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Abstract—Funding policies and legislation by the European
Union – and the German government in particular – for
the installation of photovoltaic (PV) arrays in the residential
sector, has led to a steady and successful increase in renewable
energy generation by small-scale private producers. This proves
beneficial to consumers as they need not spend as much money
buying electricity from the utility. Additionally, consumers sell
excess energy to the grid, receiving reimbursement via feed-in
tariffs. At peak production times however, consumer-produced
energy may endanger grid stability. One approach to mitigate
this issue, is to reduce the amount of energy sold to the grid
by installing battery storage, thus greatly increasing the use of
locally generated energy on-site.

Another approach to increase local consumption is through the
use of neighbourhood energy exchange, in which one participant’s
excess production may be applied towards another member’s
consumption needs. This trade might take place by connecting
all homes in a given neighbourhood to a Microgrid Controller
(MGC), which takes care of the electricity routing and load
balancing process. With feed-in tariffs declining, investing into
shared energy storage and a Microgrid Controller might prove
profitable. Setups such as these will be referred to as “smart
neighbourhoods” from here on in.

In this paper, we present a software tool which allows for
the simulation of such smart neighbourhoods. Additionally, we
present outputs generated by our tool, for inputs that base on the
German market and realistic neighbourhood scenarios. Possible
implications from these results are made apparent, allowing for
the influence of investment decisions.

Index Terms—Battery storage, energy self-use, energy trading,
feed-in tariff, microgrid, model, photovoltaics, renewable energy,
simulation, smart neighbourhood.

I. INTRODUCTION AND MOTIVATION

ACCORDING to the European Photovoltaic Industry
Association (EPIA), as of 2012, over 70% of all PV

installations in the European Union were rooftop mounted
(aggregate for both commercial and residential installations)
[1].

The increasing uptake of residential PV is a welcome devel-
opment in regards to eased market introduction of renewable
energy sources, an acceleration of the decarbonisation of
the electricity grid, as well as improvements in security and
efficiency of electricity transmission and distribution, and the
stabilisation of market prices for electricity in the long run
[2]. However, it also brings with it a range of challenges.
For example, during low load periods that overlap with high
production periods (e.g. sunny days in the summer, where

production starts early, but consumption might be relatively
low) one of the major problems is grid over-voltage which can
result in outages [3]. Responding to these and other challenges,
battery storage is being used more and more frequently, to the
point where PV owners are presented with attractive loans to
invest in such technology [4].

Additionally, maximising self-use (i.e. the consumption of
as much locally generated electricity as possible) can be
considered desirable on the customer-side.

While advantages of battery storage are numerous [2],
installation remains expensive and may not pay off for a single
household. Instead, an automated controller unit might be added
to a neighbourhood, which can in turn be connected to a central
unit of energy storage. This spreads the burden of investment
more evenly among investors, while also allowing for energy
to be traded directly between participating homes.

What we present in this paper is twofold: 1) A tool for
interested people to experiment with and simulate connected
neighbourhoods. 2) Results for datasets of our choice that
showcase some of the conclusions that might be drawn from
results our tool can generate.

A. Related Work

Considering the field of renewable energy sources and
smart grids of varying sizes and definitions (from single home
microgrids [5] to entire cities [6]) is burgeoning, a wide array
of research has been conducted (especially since 2010). We
will thus briefly present an overview of works related to our
own.

As early as 2000, Hansen et al. created a model for a stand-
alone PV system in Simulink [7]. While a first foray into the
area, they only examine singular houses at most. Similarly,
Ursachi and Bordeasu implement a simulation for single houses
with the addition of renewable energy sources [8], while omit-
ting battery storage, which was already present with Hansen et
al. Morvaj et al. go further still, modelling the connection of
multiple houses via a central microgrid controller and adding
batteries to store locally produced energy [6]. However, they
omit any monetary considerations and only look at time scales
of a day each. The System Advisor Model (SAM) developed by
the National Renewable Energy Laboratory (NREL) provides “a
performance and financial model designed to facilitate decision
making for people involved in the renewable energy industry”
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[9] thus addressing monetary considerations (while it “[. . .]
does not model systems with electricity storage batteries”).
Velik implements and investigates energy trade between houses
in conjunction with local energy storage [10]. Economical
considerations regarding battery capacity or the question of
viability due to feed-in tariff compensation are however not
addressed.

In addition to these theoretical approaches, real-world
implementations of neighbourhoods that consider exchange
of energy within and between them have been implemented,
or are currently being worked on:

Van der Burgt et al. look at the concept of bringing together
multiple microgrids (as small as a single house) into larger, so
called virtual microgrids through the VIMSEN project [5]. They
propose this in order to increase market visibility, i.e. allowing
for connected neighbourhoods to sell their generated electricity
at an attractive price in a larger, more competitive marketplace.
While they address the exchange of energy between virtual
microgrids, trade within the virtual microgrids themselves is
not investigated. VIMSEN is currently in development and
software tools are expected to result from work on the project.

Karnouskos et al. developed a web application for monitoring
and managing Smart Grid neighbourhoods which was “used
operationally in the second half of 2012 as part of the NOBEL
project trial which took part in the city of Alginet in Spain.”
[11].

