

Author Posting. (c) Gebrüder Borntraeger, Berlin, Stuttgart 2010.

This is the author's version of the work. It is posted here by permission of Gebrüder Borntraeger for personal use, not for redistribution. The definitive version was published in Meteorologische Zeitschrift, Vol. 19, No. 6, 001-011 (December 2010) (c) by Gebrüder Borntraeger 2010.

DOI 10.1127/0941-2948/2010/0486

Direct measurement of CO₂ and particle emissions from an urban area

FLORIAN DAHLKÖTTER^{1*}, FRANK GRIESSBAUM¹, ANDRES SCHMIDT² and OTTO KLEMM¹

¹Klimatologie, Westfälische Wilhelms-Universität Münster, Germany

²Department of Forest Science, Oregon State University, USA

October 19, 2010

1 Abstract

2 From July 9th through September 24th, 2009, turbulent particle number fluxes and CO₂
3 fluxes were measured above the city area of Münster, north-west Germany. The goal was to
4 characterize the respective vertical fluxes in the urban boundary area. The measurements
5 were conducted at a height of 65 m a.g.l. on a military radio tower at 10 Hz temporal
6 resolution. Fluxes were calculated applying the eddy covariance method. To determine the
7 impact of traffic emissions on particle number fluxes and CO₂ fluxes, hourly traffic activities
8 for 45° sectors, related to the tower, were calculated. Averaged diurnal and sectoral fluxes
9 are consistently directed upward, implying that the urban area of Münster acts continuously
10 as particle (number) and CO₂ source.

11 Traffic activities vary in the course of the day and within the 45° sectors. The latter
12 is attributable to differences in land use between the sectors. In the course of the day, two
13 peaks are discernible, during the morning and the evening rush hours, respectively. Averaged
14 diurnal particle (number) fluxes are correlated significantly to traffic activity. Accordingly,
15 traffic related emissions are the main sources for urban particle (number) fluxes. Averaged
16 sectoral CO₂ fluxes also correlate fairly well with sectoral traffic activities. In addition,
17 daytime photosynthesis is a controlling variable for the CO₂ flux, leading to lower upward
18 fluxes in daytime. The contribution of the photosynthetic activity of the vegetation in the
19 urban area to the CO₂ flux is quantified. Further, the contribution of traffic related emissions
20 to the CO₂ flux is computed by applying emission factors for carbon dioxide to the traffic
21 activity. They contribute in daytime about 40 to 50 % to the CO₂ flux, whereby, nightly
22 contributions are minimal.

23 Zusammenfassung

24 Vom 9. Juli bis zum 24. September 2009 wurden in Münster, Nordwest-Deutschland, tur-
25 bulente vertikale Partikel-Flüsse und CO₂-Flüsse gemessen. Die Messung wurde in ei-
26 ner Höhe von 65 m über Grund auf einem Funkturm der Bundeswehr mit zeitlicher
27 Auflösung von 10 Hz durchgeführt. Die Berechnung der Flüsse erfolgte unter Anwen-
28 dung der Eddy-Kovarianz-Methode. Um den Einfluss verkehrsbedingter Emissionen auf die
29 Partikel-Anzahl-Flüsse und die CO₂-Flüsse zu bestimmen, wurden stündliche Verkehrsbe-
30 lastungen für 45° Sektoren, vom Messturm ausgehend, berechnet. Die gemittelten Flüsse
31 sind im Tagesverlauf und innerhalb der Sektoren durchgängig aufwärts gerichtet. Das be-
32 deutet, dass das Stadtgebiet Münsters durchgehend als Partikel-Anzahl- und CO₂-Quelle
33 fungiert.

34 Die Verkehrsbelastungen variieren im Tagesverlauf und innerhalb der 45° Sektoren.
35 Zweiteres ist Unterschieden in der Landnutzung zwischen den Sektoren zuzuordnen. Im Ta-
36 gesverlauf sind zwei Maxima, während der morgendlichen und der abendlichen Hauptver-
37 kehrszeit, erkennbar. Die für den Tag gemittelten Partikel-Flüsse korrelieren signifikant mit
38 der Verkehrsbelastung. Dementsprechend sind verkehrsbedingte Emissionen die Hauptquel-
39 le für den städtischen Partikel-Anzahl-Fluss. Die sektorspezifisch gemittelten CO₂-Flüsse
40 korrelieren ebenfalls sehr gut mit der jeweiligen Verkehrsbelastung. Neben dem Einfluss
41 der Emissionen verschiedener urbaner Quellen ist auch die photosynthetische Aktivität eine
42 entscheidende Einflussvariable für die Tagesverläufe des CO₂-Flusses. Der Anteil der pho-
43 tosynthetisch aktiven Vegetation im Stadtgebiet auf den CO₂-Fluss wurde quantifiziert. Um
44 den Anteil der Emissionen des Straßenverkehrs auf den CO₂-Fluss zu berechnen, wurden
45 Emissionsfaktoren für CO₂ auf die Verkehrsbelastung angewendet. Der Anteil des Straßen-
46 verkehrs auf den CO₂-Fluss liegt tagsüber bei 40 bis 50 %, wohingegen der Anteil nachts
47 minimal ist.

48 1 Introduction

49 Carbon dioxide and aerosol particles have an important impact on climate change. The high
50 contribution of carbon dioxide to climate forcing is well-known and is associated with only
51 small uncertainties (IPCC, 2007). In contrast to that, aerosol particles have, due to their
52 direct and indirect effects, a negative influence on climate forcing. There are much larger
53 uncertainties in these processes. Therefore the quantification of surface-fluxes of carbon
54 dioxide and, in particular, aerosol particles are of great interest for global warming estimates
55 and research (IPCC, 2007). Furthermore, there is an adverse health effect of fine aerosol
56 particles, especially in urban areas (IBALD-MULLI et al., 2004). There are strong indications
57 that urban areas are often both a sink for particulate matter, dominated by larger particles,
58 and a source for particle numbers, dominated by fine and ultra-fine particles (NEMITZ et al.,
59 2000; DORSEY et al., 2002; SCHMIDT and KLEMM, 2008). SEINFELD and PANDIS (2006)
60 subdivide urban particle sources in four parts: Two parts are combustion of fossil fuel and
61 industrial processes. As the third part, there are non-industrial sources such as construction
62 sites, wind erosion and re-suspension. Finally, there are emissions from traffic, which are
63 not associated with the combustion process itself but rather with, for example, the abrasion
64 of brakes and tires. The high loads of particles in the urban air and their negative health
65 effects lead to the directives 1999/30/EC and 2008/50/EC of the European Union. These
66 directives include regulations for limits and exceedance of air pollutants. Consequently,
67 knowledge about urban particle dynamics and properties are of great interest for various
68 actors.

69 Because of its impact on climate change, carbon dioxide is one of the most challenging
70 gases for science (e.g. PAWLAK et al., 2009). Especially measurements of CO₂ concen-
71 trations and fluxes in urban areas, which are main sources for anthropogenically emitted
72 carbon dioxide, contribute to knowledge about the dynamics of this greenhouse gas (VOGT
73 et al., 2006). Emissions of carbon dioxide directly affect the local CO₂ concentrations, and,
74 due to the long atmospheric lifetime of CO₂, it indirectly affects the global atmospheric
75 conditions (e.g. IPCC, 2007). By interaction between the anthropogenic sources and the
76 natural sink, including the photosynthetic activity of the vegetation, a complex system of
77 exchange between surface and atmosphere in urban areas evolves (VOGT et al., 2006). In

78 the past, CO₂ emissions were mainly quantified based on estimates of the consumption of
79 fossil fuel (GRIMMOND et al., 2002). More recent approaches predominantly are based on
80 direct measurements in or above urban areas (e.g. GRIMMOND et al., 2002; NEMITZ et al.,
81 2002; VOGT et al., 2006; SCHMIDT et al., 2008). But measurements of carbon dioxide in or
82 above cities are underrepresented compared to measurements in natural environments. Due
83 to the importance of cities as main anthropogenic sources of CO₂, recently more and more
84 studies focus on urban areas (BURRI et al., 2009). Because of climatic and structural vari-
85 ability of cities, any generalization of results from urban areas is limited (GRIMMOND et al.,
86 2004; VOGT et al., 2006). Results of studies that treat urban CO₂ emissions, are available
87 for, e.g., Chicago (GRIMMOND et al., 2002), Edinburgh (NEMITZ et al., 2002), Marseilles
88 (GRIMMOND et al., 2004), Tokyo (MORIWAKI and KANDA, 2004; MORIWAKI et al., 2006),
89 Basel (VOGT et al., 2006), Sapporo (MIYAOKA et al., 2007), London (RIGBY et al., 2008),
90 Helsinki (VESALA et al., 2008), Münster (SCHMIDT et al., 2008), Cairo (BURRI et al.,
91 2009), and Lodz (PAWLAK et al., 2009).

