and normal. For the binomial component we use label nested in location. For the 
normal component we have no random effects since their variance components were 
estimated at zero. PROC GLIMMIX allows us to select the response distribution and the link 



function separately for each observation. This is done using the variables response and link, 
respectively. The syntax looks as follows: 
 
proc glimmix data=scars method=laplace; 
  class genotype distance class location label response; 
  model y/total = response 
        class genotype distance genotype*distance 
        popstandard class*popstandard genotype*popstandard 
        distance*popstandard genotype*distance*popstandard 
        /**/ 
        response*class response*genotype  
        response*distance response*genotype*distance 
        response*popstandard response*class*popstandard  
        response*genotype*popstandard response*distance*popstandard 
        response*genotype*distance*popstandard 
      / solution dist=byobs(response) link=byobs(link); 
  random binomial / subject=location nofullz; 
  random binomial / subject=label*location nofullz; 
run; 

 
If the initial model also included random effects for the normal component, then we 

would add corresponding RANDOM statements replacing the dummy variable binomial by 
the dummy variable normal. 

Model reduction 
The statistical analysis continues by backward reduction of the fixed effects. PROC 
GLIMMIX provides Wald F-tests for the fixed effects, and comparing the fitted likelihood we 
may compute likelihood ratio tests manually. All of this is quite time consuming in SAS since 
the backward model reduction is not automated. Furthermore, we also encountered severe 
convergence problems. These problems were partly overcome tweaking the numerical 
optimization via the NLOPTIONS statement, and by using the full-rank coding gd of the 
interaction genotype*distance (Cheng et al. 2010). However, it was not possible to restart 
PROC GLIMMIX at the variance components found in the previous iteration. Doing this in a 
PARMS statement almost consistently resulted in the error message: 
 
ERROR: Values given in PARMS statement are not feasible. 

 
Mathematically, this does not make sense since it always should be possible to restart 

a numerical optimization at the present estimate. The impossibility to restart the numerical 
optimization is most unfortunate since it makes the comparison of the likelihoods prone to 
instabilities due to the numerical optimization. The steps in the model reduction are 
summarized below: 
 
Step   Reduction                     p(Wald F)  -2logL     df   test df    LR test    p(LR) 
  1    Full model                               481.52     27      .        .         . 
  2    response*class*popstandard     0.1948    1484.96    25      2       3.44619   0.17851 
  3    response*gd*popstandard        0.2852    1492.03    22      3       7.07161   0.06965 
  4    response*popstandard           0.0783    1493.74    20      2       1.70535   0.42627 
  5    response*class                 0.2120    1497.48    19      1       3.74561   0.05295 
  6    response*genotype*distance      ??       1500.44    18      1       2.95072   0.08584 
  7    response*genotype              0.7698    1500.18    17      1      -0.25571   1.00000 
  8    genotype*distance*popstandard   ??       1501.55    16      1       1.36975   0.24186 
  9    genotype*popstandard           0.3759    1503.34    15      1       1.78804   0.18116 
 

 
 
The fixed effects in the final model are listed below: 
 



Effect Num Df Den Df Wald F p(Wald F) 
response 1 370 471.49 <0.0001 
class 2 370 4.53 0.0114 
genotype 1 370 14.28 0.0002 
distance 1 370 16.15 <0.0001 
genotype*distance 1 370 4.64 0.0318 
response*distance 2 370 18.83 <0.0001 
popstandard 1 370 36.98 <0.0001 
class*popstandard 2 370 14.23 <0.0001 
distance*popstandard 2 370 3.77 <0.0001 
 

Since the scales of the binomial and the normal components are incomparable 
(probabilities against log counts), we a priori expected that the main effect of response would 
be significant. Beside this, it is interesting that the variable response only appears in the 
interaction with distance. This means that except for the main effect of distance all the other 
effects may be assumed to have the same influence on the ratio of the probabilities of finding 
feeding scars and of numbers of feeding scars when these are non-zero.  

Variance components 
The final model contains variance components on the binomial part that models the log-
probability for having some feeding scars. The estimates for the variance components are: 
 
Effect Variance estimate Standard error 
location  0.4670 0.2327 
label 0.8527 0.2287 
 

In particular, we see that the variation between trees is almost twice as big as the 
variation between locations. 

Model predictions 
As an example of the model predictions, the following table displays the estimated ratios 
between the three population types. These ratios are found by exponentiation of the pairwise 
differences of the least squares means. 
 
Corrected for population size Comparison Estimated ratio 95% confidence interval 

escapeJ vs. escapeZ 0.41 0.24 ; 0.69 
escapeJ vs. naturalJ 1.34 1.01 ; 1.77 

Yes 

escapeZ vs naturalJ 3.26 1.93 ; 5.50 
escapeJ vs. escapeZ 1.47 1.14 ; 1.90 
escapeJ vs. naturalJ 0.95 0.74 ; 1.21 

No 

escapeZ vs naturalJ 0.64 0.50 ; 0.84 
 

The ratios are markedly different depending on whether the estimates are corrected for 
the population sizes or not. This is due to a large difference between the population sizes in 
the three population types. 
 

Class N Mean population size  Min ; Max 
escapeZ 6 32 5.00 ; 114 
escapeJ 5 61 5.00 ; 200 
naturalJ 6 245 6.25 ; 500 



If we ignore the random effects in the binomial component, then it is also possible to 
compute estimates for mean number of feeding scars. Recall that the strictly positive counts 
are modelled by a normal distribution on the logarithmic scale. If this distribution has mean µ 
and variance σ2, then the properties of the log-normal distribution gives that mean of the 
strictly positive counts equals exp(µ+σ2/2). Furthermore, suppose that the logarithm of the 
probability for strictly positive counts equals ξ. Then the logarithm of the mean of X, where X 
is the number of feeding scars, equals 
 
log(mean(X)) = log(P(X>0)*mean(X|X>0)) = log(P(X>0))+log(mean(X|X>0)) = ξ+µ+σ2/2. 
 

In this equation, ξ and µ are the linear predictors in the binomial and the normal 
components, respectively, and σ

2 is the residual variance in the normal component. Estimates 
and standard error for ξ+µ and for σ2/2 are easily assessable. If we ignore the correlation 
between the two estimates, then Pythagoras theorem may be invoked to compute the standard 
error for ξ+µ+σ2/2. As an example, we find the following estimates and confidence intervals 
for the mean number of feeding scars in a transplant tree at distance=1m in a population with 
popstandard=50: 
 

Class Mean number of feeding scars 95% confidence interval 
escapeZ 0.51 0.25 ; 1.04 
escapeJ 0.56 0.26 ; 1.20 
naturalJ 0.47 0.21 ; 1.05 

 
These means and the ratios reported above all show that the numbers of feeding scars 

are not markedly different in the three population types. Thus, there is no support in favour of 
the hypothesis of enemy release. This conclusion is consistent with the findings of Skou et al. 
(2011), who as mentioned above also analysed several other responses. 
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