Finally, beyond simulations, a vast array of research has
been conducted on the topic of analyses regarding optimisation
strategies for smart grids. Refer to [12]–[16] for a few examples
of such efforts. Our focus, however, lies with simulations.
Hence, we did not concern ourselves with scheduling such
demand response.

What we seek to address is the overall interaction between
many of the factors studied in greater detail above – battery
storage, renewable energy sources in the form of photovoltaic
arrays, feed-in tariffs, internal energy trade – in the context of
financial viability (“When do I break even, if I invest into a
Microgrid Controller and a battery?”) and increased self-use
over extended periods of time (e.g. 10+ years).

B. Contributions
The nature of our work presented herein is thus twofold.

Firstly, to form a better understanding of the interactions be-
tween the factors mentioned above, and to assess first intuitions
(“Does internal energy trade change amortisation? How does
battery size impact self-use?”) we developed a tool to simulate
said complex environment, focussing on simple subsystems
and connecting them, giving rise to emergent properties. This
tool then allowed for the specific manipulation of a subset of
parameters, providing us with a more controlled environment
from which to draw conclusions. These conclusions make up
the second major contribution of our paper. Specifically, we
looked at the outputs of several neighbourhoods for increasingly
complex questions, make use of PV production and feed-in
tariff data from Germany and consumption data from the
Netherlands.

This paper presents the implementation details, as well
as results and implications which can be drawn from the

simulation outputs. More specifically, we look at the increase of
self-use and financial viability or even advantage of examined
scenarios.

To the best of our knowledge no such toolkit has been
implemented as of yet. What we thus hope to provide is a way
of bringing together complex interactions into an easy to use
interface, which allows additional research to be performed by
outside parties. These might include scientists, home owners,
utility or housing development companies, for example.

C. Roadmap

Figure 1 presents a visual overview of our model’s workflow.
The rest of this paper is loosely structured according to this
diagram. Items in blue circles represent data (inputs as well
as outputs). Input Data is described in Section II, while
User Scenarios (i.e. neighbourhoods), and Simulation Results
are addressed in Section IV. Items in green circles relate to
implemented components of our model. These and Runnable
Model – which is considered data, since it is generated by our
model – are covered in Section III. Section V sums up our
findings and finally, Section VI outlines potentially interesting
future developments.

II. MATERIALS, METHODS AND ASSUMPTIONS

This section deals with 1) how and where we acquired the
data underpinning our model and its results, 2) how the data
was prepared to make it compatible with our use cases, 3) what
tools we used to implement our model and 4) what assumptions
were made, as well as which restrictions apply in respect to
the previous three points.

A. Simulation Software – Simulink

Simulink – developed by MathWorks – “is a block diagram
environment for multidomain simulation and Model-Based
Design.” [17]. The program provides users with a graphical
user interface which allows them to build models as block
diagrams which can subsequently be executed. Additionally,
simulation outputs may be analysed from within the program
as well. Simulink allows users to build models in a hierarchical
manner, i.e. giving them the possibility to view the system at
different levels of abstraction. The option to merge multiple
blocks into coherent subsystems allows for the creation of so

Fig. 1. Overview of the model’s workflow. Green items represent implemented
components, while blue items denote data that goes into or comes out of the
model.
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called “libraries”. These hide complexity from other users who
might wish to use already implemented blocks, without further
concerning themselves with the internal workings of chosen
subsystems. This allows for more complex and novel models
to be created relatively quickly and easily.

We used default simulation settings for Simulink. In partic-
ular, the pre-set variable step solver was deemed appropriate,
since we designed a continuous model. In contrast, the
possibility of a fixed step solver was ruled out, as it would have
lead to impossible situations, e.g. negative battery charges, due
to states being calculated in hour-long intervals.

Program versions used were 2015a for MATLAB and 8.5
for Simulink.

B. Production Data – PVWatts

Solar panel production data was obtained from PVWatts,
a project of the National Renewable Energy Laboratory
(NREL). PVWatts ”[e]stimates the energy production [. . .]
of grid-connected photovoltaic (PV) energy systems [and]
allows homeowners, small building owners, installers and
manufacturers to easily develop estimates of the performance
of potential PV installations.” [18]. Düsseldorf was chosen as
location for which we obtained the measurements.

Data was exported using standard settings (Module Type:
Standard, Array Type: Fixed (open rack), System Losses (%):
14, Tilt (deg): 20, Azimuth (deg): 180, DC to AC Size Ratio:
1.1, Inverter Efficiency (%): 96, Ground Coverage Ratio: 0.4),
with the exception of DC System Size (kw). This parameter was
set to 1 in order to allow for dynamic scaling of solar array size
for each house in our simulation. The formula to determine
the scaling factor x for a 1 kWp1 array is x = 0.16 · y, where
y is the area of the solar panel array. This was determined
by simplifying the calculation PVWatts performs internally:
Size (kW) = Array Area (m2) · 1 kW

m2 · Module Efficiency (%).
Refer to [19] and [18] for more detailed information. Scaling
from 1 kWp was determined to behave linearly, i.e. data
supplied by PVWatts for a 10 kWp installation was the same
as multiplying the results for a 1 kWp installation by a factor
of ten. Given the equation above, PVWatts data indicates 6.25
m2 of solar panel surface result in a 1 kWp output.