92 For both aerosol particles and carbon dioxide, road traffic is an important source in urban
93 areas. For CO₂ in Münster, the calculated contribution of traffic to the annually averaged
94 emission is about 27 % (AMT FÜR GRÜNFLÄCHEN UND UMWELTSCHUTZ MÜNSTER,
95 2005). According to BEZIRKSREGIERUNG MÜNSTER (2009), 82 % of urban emissions of
96 particulate matter smaller than 10 μm (PM10) originate from traffic, whereas only 13 % and
97 5 % arise from industry and smaller firing systems, respectively. If the regional background
98 and long-range transport is included, only 10 to 25 % of PM10 immissions originate from
99 traffic, and about 75 to 90 % are attributable to regional background. That agrees very well
100 with results of GIETL et al. (2008), where about 23 % of the particle mass concentration
101 at a roadside was related to traffic emissions and 77 % reflected the regional background
102 concentration. Similar rates are published by MOLNAR et al. (2002) and KETZEL et al.
103 (2004) with at least 50 % of the particle mass concentration in urban air typically originating
104 from regional or long range transport. For particle number concentrations, much less
105 information is available. Sub-micrometer aerosol particles are released due to combustion
106 of fossil energy and due to abrasion of brakes, tires, and road surface. GARG et al.
107 (2000) calculate an average amount of 35 % for abrasion of brakes of vehicles for emitted

particulate matter to the atmosphere. Another source for particle emissions is re-suspension of deposited particles of natural or anthropogenic origin (ROGGE et al., 1993). Because of differences in composition and amount of emissions, vehicles are divided in vehicle classes such as light duty vehicles (LDV), heavy duty vehicles (HDV), busses, and motorcycles. In addition to this, vehicles can be classified by size, age, and technology of the engine. In KIRCHSTETTER et al. (1999), the emitted particle number per unit mass of fuel burned for diesel-powered HDV is described as 15 to 20 times higher than for LDV. This is similar to results of WANG et al. (2010) from a study from Copenhagen, where HDV emit 20 times more particles than LDV, and IMHOF (2005), where computed emission factors for HDV are 10 to 30 times higher than for LDV.

The aim of this study is to examine the characteristics of particle and carbon dioxide emissions for the urban area of Münster. The results should give insights in their diurnal behaviours. Especially the impact of traffic as a source of particle number and carbon dioxide and the differences in land use within the urban area of Münster on emissions are of major interest. The existing knowledge about urban particle and CO₂ emissions should be further developed, and a comparison of our results to other studies from other cities should reveal differences and similarities in the respective behaviour.

2 Methods and material

2.1 Study and site descriptions

From July 9th through September 24th 2009, the turbulent fluxes of carbon dioxide and aerosol particle number were measured in Münster. The city of Münster is located in the Northwest of Germany. With about 274 000 inhabitants, Münster is a regional center surrounded by smaller cities and villages alternating with agricultural areas. Despite of the rural appearance, Münster acts as a major carbon dioxide and particle number source, comparable to other cities (SCHMIDT and KLEMM, 2008).

The measuring system was mounted at the top of a military radio tower at 65 m a.g.l. in the urban area near the city center (Fig. 1). The location is about 40 m above the rooftops of the surrounding buildings, so that direct influences by nearby particle or carbon dioxide sources are excluded. Furthermore, because of the measuring height, the data are

representative for large footprint source areas (up to 1 km²) within the urban area (SCHMIDT and KLEMM, 2008). The sensors were mounted 2 m above the upmost level of the tower to minimize any interference by the structure of the tower. In the surrounding of the tower, the sector 1 and 2 (0°(N) to 90°(E)) from the measurement location is dominated by residential areas with suburban structure, frequently combined with gardens. Adjacent to that, there are agricultural areas and small forested patches. In the sector 3 and 4 (90° to 180°), the potential source area is rather heterogeneous. Parts contain residential areas like in the NE sector, parts contain allotment garden grounds, agricultural areas, and forests. The little inland harbour and a few medium sized industrial areas are located towards South within the sectors 4 and 5. In the sectors 5 and 6 (180° to 270°), there are also the train station, the cargo train station, densely built-up areas, and less green areas. The recreational area "Aasee", which covers 90 ha, starts in 2 km distance from the tower at about 260°. The sector 7 and 8 (270° to 360°) contain the main part of the city center, which is a densely build-up residential and central business area. Beneath the city center, dense residential areas, university buildings, and small green areas are dominating.

2.2 Measurement

The measuring system consists of three instruments: The 81000V Ultrasonic Anemometer (R. M. Young Company, Traverse City, Michigan 49686, USA) measures the speed of the three wind components u, v, w, and the sonic temperature. The Li-7500 Open Path CO₂/H₂O Infrared Gas Analyzer (LI-COR, Inc., Lincoln, Nebraska 68504, USA) measures the densities of CO₂ and H₂O by absorption of infrared light. The aerosol particle number concentration ($D_p > 11$ nm) was measured with the Condensation Particle Counter Model 3760A (TSI Incorporated, St. Paul, Minnesota 55126, USA). To transport the aerosol through the 3.4 m silicon sampling tube (diameter: 0.5 cm), a flow of 1.5 lpm was produced by an external pump and confined by a critical orifice. For optical detection n-butane is condensed onto the aerosol particles, which leads to an enlargement of the particles. The instruments were operated with a temporal resolution of 10 Hz. According to the predominant south-westerly wind direction, the sensors and sensor inlets were located detached but close to each other, so that errors caused by the setup are kept at a minimum.

166 The distances from the sonic anemometer to the particle inlet and the CO₂/H₂O infrared gas
167 analyzer were 20 cm and 30 cm, respectively.

168 **2.3 Traffic data**

169 A total of about 159 000 motor vehicles are licensed in Münster, whereof 87 000 vehicles are
170 petrol-driven and 70 000 are diesel-powered. The remaining 2 000 vehicles are gas-powered
171 (BEZIRKSREGIERUNG MÜNSTER, 2009). Data to the traffic situation, which is used in this
172 study, is based on different data sources provided by the department of urban planning in
173 Münster (Stadtplanungsamt Münster), and a traffic census by GIETL and KLEMM (2009).
174 The available data sets had been partly gathered manually, and partly gathered automatically
175 through hourly traffic counting over several years (2001 to 2008) in the urban area of
176 Münster. Also a database for daily averaged traffic load on main roads was utilized. Traffic
177 data of several years is used with the assumption that the variation of traffic from year to
178 year can be neglected. From these data the average traffic activity in units of travelled
179 vehicle-kilometers per ground area and per time unit (veh km m⁻² s⁻¹) for 45° sectors
180 from the tower are computed. Averaged diurnal variations are calculated. In addition,
181 variations of traffic activity between weekdays and weekends are acknowledged. While this
182 data should reflect the traffic activity appropriately for long-term observations, differences
183 between the actual traffic situation and the calculation are conceivable. Potential causes
184 are variations due to changing weather conditions, seasonal variations, holiday season,
185 or major construction sites. A circular area with 3 km radius centered around the tower
186 was used to calculate the traffic activity from available traffic data. Data within the circle
187 was considered, whereas data from outside the circle was excluded. This area reflects the
188 dominating footprint areas for fluxes as measured at the tower based on results of SCHMIDT
189 and KLEMM (2008), who calculated source areas applying the methods of SCHMID (1994).
190 An overview to the calculation of footprints is given in SCHMID (2002). The highest traffic
191 intensities can be expected in the sectors 5 to 8 (180° to 360°) because of industrial areas
192 and a dense building structure, which is related to heavy duty vehicles and an intensive
193 passenger car flow, respectively.