From the exported data set, we extracted the AC production
column for further use. The values in this column already
include losses incurred through conversion from DC to AC
(96% efficiency) and other factors, such as light-induced
degradation, shading and soiling).

It is worth noting, that we always consider PV installation
sizes (m2) to indicate the effective array surface area. That is
to say, we do not take into account additional area that might
be required for framing and separation between the cells or
other structural components like the inverter. Similarly, we do
not take into account any additional panel degradation that
might arise over the duration of a given simulation, nor do we
account for any maintenance or repairs that might arise during
the lifetime of the panels.

1kWp = Kilowatt-peak, i.e. the power rating of a photovoltaic array in
kilowatts (kW) at standard test conditions. Standard test conditions are defined
as: Solar irradiance of 1,000 W/m2, cell temperature of 25 °C and air mass
of 1.5. [18]
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Fig. 2. Production in Watts over the duration of seasonally average days for
a PV installation that produces an average of 11 kWh per day using the data
supplied by PVWatts.

Refer to Figure 2 for a graphical representation of PV
production values over time.

C. Consumption Data – Netherlands

Household load data was acquired from Nederlandse En-
ergieDataUitwisseling (NEDU, “Dutch EnergyDataExchange”),
which is an “association [founded in 2007] to develop and
maintain market model” for the Dutch energy market [20].
We were unable to determine exactly how big the sample size
for this data is; NEDU only states that the data was acquired
from their customers during measuring campaigns, as well
as derived from allocation data [21]. However, considering
the organisation’s size, function and involvement [20] and
the fact that Germany and the Netherlands have very similar
electricity consumption per capita [22] we consider the data
to be representative and valid for our purposes.

From the multicolumn dataset supplied, column ”E1A” was
chosen, i.e. loads of < 3 · 25 amperes using a single electricity
metre. The respective values are given at a resolution of
15 minute intervals and represent the percentage of annual
energy consumption during this time frame. However, since
PVWatts production data only has a resolution of one data
point per hour (see above), four consecutive values of electricity
consumption data were added up, thus reducing the resolution
of the consumption intervals. At this stage, multiplying each
value with a given annual consumption yields results in Watts
for any given hour in a year. See Figure 3 for a visual
representation of the resulting dataset at 3,500 kWh per annum.

D. Feed-in Tariff

The Erneuerbare Energien Gesetz (EEG, “Renewable Energy
Sources Act”) [23] is a German law, regulating the compensa-
tion of small-scale energy producers who wish to feed energy
production surplus into the power grid. This law has been
changed multiple times since its inception in 2000. Changes
include the categorisation of PV installations by nominal kWp,
compensation or deductions for self-use, as well as rates of
degression for the feed-in tariff.
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Fig. 3. Consumption in Watts over the duration of seasonally average days
for an annual demand of 3,500 kWh, using the data supplied by NEDU.

Feed-in tariff data was acquired from the Bundesnetzagen-
tur, Germany’s federal regulatory office for electricity, gas,
telecommunications, post and railway markets [24].

To keep the model more comprehensible and consistent, we
treat every PV installation as if it were ≤ 10 kWp in size. This
means arrays larger than 62.5 m2 are not handled correctly.
This was deemed an acceptable trade-off, since installations
larger than that rarely occur in a given neighbourhood. It should
also be noted that we only consider roof-mounted installations.
Legislation and feed-in tariffs for open space PV installation
deviate from those applicable to roof-mounted arrays and are
not considered in our specialised tool.

Couture et al. present very detailed background information
regarding the structure and intricacies of feed in tariffs in [25].

We make no assumptions about the future development of
feed-in tariffs. Our data ends with December 2015. The feed-in
tariff is paid for a period of 20 years, during which it does not
change.

It should be noted that while we have modelled feed-in
tariffs, different scenarios can be explored by changing the
underlying CSV file. This would also allow for the feed-in
tariff mechanism to be disabled entirely. This allows for the
tool to be extended beyond its initially intended scope.

E. Simulated Neighbourhood Environment and Additional
Assumptions

With data from the Netherlands and Germany, it becomes
apparent that we describe neighbourhoods in a middle European
market. More specifically, combining data from NEDU, the
Bundesnetzagentur and PVWatts firmly puts our simulation in
a longitude range of 49°and 55° within Germany.

Additionally, each data set brings with it inherent assump-
tions, which we have touched on before. However, we would
like to point out some additional details that have not become
evident yet, but influence our results:

All houses feature the same orientation (due south), roof
tilt (20°), and their respective solar panels do not track the
sun. Conditions like these might be found in newly-built or
later-equipped uniform housing developments. In practice, a
mixture of orientations might provide considerably beneficial

Fig. 4. Schematic representation of the smart neighbourhood model. Ar-
rowheads indicate the flow of electricity. Please note that in one imaginable
alternative to this setup, the Microgrid Controller might sit between Utility
and the houses, thus potentially saving additional wiring and setup cost.

[26]. See [27] (solar panel sizing), [28] (solar tracking) and
[29] (battery sizing) for additional information on how to best
inform and adapt scenarios. We assume solar panel arrays to
have been installed prior to any Microgrid controller and/or
battery.

Beyond what is mentioned above, there remain some
additional points that we would like to touch on briefly:

• We assume communication between houses and the
microgrid controller to be safe, secure and stable, be
they wireless or wired [30]–[32]. Manipulation of data
sent and received by either parties is not assumed. Privacy
concerns are not addressed [33].

• Only solar power generation is being simulated and
considered as an energy source, though alternatives like
wind turbines exist [34].

• We do not observe leap years. Despite the fact that periods
of 20 or more years might be simulated, the effect would
be negligible, while unnecessarily increasing complexity
of the model.

• The model was not tested or designed beyond neighbour-
hoods of 20 homes. We do, however, deem simulating
larger neighbourhoods feasible. It should be noted that
large simulations are computationally expensive and might
take considerable amounts of time.

• While we give costs in Euro (e), it should be apparent
that any arbitrary unit of money or currency behaves alike,
as long as it is decimal.

• As is common with simulations, we do not allow for
the optimisation of any one characteristic in our model
(i.e. battery or solar panel size). A row of consecutive
experiments would allow for trend to become apparent,
however.

• The data described in B, C, and D above can easily be
exchanged by the user, since it is simply stored using
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CSV files. This gives rise to much greater flexibility for
future experiments.

III. MODEL IMPLEMENTATION

Previously, we outlined the general considerations underlying
our approach. We will now turn to the actual implementation
of the model and its components in MATLAB and Simulink.
In a similar fashion to the structure of the paper as a whole,
this section is also organised with Figure 1 in mind, meaning
we will take an approach that follows the workflow a user of
our toolkit might experience.

The implementation follows the Model-View-Controller ar-
chitectural pattern and was programmed using object orientation
in MATLAB. The In- and Output GUI represent the View, while
the model consists of the Library and the Script acts as the
controller. These modular and encapsulating approaches were
chosen to facilitate modification of the toolkit at its core, if
need be, i.e. in case changing input data is not sufficient.

As a general rule within the model, negative kWh and
monetary values represent demand and expenditure respectively,
whereas positive values are considered surplus production and
compensation accordingly.

A. Input GUI

The Input Graphical User Interface (Input GUI) presents the
user with a convenient way to configure simulations for given
scenarios. Through it, an expansive array of simulation-wide
settings may be manipulated. Additionally, neighbourhoods –
described by their constituent houses – are defined from this
interface as well.

The GUI was created using MATLAB’s Graphical User
Interface Design Environment (GUIDE), while its specific
functionality – hand-off to the Setup Script (cf. section III-C),
adding entries to the “Houses” table, etc. – were implemented
using standard MATLAB code.

What follows is an explanation of each variable the user can
adjust using the interface, as well as information about their
respective default values. We hope that this will allow for a
more intuitive understanding of what the toolkit accomplishes
as a whole.

1) Houses: Houses are defined by three parameters: Solar
panel size, given in square meters (m2), Yearly power demand,
given in kilowatt hours (kWh) and Date of PV installation2,
given in the date format MM-YYYY (e.g. 04-2013 for April of
2013). These values default to 30 m2, 3,500 kWh and 05-2014
respectively, which were deemed to be reasonable values. 3,500
kWh roughly equals the average consumption of a 2-person-
household [35]. 30 m2 translates to a PV output of 4.8 kWp (cf.
PVWatts calculation in II). With the supplied data, on average
this installation produces 11 kWh per day, i.e. more than the
mean consumption of 9.5 kWh per day. Thus, more energy is
produced than is being consumed per year.

2Please note that “Date of PV installation” is not technically accurate. The
formulation was chosen for reasons of constrained space in the Input GUI.
Compensation only starts being paid out from the first day the installation
produces electricity and feeds it into the grid [23], rather than its date of
installation.

2) Battery cost per kWh: This defines how much one kWh
of battery capacity will cost. The amount in this field will be
multiplied by the battery’s capacity to determine the overall
cost of available energy storage. The value in this field is split
evenly among participants in the neighbourhood. It is definitely
debatable whether certain parties ought to account for more
or less of these expenses, depending on what they add to or
remove from the local grid. However, tackling this question
was considered to be beyond the scope of this paper.

We arrived at the default value of e500 per kWh by dividing
the advertised cost of a Tesla Powerwall [36] by its capacity
( $3,0007kWh ≈ $430) and rounding up to the next hundred for good
measure. This was done, since Tesla’s Powerwall is priced very
aggressively. Other products might be twice as expensive per
kWh of capacity [2].

3) Battery capacity: Defines the maximum amount of energy
storable in the battery. As with PV array surface area before,
this figure states the effective (not nominal) capacity of the
battery. The value in this field is multiplied with Battery cost
per kWh described above to arrive at the total cost of desired
energy storage.

The default value of 7 kWh was chosen for two reasons.
Firstly, Tesla’s Powerwall is primarily advertised at this
capacity [36]. More importantly however, this value aligns
with calculations made by Velik in [29]. Choosing a battery
that provides enough capacity to provide half of an average
day’s demand is shown to cover 70 to almost 80% of said
demand, depending on season. Doubling the battery capacity
only increases self-use by another 10%, while doubling the
acquisition cost.