194 2.4 Eddy covariance

195 Flux measurements by use of the eddy covariance technique are implemented by highly
 196 resolved direct measurements, which are calculated into fluxes by algorithms based on
 197 several assumptions and simplifications (FOKEN, 2008). It is important to perform the
 198 measurements within the surface layer or in a way that no internal boundary layer could
 199 exhibit any impact on the measurements, respectively. Due to the measuring height of
 200 65 m a.g.l., the impact of surrounding structures is excluded to the greatest possible extent.
 201 With regard to the requirements for eddy covariance measurements, the commonly used
 202 formula for turbulent fluxes calculated by the eddy covariance is:

$$F = \overline{w'x'} \quad (1)$$

203 where F is the flux over 30 minutes, w is the vertical wind speed, and x is the variable
 204 (scalar) for which the flux is calculated. Primes indicate the difference of individual 10 Hz
 205 measurements from the 30-min average of the scalar, whereas the overbar indicates the 30-
 206 min average. Consequently, the right-hand side of equation 1 is the covariance between w
 207 and x .

208 Turbulent eddy fluxes indicate the feature of the surface to act as a source or sink
 209 for the scalar x under investigation. To include temporally and spatially high resolved
 210 turbulent elements, data are recorded with 10 Hz. In return, fluxes are calculated over
 211 30-minute intervals to ensure that also large turbulence elements with low frequencies are
 212 incorporated. Wind measurements in complex surroundings are affected by flow distortions
 213 due to buildings, setup construction, or other sensors (DYER, 1981, 1982; GRIESSBAUM and
 214 SCHMIDT, 2009; MENNEN et al., 1996; WIERINGA, 1980). In this study, flow distortion
 215 only arises from the structure of the tower and nearby sensors. The correction of the
 216 flow distortion is performed by using the method of GRIESSBAUM and SCHMIDT (2009).
 217 The mean corrections from flow distortion range from 4 % up to 7 %, the median range
 218 from 6 % up to 10 %. The small CO₂ sensor head is not considered in the simulation,
 219 but the data from 322.5° through 37.5° from the anemometer are excluded from data
 220 analysis due to potential flow distortion as caused by the northern location of CO₂ sensor
 221 head. According to SCHMIDT and KLEMM (2008), data quality for the flux computation

222 is tested and assured by performing time lag correction, based on shifting the data with
223 the maximum value of an autocorrelation analysis, coordinate rotation for the streamline fit
224 (PAW U et al., 2000; WILCZAK et al., 2001), linear detrending, WPL correction to correct
225 fluctuations of density induced by turbulent exchange of latent and sensible heat (WEBB
226 et al., 1980), stationarity testing (FOKEN and WICHURA, 1996), and the calculation of the
227 integral turbulence characteristics (ITC). The transport of the aerosol through the sampling
228 tube leads to an attenuation of the fluctuation, which produces an underestimation of the
229 fluxes. This effect is corrected following MASSMAN (1991), LENSCHOW and RAUPACH
230 (1991) and HELD and KLEMM (2006). The mean correction for the attenuation of the
231 fluctuation is 11.6 % and the median correction is 7.3 % with 3.4 % as 5 % percentile and
232 23 % as 95 % percentile. To ensure a good data quality, further quality tests are implemented
233 (FOKEN, 2008). After exclusion of incorrect data out of over 3 000 30-minute intervals,
234 approximately 900 intervals for the particle flux and about 1 100 intervals for the CO₂ flux
235 are available for further analysis.

236 3 Results and discussion

237 3.1 Traffic activity

238 The calculated average traffic activity for weekdays and weekends is presented Fig. 2. The
239 Saturdays are analyzed together with the Sundays as weekends because the differences
240 between Saturdays resemble each other very much, whereas the other days of the week
241 show a typical and different weekday pattern (see also WANG et al. (2010)). In the following
242 weekend describe Saturdays and Sundays and weekday describe Mondays to Fridays. For
243 weekdays, two peaks can be identified, representing the morning and afternoon rush hours,
244 respectively. In the morning, the traffic activity increases rapidly from 05 hrs to 08 hrs local
245 time. After that, the averaged traffic activity remains more or less stable until the afternoon
246 rush hour starts at 14 hrs. On workdays, the maximum traffic activity is reached at 17 hrs,
247 when the commuter traffic and the residual, not commuter-related traffic, which is far greater
248 during afternoons than during mornings, arise simultaneously. On weekends, the traffic
249 activity differs. Because of strongly reduced commuter traffic, the morning and afternoon
250 rush hours are not discernible. The only maximum is reached at 15 hrs. With the exception

251 of higher nightly traffic activity on weekends from 00 hrs to 05 hrs, which is related to
252 nightlife activities, weekend traffic is persistently lower than that on weekdays. Similar
253 patterns to the variation of traffic from Copenhagen are shown in WANG et al. (2010).

254 The averaged traffic activities as differentiated in 45° sectors with reference to the
255 measuring site, are shown in Fig. 3. For the eastern sectors, the calculated traffic activities
256 are considerably smaller than those of the western sectors. This characteristic is attributable
257 to the land use of the sectors (Fig. 1), with dense urban areas in the western sectors and
258 heterogeneous aspects in the eastern sectors, as outlined in section 2.1.

259 The amount of HDV, including buses, is computed to be between 5 and 13 % and
260 between 4 and 8 % of the hourly averaged values for weekdays and weekends, re-
261 spectively. Overall, HDV contributes 7 %. The overall amount of vehicle kilometers
262 in Münster is 5.4×10^6 veh km d⁻¹ (BEZIRKSREGIERUNG MÜNSTER, 2009) and about
263 2×10^6 veh km d⁻¹ for the considered circular area around the experimental tower, with
264 3 km radius.

265 3.2 Measured particle number flux and urban sources

266 To describe the relation of the results of particle flux measurement to the calculated traffic
267 activities, the sectoral traffic activities are compared in Fig. 3 to aerosol particle fluxes for
268 the corresponding wind directions. The correlation is fairly good. With the exception of
269 two southern sectors, the variations in traffic activity with respect to the wind direction
270 are reflected in the corresponding averaged sector fluxes. In the eastern sectors, the
271 values for averaged sectoral particle number fluxes, in correspondence to the minor traffic
272 activities, are comparatively low, whereas the particle number fluxes in the western sectors
273 are considerably higher. These similarities indicate a strong impact of traffic activity on
274 measured particle emission fluxes. In the sector 4 (135° to 180°), the road network is less
275 dense. The influence of traffic on particle emission is less, but other particle sources are
276 more pronounced. The variability of fluxes within this sector is large. Source of this large
277 variability is not clear, but it is likely to be related to a large variability of non-traffic emission
278 sources. In the sector 5 (180° to 225°), the ratio of main roads to smaller roads is higher than
279 anywhere else. This probably leads to an overestimation of traffic intensity in this sector.

Averaged particle number fluxes for weekdays and weekends are shown in Fig. 4. For workdays the hourly averaged flux ranges between $11 \times 10^6 \text{ m}^{-2} \text{ s}^{-1}$ and $151 \times 10^6 \text{ m}^{-2} \text{ s}^{-1}$. The minimum value occurs at 04 hrs and the maximum at 12 hrs, respectively. At 05 hrs, the measured particle fluxes increase sharply, which is related to the morning rush hour with intense traffic activity. According to the values of the traffic activity, the diurnal cycle of the particle flux shows similar behaviour. However, a rather striking difference consists in the absence of an afternoon peak for the particle flux. During daytime, there is a well developed turbulence regime (AGARWAL et al., 1995) and a deeper boundary layer, which results in efficient dilution of particles. Thus, the maximum of the flux occurs at noon rather than during afternoon rush hour. Similar results with a maximum at noon in particle fluxes are described e.g. for Edinburgh (DORSEY et al., 2002), Stockholm (MÅRTENSSON et al., 2006), and Helsinki (JÄRVI et al., 2009). The correlation between particle flux and traffic activity ($R^2 = 0.60$ for weekdays, $R^2 = 0.57$ for weekends) is significant and confirms the influence of traffic to the particle flux. The offsets ($F_0 = 16 \times 10^6 \text{ m}^{-2} \text{ s}^{-1}$ for weekdays, $F_0 = 27 \times 10^6 \text{ m}^{-2} \text{ s}^{-1}$ for weekends) represent other urban particle sources, such as industry or smaller firing systems. Compared to traffic related emissions, other sources contribute only little to particle emissions. Although some values for 30-minute fluxes are negative and reflect downward directed fluxes, all averaged values are positive. So, the particle number fluxes are in average consistently directed upward. That implies that the urban area acts as a continuous particle number source. For weekends, the hourly averaged flux ranges between $14 \times 10^6 \text{ m}^{-2} \text{ s}^{-1}$ and $134 \times 10^6 \text{ m}^{-2} \text{ s}^{-1}$. The minimum occurs again at 04 hrs, and the maximum at 14 hrs, respectively. In comparison to fluxes on workdays, the morning increase is retarded and less pronounced. The maximum is almost as high as on weekdays. Overnight particle fluxes on weekends are slightly higher than on workdays. That is attributable to enhanced overnight traffic activity on weekends. Moreover, even on weekends, the urban area of Münster acts as particle source and there are no downward directed averaged fluxes. Individual 30-minute downward fluxes are infrequently occurring exceptions.

To validate our results, fluxes are calculated by applying emission factors on the traffic activity of Münster. The used emission factors for a mixed vehicle fleet, with

310 1.4×10^{14} veh $^{-1}$ km $^{-1}$, arise from a study of MÅRTENSSON et al. (2006) to similar flux
311 measurements in Stockholm. Due to similar mean contributions of HDV in Münster (7 %)
312 and Stockholm (6 %) (MÅRTENSSON et al., 2006), respectively, the errors resulting from
313 the use of emission factors for a mixed vehicle fleet, are neglectable. The results of the
314 calculation of diurnal fluxes for the considered circular area resemble the measured particle
315 fluxes, especially for weekends, and show the complimentary nature of our measurement
316 and the emission factors for a mixed fleet in Stockholm. The calculated flux is based on
317 traffic activity and the emission factors. The calculated weekday flux shows an afternoon
318 peak. This is the main difference between our measurement and the calculated flux. Consider-
319 ing the similar magnitude of the measured and the calculated fluxes, we hypothesize that
320 the employed emission factors from Stockholm are overestimations for the traffic, typical
321 for the urban area of Münster. If the data as presented in Fig. 4 is expected to be valid, there
322 would be no more room for any particle emissions from other sources. This contradicts the
323 results from diurnal emission analysis as shown above. Possible reasons for this contra-
324 diction are differences in amounts of the various emission sources between urban areas of
325 different cities. Possibly the amount of traffic as particle source is larger in Stockholm as
326 compared to Münster. As another potential reason, there are possibly lowered emissions of
327 vehicles, due to improved technology of the engines between 2002 and 2009.

328 3.3 Measured CO₂ flux and urban sources

329 A comparison between carbon dioxide fluxes and traffic activity for 45° sectors is shown in
330 Fig. 5. Throughout, in the sectors 1 to 4 (0° to 180°), representing heterogeneous land use
331 source areas, the fluxes are smaller than those from the sectors 5 to 8 (180° to 360°), which
332 represent the city center and densely built-up areas. Although traffic is only one of several
333 urban sources, a clear dependence is discernible. It is conceivable, that traffic as a carbon
334 dioxide source plays an important and controlling role for the spatial variation. The largest
335 variations of carbon dioxide fluxes appear in the range from 90° to 225° (sectors 3 to 5),
336 while the fluxes in the other sectors occur more consistent.

337 Averaged diurnal carbon dioxide fluxes for weekdays and weekends, respectively, are
338 shown in Fig. 6. For workdays the hourly averaged fluxes range between 3.8 $\mu\text{mol m}^{-2} \text{s}^{-1}$
339 at 10 hrs and 11.2 $\mu\text{mol m}^{-2} \text{s}^{-1}$ at 08 hrs. The diurnal course features a maximum in

340 the morning, which is a result of increased emissions from traffic and coincides with the
341 morning rush hour. The flux sharply decreases to a minimum at 10 hrs and stays rather
342 constant, exhibiting a slight increase, though. This low level is related to photosynthesis
343 of the vegetation, which picks up CO₂ during daytime. It reduces the ground level carbon
344 dioxide concentration and, thus, the net emission flux. In the evening, when photosynthesis
345 is completed and carbon dioxide concentrations rise again due to plant respiration and
346 anthropogenic sources, an increasing CO₂ emission flux evolves. The decrease of the flux
347 in the early morning hours can be explained by extreme low urban emissions. Despite the
348 photosynthetically induced daily depression of the flux, no net downward fluxes occur in our
349 averaged data sets. So, on weekdays, the urban area acts as a net source of carbon dioxide.

350 On weekends, the diurnal appearance of carbon dioxide fluxes, with an hourly averaged
351 flux ranging between $1.8 \mu\text{mol m}^{-2} \text{s}^{-1}$ at 15 hrs and $7.5 \mu\text{mol m}^{-2} \text{s}^{-1}$ at 23 hrs, is
352 different from workday fluxes. Due to the absence of a morning rush hour, no clear peak
353 appears in the diurnal cycle. Likewise on weekdays, the flux decreases during daytime
354 because of the photosynthetic activity of the urban vegetation. Towards evening, when
355 uptake of CO₂ by the vegetation ceases, the carbon dioxide flux increases and levels out at
356 about $6 \mu\text{mol m}^{-2} \text{s}^{-1}$. The measured fluxes are comparable to results to urban CO₂ fluxes
357 from Melbourne (COUTTS et al., 2007), Helsinki (JÄRVI, 2009), and Essen (KORDOWSKI
358 and KUTTLER, 2010). Especially the results from Essen (KORDOWSKI and KUTTLER,
359 2010), which is located in north-west Germany and is subjected to similar environmental
360 conditions, validate our measurements during summer due to the measurement period
361 covering one year. Despite the lower fluxes by day on weekends as compared to weekdays,
362 again the averaged carbon dioxide flux direction is consistently upward. The vegetation in
363 Münster is apparently incapable of balancing the ground level CO₂ emissions.

364 In the following, we quantify the contribution of the photosynthetic activity of the
365 vegetation to the CO₂ flux. A regression between CO₂ flux and particle number flux
366 during night time (22 - 05 hrs) is determined (Fig. 7). This correlation is interpretable
367 under the assumption that the particle number emission flux and the CO₂ emission flux
368 behave similarly during the nights. Under these conditions, for both fluxes the main
369 controlling variables are the urban emissions. Traffic is the major source for both fluxes.

370 The linear regression (coefficient of determination (R^2) = 0.18; correlation coefficient
371 (R) = 0.43) is applied on the particle fluxes of the entire day to derive the CO₂ fluxes
372 that would reflect the urban emission, without the mitigating effect of the vegetation. The
373 result (included in Fig. 6) is an averaged CO₂ flux without a daytime depression. The
374 computed flux "without" vegetation impact increases until 11 hrs on weekdays and 14 hrs
375 on weekends. Towards evening, the fluxes decrease until the minimum is reached at 04 hrs
376 for weekdays and weekends. These hypothetical fluxes range from 4.7 $\mu\text{mol m}^{-2} \text{s}^{-1}$ at 4
377 hrs to 11.3 $\mu\text{mol m}^{-2} \text{s}^{-1}$ at 14 hrs and 5.2 $\mu\text{mol m}^{-2} \text{s}^{-1}$ at 04 hrs and 10.7 $\mu\text{mol m}^{-2} \text{s}^{-1}$
378 at 14 hrs for weekdays and weekends, respectively. Certainly, these values are projected and
379 hence reflect a possible behaviour with potential discrepancy from real conditions.