4) One-time cost: One-time cost subsumes any additional
expenses which go beyond the investment for energy storage .
This might, for example, include costs for the installation of
the Microgrid Controller itself, as well as wiring between
the houses, if necessary. Technically, this could also be
used to add initial cost for PV installations throughout the
neighbourhood. This is not a typical use case however and is
strongly discouraged, since there would be no way to apportion
costs between houses with regards to their respective arrays.
Costs in this field are split evenly among participants in the
neighbourhood.
e1,000.- was chosen as a default value, because it seemed

like a sensible baseline. Changing this merely shifts the starting
point of the corresponding line in the graph up or down along
the y-axis.

5) Initial cost per kWh from utility: This parameter defines
the amount charged by the utility company for every kWh that
is drawn from the external (i.e. non-neighbourhood) grid.
e0.2881 was chosen as a default value since it was the

average cost per kWh in Germany at the time of implementation
(2015) [37].

6) Annual change of cost per kWh from utility: Determines
the annual rate of change regarding the cost per kWh from the
utility. This value is calculated using the compound interest
formula x2 ∗(1+x3/100)

x1 , where x2 the initial cost per kWh
(see above), x3 percentage change described here and x1 is
the year for which the cost is to be calculated.
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The default value of 3.4% was chosen because it was the
average rate of change between the years of 1998 and 2014 in
Germany [37]. It is to be noted though, that for time frames
exceeding 15 years, this assumption might no longer hold. In
fact, the cost of electricity might or might not stabilise within
a given number of years [38].

7) Date of battery installation: The date on which the battery
becomes operational within the neighbourhood. Chronologi-
cally, this date must occur after every PV installation date in
the neighbourhood, since our simulation begins on the date
entered in this field. The difference between these respective
dates is used to calculate the remaining hours of feed-in tariff
payout, which therefore must not result in a negative value.

January 2016 was chosen as a default value since it is the
first date for which no feed-in tariff data is being provided by
us any more.

8) Solar panel efficiency: Tweaking this value directly
influences the amount of energy that is being produces by
PV installations. Refer to Section II-B for the calculations
involved.

The default value of 16% for this field reflects the value
provided by PVWatts.

9) Cost per kWh bought from battery and Compensation
per kWh sold to battery: These values determine the amount
of money that is being exchanged when handing off electricity
to, or receiving energy from the microgrid controller.

The values chosen (i.e. 18 cents per kWh) were determined
by rough estimation of a value between 28 and 12 cents, with
the result showing a slight bias towards buyer’s advantage.
Refer to “Internal Trade” further down for a more detailed
discussion of the mechanisms behind this and additional
resources in this area. Future Work (Section VI) points out
some advanced considerations.

10) Duration of simulation: This field determines the
number of years for which the simulation will be run. Internally,
this number is multiplied by 8,760 (hours in a year), as we
simulate at the resolution of hours.

The default value of 15 years was chosen because our
experiments have shown that this allows for a reasonable
assessment of whether and, if so, when amortisation will occur.
A value of 20 or 25 years might also be considered, but will
naturally result in the simulation process taking longer to
complete.

B. Simulink Library

In this section, the block diagrams we have created using
Simulink are described in greater detail, with their functionality
being the primary focus.

The library provides two blocks: a House and a Microgrid
Controller. The former can (and typically does) exist multiple
times in a given setup, while the latter only exists once within
the context of a given simulation. As outlined below, through
the use of the Setup Script, a runnable model is created using
these components.

All of these blocks have been implemented from scratch,
making use only of components available through the basic
Simulink block library. In the following, select aspects from

Fig. 5. Logic flowchart for internal trade, storage to and retrieval from battery
as well as sale to and purchase from the utility grid. The horizontal bar
delineates the switch between which components are involved in making the
decisions. Above the bar, each house applies as much of its production to its
demand as possible. Below the bar, the microgrid controller takes over and
handles further decisions (see above). * Consumption and/or production can
be 0 at these stages. † Will always evaluate to false, since for these paths PV
production < consumption holds.

each block are highlighted. We encourage the reader to explore
the model on their own in detail to gain a more in-depth
understanding of how components interact with one another. Ad-
ditionally, we recommend reading the accompanying README
file, which provides detailed usage instructions.

1) House – Variance: Since we rely on averaged con-
sumption data, a small variance was added to each house,
so consumption diverges slightly and trade can occur, if and
when houses are identical otherwise (same PV array area and
power demand).

2) House – Electricity Cost Calculation: Taking a wide
array of parameters, this MATLAB function calculates
cost/compensation while taking into account the current battery
charge. Since connections within the model carry vector
information, cost is calculated for all available strategies
simultaneously, as well as for one vector which behaves like
no Microgrid Controller were present at all.