380 To further validate this calculation and to directly quantify the contribution of traffic
381 emissions to the CO₂ flux, this traffic related CO₂ flux is computed by applying emission
382 factors for carbon dioxide to the traffic activity. The emission factors, which contain a
383 differentiation between HDV and LDV, originate from a study from the project report by
384 BOULTER et al. (2009). These emission factors were compared and updated with a dif-
385 ferentiation between emission factors for petrol-driven and diesel-powered vehicles from
386 other studies (e.g. BARTELT, 2005) to ensure a good quality of emission factors for traf-
387 fic related carbon dioxide emissions. The fluxes range from 0.3 $\mu\text{mol m}^{-2} \text{s}^{-1}$ at 04 hrs to
388 6.3 $\mu\text{mol m}^{-2} \text{s}^{-1}$ at 17 hrs and 0.4 $\mu\text{mol m}^{-2} \text{s}^{-1}$ at 05 hrs and 4.3 $\mu\text{mol m}^{-2} \text{s}^{-1}$ at 15
389 hrs for weekdays and weekends, respectively. In addition to the annually averaged distri-
390 bution of sources as mentioned above (AMT FÜR GRÜNFLÄCHEN UND UMWELTSCHUTZ
391 MÜNSTER, 2005), this study offers more detailed information about diurnal variations of
392 sources and their impact on carbon dioxide fluxes. The computational strategies to compute
393 the CO₂ flux from traffic emissions is similar for the two methods. On the one hand, a CO₂
394 emission factor is directly applied to the traffic pattern. On the other hand, an experimentally
395 determined CO₂ / particle number emission ratio is applied to the particle number flux. The
396 latter leads to the emission estimate "without vegetation". The results of the two methods
397 are very similar to each other. Deviations occur on weekday afternoons, when the maximum
398 for the averaged CO₂ fluxes without daytime depression is at 11 hrs compared to 17 hrs for
399 traffic emission related CO₂ fluxes. The main difference between the two results consists

400 in an offset between the two fluxes. This offset represents the flux attributable to other,
401 non-traffic CO₂ emitters, with a more or less stable baseline level between 2 $\mu\text{mol m}^{-2} \text{s}^{-1}$
402 and 6 $\mu\text{mol m}^{-2} \text{s}^{-1}$ for both, weekdays and weekends. Considering the diurnal courses of
403 the computed fluxes, it is obvious that the diurnal variation of the measured carbon dioxide
404 flux is mainly caused by traffic emissions. The nightly fluxes on weekdays, related to traf-
405 fic emission, are small and contribute only marginally to the CO₂ fluxes. During daytime,
406 the contribution of traffic-related fluxes to the total CO₂ flux is approximately 50 %. On
407 weekends, similar diurnal amounts are achieved with slightly smaller contributions in day-
408 time (about 40 %), though. For weekdays the diurnal averaged amount of traffic emissions
409 to the CO₂ flux is 40 % and 28 % for weekends. This agrees fairly well with results of
410 AMT FÜR GRÜNFLÄCHEN UND UMWELTSCHUTZ MÜNSTER (2005), where the average
411 annual amount of traffic emissions to the CO₂ flux is 27 %. Due to lower emission from
412 smaller firing systems during summer, when this measurement took place, the amount of
413 traffic emission is overestimated in comparison to all year averages. The main remaining
414 amount is attributable to energy related emissions. During 2005, a total of 556000 t origi-
415 nated from traffic related emission, and 1207000 t from energy related emission (AMT FÜR
416 GRÜNFLÄCHEN UND UMWELTSCHUTZ MÜNSTER, 2005). The impact of the remaining
417 emitters has a more constant distribution in the course of the day. Assuming an absence of
418 traffic emissions contributing to the fluxes, the urban area of Münster probably would act
419 as carbon dioxide sink in daytime. Likewise, a reduction of emissions of the other sources
420 could affect a daytime downward flux and reduce the total urban carbon dioxide emission.

421 3.4 Error discussion

422 The error discussion is included to be able to assume the quality of the data presented in this
423 paper. Errors can be made at the data acquisition and the data processing. The first is related
424 to the inaccuracy of the used instruments and the execution of the measurements. Since
425 measurement errors are excluded in the following data processing, errors of the acquisition
426 of data are limited to instrument inaccuracy. Manufacturers state the coincidence of the
427 Condensation Particle Counter as about 10 % at 10000 particles per cm³ (TSI Incorporated,
428 St. Paul, Minnesota 55126, USA), the inaccuracy of the Ultrasonic Anemometer as < 3 %
429 for the wind speed and < 5° for the wind direction (R. M. Young Company, Traverse City,

430 Michigan 49686, USA), and similar values for the inaccuracies of the CO₂/H₂O Infrared
431 Gas Analyzer (LI-COR, Inc., Lincoln, Nebraska 68504, USA). FOKEN (2008) describes
432 the accuracy of the applied eddy covariance technique to be 5 to 10 % with regard to the
433 described requirements. Since traffic data are provided, the statements to the inaccuracy
434 have to be limited to the data processing. The error, which is made by using data from
435 several years, is neglected due to only marginal changes of the traffic conditions in that
436 period. Another smaller error, which is made in the processing of the traffic data, is the
437 selection of data from the circle with 3 km radius for the calculation of the traffic activity.
438 Due to the dominating footprint areas for fluxes measured at the tower this area is chosen
439 to be the basis for traffic activity calculation. Summarized the inaccuracy of traffic activity
440 data can be assumed as < 20 %. The traffic related fluxes, calculated by application of
441 emission factors to the traffic activity, adopt the errors made by calculation of the traffic
442 activity. On the assumption that the vehicle fleet of Münster is comparable to the vehicle
443 fleet on which the calculation of the emission factors is based, further errors are neglectable.
444 Errors made by calculating the CO₂ flux without impact of the vegetation is charged with
445 larger uncertainties. Due to the statistically insignificant correlation coefficient (Fig. 7) the
446 values for this calculated flux only can be considered to be an estimation. With respect to
447 this insignificance and the associated uncertainties the calculation is presented in this study
448 due to the discernible plausibility of this estimation (Fig. 6). Accordingly the results to the
449 CO₂ flux without impact of the vegetation have to be treated carefully.

450 4 Summary and conclusions

451 The measurement of the aerosol particle number flux and the CO₂ flux, applying the eddy
452 covariance method, above the urban area of Münster is focused on the impact of urban
453 emissions on the fluxes and the relative contributions of different sources. The measurement
454 height of 65 m a.g.l. gives access to large flux source (footprint) areas, reflecting the net
455 emission from the urban area in a better way than ground based measurements. The general
456 interest lies in the flux regime for particle number and carbon dioxide above the urban
457 canopy. Special interest lies on traffic as a main driver for both particle number and CO₂
458 emissions. We analyzed its influence as a function of wind direction and diurnal variation.

459 Therefore, traffic data and measured data are divided spatially into 45° sectors from the
460 tower, and temporally into hourly periods. Furthermore, a distinction of the data between
461 weekdays and weekends is made. Particle number fluxes vary between sectors, reflecting
462 the magnitude of the traffic activity in the associated sector fairly well. Accordingly, diurnal
463 traffic activities (Fig. 2) and diurnal particle number fluxes (Fig. 4) correlate significantly
464 ($R^2 = 0.60$ for weekdays, $R^2 = 0.57$ for weekends). Especially the impact of the morning
465 rush hour on particle number fluxes is clearly identifiable. The ordinate offsets of the
466 regression between traffic activity and measured particle flux ($F_0 = 16 \times 10^6 \text{ m}^{-2} \text{ s}^{-1}$ for
467 weekdays, $F_0 = 27 \times 10^6 \text{ m}^{-2} \text{ s}^{-1}$ for weekends) represent other urban particle sources.
468 The impact of traffic related emissions as main particle number source is confirmed by these
469 minor offsets for non-traffic related particle sources on the one hand, and by the calculation
470 of traffic related particle number fluxes based on emission factors for traffic from a similar
471 study from Stockholm on the other hand. According to the major amount of traffic emissions
472 to particle fluxes, reductions of particle upward fluxes is most likely achievable by reducing
473 urban traffic activity.