3) Microgrid Controller – Charge and Trade Logic: One
of the major advantages of a smart neighbourhood is the
ability to share energy between participating houses. This
exchange does not necessitate the presence of a battery within
the neighbourhood. A given house may transfer “excess” energy
at the time of its production to houses which may not have
their own demand covered yet. Such exchange reduces the
total amount of energy sold to the grid and increases local
self-use. In order to make this a fair process for all parties
involved, an internal compensation scheme is necessary. The



7

exact values per kWh are not easily determined, since members
of the neighbourhood who produce more, would profit from
higher compensation when selling, whereas members with little
or no production would prefer costs to be minimal. However,
it stands to reason that appropriate values would be no higher
or lower than external grid prices, for both sale and purchase
of electricity respectively.3

In our model each house has a consumption and a production
output, whose respective values are added up and fed into the
Microgrid Controller in order to calculate how much energy
will be traded, stored, sold or bought. For each battery strategy
described below, the controller returns a signal to each house
with information about the current energy usage. This signal
is made up of three floating point numbers per strategy, which
represent percentages of energy that was either sold (p1), traded
internally (p2) or bought from the grid (p3). For example a
signal of (0/0.58/0.42) would inform a house the energy demand
of which has not yet been sated, that 42% of the required
energy had to be bought externally and 58% were purchased
at a cheaper rate from the neighbourhood. On the other hand,
the same signal would inform a house with excess production,
that all its energy could be sold to the neighbourhood, since
no energy needed to be sold to the grid. The sum of all floats
always ought to be 1, which can be used as sanity check by
the houses to assure correct communication.

In both strategies present, the “sold” signal will only change
once the battery is full. The “buy” signal only triggers on an
empty battery (or 30% empty in case of the smart strategy).
This might make our solution look overly complicated, but it
ensures easy integration of more complex battery strategies in
the future.

4) Microgrid Controller – Battery Strategies: In the version
presented in this paper, only two battery management strategies
have been implemented. Those strategies being Greedy and
Smart. Greedy is characterised by making full use of the
battery’s capacity at all times, i.e. completely charging and
depleting it whenever possible. With the Smart strategy, during
normal operation, the battery is only ever emptied to the point
where 30% of its charge remains. This is done for two reasons:
1) to prolong the battery’s life, as completely depleting it
repeatedly has averse effects on its chemistry in the long run,
thus reducing the number of life cycles [39] and 2) increasing
survivability for connected houses [39].

Throughout the results presented later, it will become
apparent that this naı̈ve approach of implementing these
strategies makes using the Smart strategy entirely unattractive.
Practically, it degrades a battery to only employ 70% of its
nameplate value. Effectively, this results in slower amortisation
at the same initial investment. However in reality, the Smart
strategy might prove to be the better choice over more extensive
periods of time, if we consider that it might keep the storage
in working order at higher capacity for longer.

3Please refer to Section VI for references on this topic. We considered
tackling this question to be outside the scope of this paper.

C. Setup Script and Runnable Model
The Setup Script acts as the connecting layer between the

library blocks and the input data from the GUI (see above).
Written in the MATLAB language, it creates a runnable model,
which can then be executed and/or saved for later use by the
user.

In reality, the Setup Script consists of four different scripts, or
classes. GridController.m and House.m pull in and set the values
of their corresponding blocks from the library. Simulink.m
merely contains static values which are referred to in other files.
Finally, System.m connects all the blocks, sets up Workspace
Variables and creates the actual runnable model.

D. Output GUI
At the end of our toolkit’s workflow we find the Output GUI.

It allows users to view and compare their simulation results.
Through a drop-down menu, all generated data can be viewed
in the form of graphs. There are four major graphs that can
be displayed:

Grid Sale Gradient graphs show the amount of energy sold
to the utility for each battery strategy (see above). Additionally,
a graph is shown that represents the energy that would be sold
to the grid if no Microgrid Controller were present at all. The
more shallow these lines, the more energy is used locally.

Split Amortisation graphs show gains and/or losses incurred
through the sale and/or purchase of electricity to/from the grid
and internal trade. As with the grid sale gradient, a line for each
battery strategy is shown, plus an additional one, representing
the absence of a Microgrid Controller. Please note that any
of these lines may rise or fall, or even change their trajectory
entirely throughout the course of a simulation. Falling means
spending, rising means earning money.

Merged Amortisation graphs present money saved and/or
directly gained through feed-in tariff compensation and neigh-
bourhood trade. They basically show the delta between how
much would have had to be spent if there were no Microgrid
Controller and the different battery strategies with a Microgrid
Controller. This also explains why for the merged graphs there
always exist two lines: one for each battery strategy.

Neighbourhood Battery Charge Over Time graphs show the
neighbourhood battery charge state over time. For long periods
of time this graph might be difficult to discern. We recommend
examining it for simulation durations of just one year to get a
better idea of how it works.

All graphs except for the battery charge graph exhibit what
could be called a staircase pattern, i.e. areas in which the slope
changes relatively drastically. This behaviour is easily explained
by looking at seasonal changes in production and consumption.
In summer and spring, more electricity is produced, while in
autumn and winter, energy consumption rises. This means that
profits are mostly made during the warm and sunny months of
the year, while the typically overcast seasons result in slower
amortisation, or even additional expenditure of money.

E. Validation
To assure a reasonable level of confidence in the accuracy

of our model, multiple steps were taken, which we will briefly
describe.
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Firstly, throughout the development process, output values
were checked for each component at multiple points in time
(via Scopes in Simulink) to make sure they were in line with
our expectations.