474 For carbon dioxide fluxes, similar characteristics can be observed. The CO₂ fluxes vary
475 between the sectors, representing heterogeneous land use source areas. Although traffic is
476 only one of several urban sources, a clear dependency is discernible. It is thus conceivable
477 that traffic emissions as CO₂ source have a controlling impact on the spatial variation.
478 Averaged diurnal carbon dioxide fluxes are mainly influenced by the CO₂ emissions and
479 daytime photosynthesis (Fig. 6), with smaller emissions in daytime and higher ones during
480 the nights. Specifically high upward fluxes were observed on weekdays during the morning
481 rush hour before the photosynthetic activity started. The contribution of the photosynthetic
482 activity of the vegetation in the urban area to the CO₂ flux is quantified by applying a
483 regression between CO₂ flux and particle number flux during night time. The result (Fig. 6)
484 shows clearly increased carbon dioxide fluxes during daytime. This calculation is validated
485 by computing the contribution of traffic emissions to the CO₂ flux, based on applying
486 emission factors for carbon dioxide to the traffic activity. The diurnal courses of these
487 two calculated fluxes are similar, so that the main contribution to the diurnal variation of
488 the flux can be allocated to traffic emissions. The offset between the fluxes represents the

489 flux attributable to the other CO₂ emitters. Assuming a significant reduction of traffic could
490 be achieved, the carbon dioxide emissions from the urban area of Münster probably would
491 become negative in daytime.

492 This study provides an accurate characterization of the spatial and temporal behaviour
493 of measured particle number and CO₂ fluxes for the urban area of Münster. With respect
494 to their possible errors and uncertainties, further characterizations, based on the calculated
495 fluxes, show interesting details of the spatial and temporal behaviour. To achieve a more
496 exact source allocation, a more detailed and greater database for traffic activity and a
497 database for the other urban CO₂ sources would be useful. An increased duration of
498 the measurement could improve the representativeness of the results. For particle flux
499 characterization, size resolved fluxes in combination with chemical analysis would help
500 to expand the view towards particle mass, rather than just particle number, fluxes.

501 **Acknowledgments**

502 The authors thank the *Amt für Stadtentwicklung, Stadtplanung, Verkehrsplanung Münster*
503 for providing the traffic data from the urban area of Münster. Furthermore we would like
504 to thank the *Bau- und Liegenschaftsbetrieb NRW* and the *Manfred-von-Richthofen* casern
505 Münster for the permission to use the military radio tower. We thank L. Harris for language-
506 editing of the manuscript.

507 **References**

508 AGARWAL, P., A. K. YADAV, A. GULATI, S. RAMAN, S. M. RAO, M. P. SINGH,
509 S. NIGAM, N. REDDY, 1995: Surface-layer turbulence processes in low wind speeds
510 over land. – *Atmospheric Environment* **29**, 2089–2098.

511 AMT FÜR GRÜNFLÄCHEN UND UMWELTSCHUTZ MÜNSTER, 2005: Energie- und Klima-
512 bilanz der Stadt Münster - Bilanzierung des Energieeinsatzes und der Treibhausgas-
513 Emissionen für das Jahr 2005.

514 BARTELTT, M., 2005: Energie- und Treibhausgasbilanz der Hansestadt Greifswald als
515 Grundlage einer lokalen Klimaschutzkonzeption. Diploma thesis.

516 BEZIRKSREGIERUNG MÜNSTER, 2009: Luftreinhalteplan/ Luftqualitätsplan für das Stadt-
517 gebiet Münster.

518 BOULTER, P. G., T. J. BARLOW, I. S. McCRAE, S. LATHAM, 2009: Emission factors
519 2009: Final summary report. Technical report, Department for Transport, Cleaner Fuels
520 & Vehicles 4.

521 BURRI, S., C. FREY, E. PARLOW, R. VOGT, 2009: CO₂ fluxes and concentrations over
522 an urban surface in Cairo / Egypt. – In: The seventh International Conference on Urban
523 Climate, Yokohama, Japan.

524 COUTTS, A. M., J. BERNINGER, N. J. TAPPER, 2007: Characteristics influencing the
525 variability of urban CO₂ fluxes in Melbourne, Australia. – Atmospheric Environment
526 **41**, 51–62.

527 DORSEY, J. R., E. NEMITZ, M. W. GALLAGHER, D. FOWLER, P. I. WILLIAMS, K. N.
528 BOWER, K. M. BESWICK, 2002: Direct measurements and parameterisation of aerosol
529 flux, concentration and emission velocity above a city. – Atmospheric Environment **36**,
530 791–800.

531 DYER, A. J., 1981: Flow distortion by supporting structures. – Boundary-Layer Meteorol-
532 ogy **20**, 243–251.

533 DYER, A. J., 1982: Flow distortion by supporting structures - Reply. – Boundary-Layer
534 Meteorology **22**, 267–268.

535 FOKEN, T., 2008: Micrometeorology. – Springer.

536 FOKEN, T., B. WICHURA, 1996: Tools for quality assessment of surface-based flux
537 measurements. – Agricultural and Forest Meteorology **78**, 83–105.

538 GARG, B. D., S. H. CADLE, P. A. MULAWA, P. J. GROBLICKI, C. LAROO, G. A. PARR,
539 2000: Brake wear particulate matter emissions. – Environmental Science & Technology
540 **34**, 4463–4469.

541 GIETL, J. K., O. KLEMM, 2009: Analysis of traffic and meteorology on airborne particulate
542 matter in Münster, Northwest Germany. – Journal of the Air & Waste Management
543 Association **59**, 809–818.

544 GIETL, J. K., T. TRITSCHER, O. KLEMM, 2008: Size-segregated analysis of PM10 at two
545 sites, urban and rural, in Münster (Germany) using five-stage Berner type impactors. –
546 *Atmospheric Environment* **42**, 5721–5727.

547 GRIESSBAUM, F., A. SCHMIDT, 2009: Advanced tilt correction from flow distortion effects
548 on turbulent CO₂ fluxes in complex environments using large eddy simulation. – *Quarterly*
549 *Journal of the Royal Meteorological Society* **135**, 1603–1613.

550 GRIMMOND, C. S. B., T. S. KING, F. D. CROPLEY, D. J. NOWAK, C. SOUCH, 2002:
551 Local-scale fluxes of carbon dioxide in urban environments: methodological challenges
552 and results from Chicago. – *Environmental Pollution* **116**, 243–254.

553 GRIMMOND, C. S. B., J. A. SALMOND, T. R. OKE, B. OFFERLE, A. LEMONSU,
554 2004: Flux and turbulence measurements at a densely built-up site in Marseille: Heat,
555 mass (water and carbon dioxide), and momentum. – *Journal of Geophysical Research-*
556 *Atmospheres* **109**.

557 HELD, A., O. KLEMM, 2006: Direct measurement of turbulent particle exchange with a
558 twin CPC eddy covariance system. – *Atmospheric Environment* **40**, S92–S102.

559 IBALD-MULLI, A., K. L. TIMONEN, A. PETERS, J. HEINRICH, G. WOLKE, T. LANKI,
560 G. BUZORIUS, W. G. KREYLING, DE J. HARTOG, G. HOEK, TEN H. M. BRINK,
561 J. PEKKANEN, 2004: Effects of particulate air pollution on blood pressure and heart
562 rate in subjects with cardiovascular disease: A multicenter approach. – *Environmental*
563 *Health Perspectives* **112**, 369–377.

564 IMHOF, D. A., 2005: Roadside measurements of aerosol parameters and determination of
565 emission factors for different vehicle categories. Ph.D. thesis.