Secondly, whenever an error was found, it was fixed and
documented. This was done so that a list of regression tests
could be implemented. These were then run for subsequent
iterations of the model, increasing the likelihood that previously
present mistakes had not been reintroduced in later revisions.

Next, edge and corner cases were tested (e.g. houses with no
PV generation or consumption, only just one house etc.). This
was done to make sure the model did not show any unexpected
behaviour at a basic level already.4

Additionally, results of our model were cross-checked with
online tools for consumers where they were available (e.g.
“amorisation calculators” for solar panels). Also, our results
were considered to be in line with what other researchers have
concluded (this holds true for papers by Velik in particular).

Finally, a spreadsheet was created that uses formulae to
simulate the behaviour we were intending to implement in our
model. We then cross-checked the values where we expected
critical value changes in the model (like the battery being
charged for the first time or it being depleted) as well as in
semi-random spots throughout. The results of this verification
lined up with our expectations. The spreadsheet can be accessed
via [40] (partially in German).

Altogether, we thus deem our toolkit to be working within
specifications.

IV. SIMULATION RESULTS AND DISCUSSION

In this section, we will 1) present interesting scenarios, 2)
show the data gathered from their respective simulations and
3) discuss in which cases energy trade and / or shared energy
storage benefit a smart neighbourhood.

Results are only shown and considered using the Greedy
battery strategy. This is to make key outcomes more apparent
to the reader – adding another strategy would have doubled
the number of lines in each graph presented below, while
sacrificing only very little in the way of significance. Refer
to section III-B4 to gain an understanding as to why the
overall implications do not change for the “Smart” strategy.
Additionally, when showing graphs for scenarios involving
more than one house (e.g. Figure 8), only one house per
scenario is shown, as it is representative of each house in
that neighbourhood scenario. Additionally, graphs always are
of the merged kind. Please refer to Section III-D for general
information on how to interpret each of the following graphs
in more detail.

Results and Discussion were unified into one section since
each simulation builds on the results of the previous ones.

4We would like to point out, that we did encounter reproducibly unexpected
behaviour when attaching a scope – which, for all intents and purposes, should
not affect the model in any way – to a certain line connecting two blocks. We
can only assume that the rest of our testing has precluded similar issues, but
can, of course, make no guarantees. We assume this to be due to a software
bug in Simulink.

A. Results with a single house using a battery

In order to develop a first idea of which “types” of houses (i.e.
combinations of solar array size, yearly consumption and PV
installation size) will benefit from neighbourhood trade and/or
a battery, we simulated 6 houses with different parameters.
The parameters chosen are listed in table I. The rest of the
variables were set to the following values: e500,– per kWh
battery storage, e0.2881 initial cost per kWh from utility,
annual change of 3,4% per kWh from utility, with a battery
installation date of January 2016 and a solar panel efficiency
of 16%. Houses 1 through 4 from Table I correspond to an
average 4 person home, while Houses 5 and 6 would roughly
equal an apartment building for 6 families with 2 to 3 people
living in each household.

As we can see in Figure 6, House 1 does not benefit from
battery storage during the first 8 years. However, it turns a
profit of e1,040.50 within the last two years of the simulation.

This can easily be explained. Due to its PV installation date
of January 2004, the feed-in tariff for this house is e0.574 for
each kWh it sells to the utility. Meanwhile, buying electricity
from the utility would cost e0.2881 per kWh. This means it
would actively lose money any time it consumes its locally
produced energy.

The upwards bend after 8 years can be explained by the 20
year period of feed-in tariff compensation running out. After
that point in time, it becomes cheaper to consume locally
produced electricity. The same logic holds true for House 2,
as it starts out with a feed-in tariff of e0.3914.

Our first observation therefore is, that battery storage only
saves money, when compensation through the feed-in tariff is
less than the cost per kWh from the utility. This observation
influences the following simulations in that we only look at
PV installations that began operation on or after January 2015.

When comparing House 3 and 4, we can see that a battery
with double the capacity only makes a difference of 9.69%
in additional money saved/gained. So in this scenario House
3 has managed to amortise 84.57% of its investment, while
House 4 did not even manage to gain back 50% of its initial
investment, despite an overall faster amortisation.

On the other hand, when we compare Houses 5 and 6, we
see that doubling the battery capacity, leads to a difference of
31.12% in terms of money saved. We can also see that the
7 kWh battery has only amortised 51.33% of the investment,
while House 6 managed to get back 37.26% of the investment.
This is easily explained when we compare the size of the solar
panels in relation to the huge consumption we have. Most
of the energy we produce on average days gets consumed
immediately, instead of filling the battery. So a larger battery
does not improve the situation on days where the produced
energy gets consumed. It only improves the self-use on days
with high solar production. However with a solar panel this
large, at peak hours, the house will highly benefit from a larger
battery since the demand is comparatively small during peak
hours.