566 IPCC, 2007: Climate Change 2007: The physical science basis. Contribution of Working
567 Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate
568 Change. volume United Kingdom and New York, NY, USA. Cambridge University Press,
569 Cambridge.

570 JÄRVI, M., 2009: Turbulent vertical fluxes and air quality measured in urban air in Helsinki
571 Ph.D. thesis.

572 JÄRVI, M., . RANNIK, I. MAMMARELLA, A. SOGACHEV, P. P. AALTO, P. KERONEN,
573 E. SIIVOLA, K. M., V. T., 2009: Annual particle flux observations over a heterogeneous
574 urban area. – *Atmos. Chem. Phys. Discuss.* **9**, 13407–13437.

575 KETZEL, M., P. WAHLIN, A. KRISTENSSON, E. SWIETLICKI, R. BERKOWICZ, O. J.
576 NIELSEN, F. PALMGREN, 2004: Particle size distribution and particle mass measurements
577 at urban, near-city and rural level in the Copenhagen area and Southern Sweden. –
578 *Atmospheric Chemistry and Physics* **4**, 281–292.

579 KIRCHSTETTER, T. W., R. A. HARLEY, N. M. KREISBERG, M. R. STOLZENBURG, S. V.
580 HERING, 1999: On-road measurement of fine particle and nitrogen oxide emissions from
581 light- and heavy-duty motor vehicles. – *Atmospheric Environment* **33**, 2955–2968.

582 KORDOWSKI, K., W. KUTTLER, 2010: Carbon dioxide fluxes over an urban park area. –
583 *Atmospheric Environment* **44**, 2722–2730.

584 LENSCHOW, D. H., M. R. RAUPACH, 1991: The attenuation of fluctuations in scalar
585 concentrations through sampling tubes. – *Journal of Geophysical Research-Atmospheres*
586 **96**, 15259–15268.

587 MASSMAN, W. J., 1991: The attenuation of concentration fluctuations in turbulent flow
588 through a tube. – *Journal of Geophysical Research-Atmospheres* **96**, 15269–15273.

589 MENNEN, M. G., H. J. M. A. ZWART, J. E. M. HOGENKAMP, J. W. ERISMAN, 1996:
590 Flow distortion errors caused by rigid obstacles in dry deposition measurement systems.
591 – *Boundary-Layer Meteorology* **81**, 353–371.

592 MIYAOKA, Y., H. Y. INOUE, Y. SAWA, H. MATSUEDA, S. TAGUCHI, 2007: Diurnal and
593 seasonal variations in atmospheric CO₂ in Sapporo, Japan: Anthropogenic sources and
594 biogenic sinks. – *Geochemical Journal* **41**, 429–436.

595 MOLNAR, P., S. JANHALL, M. HALLQUIST, 2002: Roadside measurements of fine and
596 ultrafine particles at a major road north of Gothenburg. – *Atmospheric Environment* **36**,
597 4115–4123.

598 MORIWAKI, R., M. KANDA, 2004: Seasonal and diurnal fluxes of radiation, heat, water
599 vapor, and carbon dioxide over a suburban area. – *Journal of Applied Meteorology* **43**,
600 1700–1710.

601 MORIWAKI, R., M. KANDA, H. NITTA, 2006: Carbon dioxide build-up within a suburban
602 canopy layer in winter night. – *Atmospheric Environment* **40**, 1394–1407.

603 MÅRTENSSON, E. M., E. D. NILSSON, G. BUZORIUS, C. JOHANSSON, 2006: Eddy
604 covariance measurements and parameterisation of traffic related particle emissions in an
605 urban environment. – *Atmospheric Chemistry and Physics* **6**, 769–785.

606 NEMITZ, E., D. FOWLER, J. R. DORSEY, M. R. THEOBALD, A. D. McDONALD,
607 K. N. BOWER, K. M. BESWICK, P. I. WILLIAMS, M. W. GALLAGHER, 2000: Direct
608 measurements of size-segregated particle fluxes above a city. – *Journal of Aerosol Science*
609 **31**, 116–117.

610 NEMITZ, E., K. J. HARGREAVES, A. G. McDONALD, J. R. DORSEY, D. FOWLER, 2002:
611 Meteorological measurements of the urban heat budget and CO₂ emissions on a city scale.
612 – *Environmental Science & Technology* **36**, 3139–3146.

613 PAW U, K. T., D. D. BALDOCCHI, T. P. MEYERS, K. B. WILSON, 2000: Correction of
614 eddy-covariance measurements incorporating both advective effects and density fluxes. –
615 *Boundary-Layer Meteorology* **97**, 487–511.

616 PAWLAK, W., K. FORTUNIAK, M. SIEDLECKI, 2009: Carbon dioxide flux in the center of
617 Lodz, Poland - Analysis of two years eddy covariance measurements data set. – In: The
618 seventh International Conference on Urban Climate, Yokohama, Japan.

619 RIGBY, M., R. TOUMI, R. FISHER, D. LOWRY, E. G. NISBET, 2008: First continuous
620 measurements of CO₂ mixing ratio in central London using a compact diffusion probe. –
621 *Atmospheric Environment* **42**, 8943–8953.

622 ROGGE, W. F., L. M. HILDEMANN, M. A. MAZUREK, G. R. CASS, B. R. T. SIMONEIT,
623 1993: Sources of fine organic aerosol .3. Road dust, tire debris, and organometallic brake
624 lining dust - Roads as sources and sinks. – *Environmental Science & Technology* **27**,
625 1892–1904.

626 SCHMID, H. P., 1994: Source areas for scalars and scalar fluxes. – Boundary-Layer
627 Meteorology **67**, 293–318.

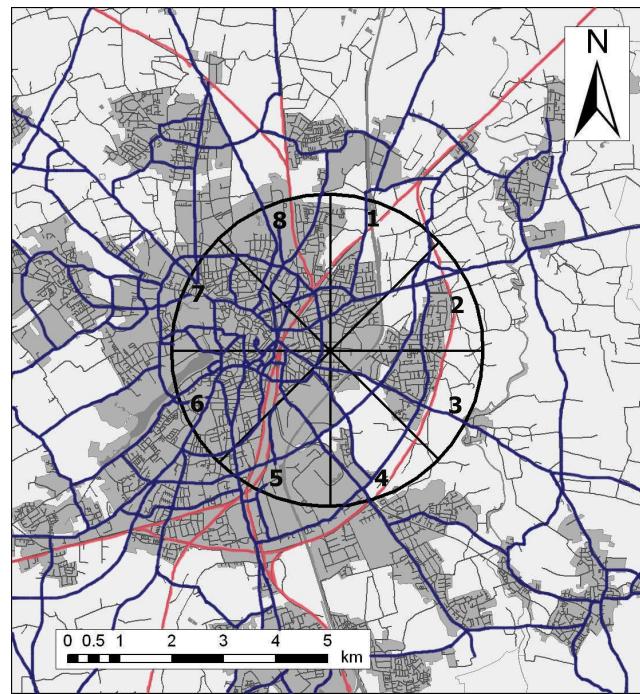
628 SCHMID, H. P., 2002: Footprint modeling for vegetation atmosphere exchange studies: a
629 review and perspective. – Agricultural and Forest Meteorology **113**, 159–183.

630 SCHMIDT, A., O. KLEMM, 2008: Direct determination of highly size-resolved turbulent
631 particle fluxes with the disjunct eddy covariance method and a 12-stage electrical low
632 pressure impactor. – Atmospheric Chemistry and Physics **8**, 7405–7417.

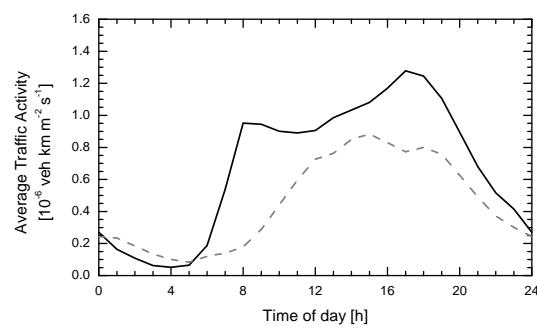
633 SCHMIDT, A., T. WRZESINSKY, O. KLEMM, 2008: Gap filling and quality assessment
634 of CO₂ and water vapour fluxes above an urban area with radial basis function neural
635 networks. – Boundary-Layer Meteorology **126**, 389–413.

636 SEINFELD, J. H., S. N. PANDIS, 2006: Atmospheric Chemistry and Physics: From Air
637 Pollution to Climate Change. – John Wiley & Sons.

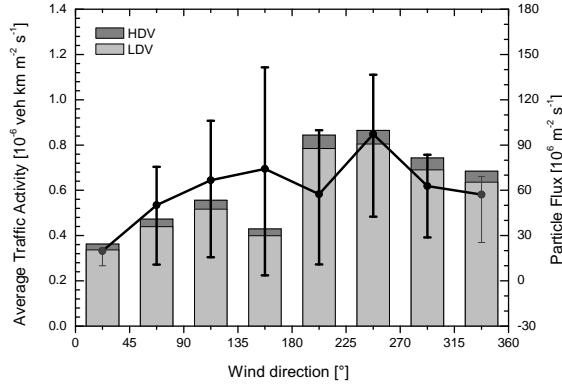
638 VESALA, T., L. JARVI, S. LAUNIAINEN, A. SOGACHEV, U. RANNIK, I. MAMMARELLA,
639 E. SIIVOLA, P. KERONEN, J. RINNE, A. RIIKONEN, E. NIKINMAA, 2008: Surface-
640 atmosphere interactions over complex urban terrain in Helsinki, Finland. – Tellus Series
641 B-Chemical and Physical Meteorology **60**, 188–199.

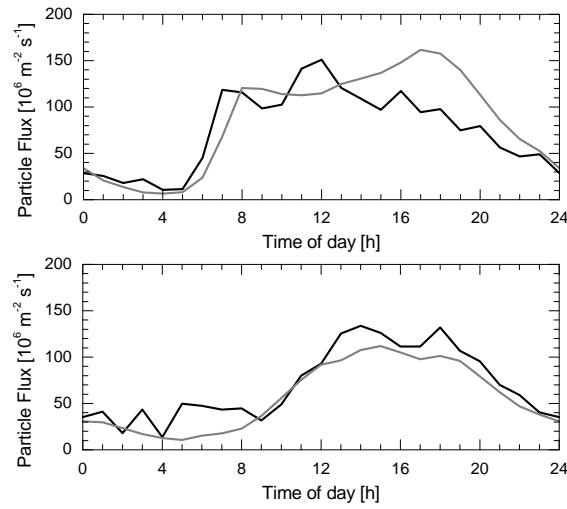

642 VOGT, R., A. CHRISTEN, M. W. ROTACH, M. ROTH, A. N. V. SATYANARAYANA, 2006:
643 Temporal dynamics of CO₂ fluxes and profiles over a central European city. – Theoretical
644 and Applied Climatology **84**, 117–126.

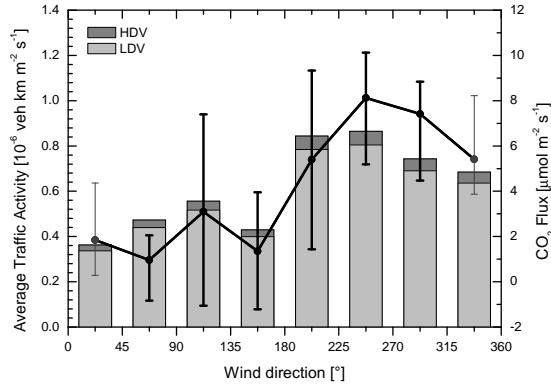
645 WANG, F., M. KETZEL, T. ELLERMANN, P. WÅHLIN, S. S. JENSEN, D. FANG,
646 A. MASSLING, 2010: Particle number, particle mass and NO_x emission factors at a
647 highway and an urban street in Copenhagen. – Atmos. Chem. Phys. **10**, 2745–2764.

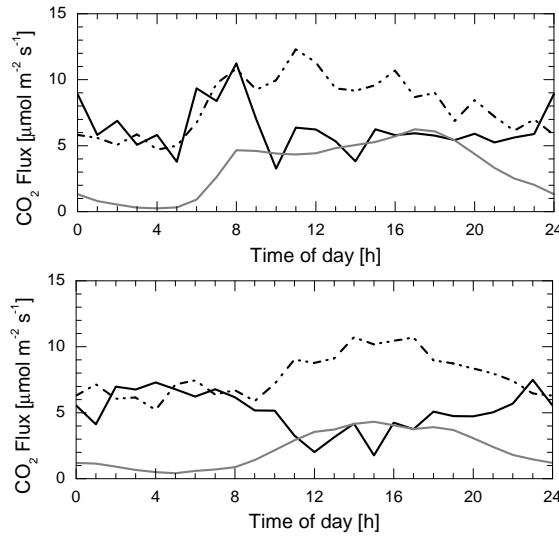

648 WEBB, E. K., G. I. PEARMAN, R. LEUNING, 1980: Correction of flux measurements for
649 density effects due to heat and water vapour transfer. – Quarterly Journal of the Royal
650 Meteorological Society **106**, 85–100.

651 WIERINGA, J., 1980: A revaluation of the Kansas mast influence on measurements of stress
652 and cup anemometer overspeeding. – Boundary-Layer Meteorology **18**, 411–430.


653 WILCZAK, J. M., S. P. ONCLEY, S. A. STAGE, 2001: Sonic anemometer tilt correction
654 algorithms. – *Boundary-Layer Meteorology* **99**, 127–150.


Figure 1: Map of Münster. The measurement tower is located in the center. The pie diagram insert represents the 45° sectors with 3 km radius. The grey shade symbolizes the urban area of Münster, blue and red lines symbolize main roads and rail tracks, respectively.


Figure 2: Calculated diurnal average traffic activity for weekdays (Mondays to Fridays), as black line, and weekends (Saturdays and Sundays), as grey broken line.


Figure 3: Traffic activity and particle number flux averaged over 45° sectors. Dark grey color represents heavy duty vehicles (HDV) and light grey color represents light duty vehicles (LDV). The particle flux is illustrated as black line with 25 % and 75 % percentile. The flux of the northern sectors is visualized as thin dark grey lines since the data basis is reduced due to the impact of the sensor head.

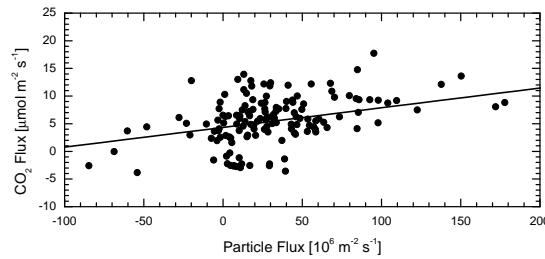

Figure 4: Measured diurnal particle number flux (black line) and calculated diurnal particle number flux (grey line) for weekdays (top panel) and weekends (bottom panel). The calculated diurnal particle number flux is based on traffic activity (section 2.3) and emission factors for traffic.

Figure 5: Traffic activity (see also Fig. 3) and carbon dioxide flux averaged over 45° sectors. Dark grey color represents heavy duty vehicles (HDV) and light grey color represents light duty vehicles (LDV). The CO₂ flux is illustrated as black line with 25 % and 75 % percentile. The flux of the northern sectors is visualized as thin dark grey lines since the data basis is reduced due to the impact of the sensor head.

Figure 6: Measured diurnal CO₂ flux (black line), CO₂ flux with excluded impact of vegetation (black broken line) and calculated diurnal CO₂ flux (grey line) for weekdays (top panel) and weekends (bottom panel). The calculated diurnal CO₂ flux is based on computation out of emission factors for traffic and traffic activity.

Figure 7: Correlation of particle number flux and CO₂ flux over night to estimate the vegetation impact on CO₂ fluxes. The black line represents the linear regression between particle number flux and CO₂ flux ($R^2 = 0.18$).