In general terms, it becomes clear that battery amortisation is
highly dependent on the consumption of the house in relation
to its solar panels size and the solar panel installation date.
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TABLE I
SETTINGS USED TO COMPARE THE HOUSES IN FIG. 6

Identifier YC
[kWh]

Size of
PV [m2]

Date of
PV In-

stallation

Battery
Capacity

[kWh]

House 1 5,000 40 01-2004 7
House 2 5,000 40 01-2010 7
House 3 5,000 40 01-2015 7
House 4 5,000 40 01-2015 14
House 5 27,000 60 01-2015 7
House 6 27,000 60 01-2015 14

YC = Yearly Consumption
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Fig. 6. Amortisation of battery purchases by independent houses

B. Results with houses of the same type

In this section we will compare scenarios where houses with
the same of solar panel array area and annual consumption will
form a connected neighbourhood. We will also compare these
results to having only 1 house invest in a battery. Additionally,
we will also simulate investing in a Microgrid Controller
without a battery, so we can see how profitable energy exchange
is on its own. The exact scenarios are described in Table II.

We have consistently chosen to pick e1,000 for one-time
costs, since it is impossible to calculate accurate wiring costs
without making far-reaching assumptions, for example about
the distance between buildings. This does not affect the results
in a major way, since it only pushes the initial starting point
of the amortisation graph downwards.

In Figure 7 we see that scenarios without shared energy
storage (2, 4, 5) have not amortised yet. In Scenario 2 the
representative house was able to save e38.25, in Scenario
4 e42.94 and in Scenario 5 e43.93 due to the trading of
energy. Considering that we simulated 10 years, the internal
trading does not improve the situation significantly. This is
easily explained because the only time trading occurs is when
the variance shifts the consumption patterns of houses in a way
that one house is producing more energy than it consumes and
at least one other house has an energy demand it can’t cover
itself.

Comparing a house which has a Microgrid Controller as
well as shared energy storage (Scenarios 3 and 6 respectively)
to a house which only has a battery (Scenario 1), we notice
that the only difference in money made/saved over the 10 years,
is in the amounts earned from the internal trade.

TABLE II
SETTINGS USED TO COMPARE THE DIFFERENT SCENARIOS IN FIG. 7

Identifier YC
[kWh]

Size of
PV [m2]

Number
of Houses

Battery
Capacity

[kWh]

Scenario 1 27,000 60 1 7
Scenario 2 27,000 60 5 0
Scenario 3 27,000 60 5 35
Scenario 4 27,000 60 10 0
Scenario 5 27,000 60 15 0
Scenario 6 27,000 60 15 105

YC = Yearly Consumption
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Fig. 7. Amortisation of neighbourhoods investing in a microgrid Controller

Considering the minimal improvements caused by the
internal trade, when comparing houses that are identical to
each other, it would make more sense to not invest the extra
money for the microgrid Controller.

C. Results for Houses with Different Setups

In the previous section, we noticed that comparing houses
with the same settings leads to nearly no internal trading. To
compare if more widely spread setups of consumption and
production lead to more trading, we will simulate a small
neighbourhood consisting of only 3 houses both with and
without a 14 kWh battery and show the different amortisations.
To be able to compare these houses better to each other we
assume that all those houses were producing energy in January
2015 for the first time.

In Figure 8 we see that House 2 has already amortized
within 10 years and has made around e488 of profit on top
of that. The other 2 houses have not amortized yet. House 1
has gained e2,853.– and house 2 has gained e2,413.– during
the 10 years.

When comparing the houses that only invested in the
Microgrid Controller and no battery, we see that neither house
indicates major improvements and the best of the 3 – House 2
– has only saved e49.94.

In the real world, we do not have only just one averaged
pattern across multiple houses which is only varied by a
mathematical variance. Instead, consumer exhibit different
patterns. However, results by Velik suggest that even with more
varied patterns, internal neighbourhood trade only improves
self-use by a maximum of 6.9% [10].
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TABLE III
SETTINGS USED TO COMPARE THE DIFFERENT SCENARIOS IN FIG. 8/9

Identifier YC [kWh] Size of PV [m2]

House 1 4,200 35
House 2 6,000 45
House 3 3,200 40

YC = Yearly Consumption
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Fig. 8. Amortisation of houses investing in a microgrid Controller

When looking at Figure 9, we see that all houses profit
from the battery, because they use more of the energy within
the neighbourhood. All 3 houses have reduced the amount of
energy sold to the utility by around 30% to 35%.

D. Results with houses without Solar Panels added to the
neighbourhood

In this section we will discuss how adding houses to the
neighbourhood that do not have a solar panels to the smart
neighbourhood might result in all houses and the utility gaining
an advantage.

To increase comprehension and clarity, graphs in this section
will not include House 1 from IV. Instead, we considered it
more interesting, to look at the best and worst houses from
Figure 8. On top of that we do not include House 5 in the
graph since its behaviour is identical to House 4, only with a
steeper amortisation curve, since it is able to buy more energy
from the neighbourhood.

In Figure 10 we see that the Houses 2 and 3 have amortised
in both cases. When comparing the results of those 2 houses
with the results we saw in Figure 8, we notice that they traded
a lot more energy. House 2 has made e518.40 with only just
trading (i.e. no battery storage). This is more than 10 times
the amount it would earn when only houses with solar panels
were in the neighbourhood. House 3 has earned e647.44 in
10 years.

The immense improvement in profit through trade, as well
as the cost of the 14 kWh battery being split evenly between
5 houses has also led to House 2 to amortise its investment in
less than 8 years. Even House 3 – which had performed worse
in Figure 8 – has now made money from investing into the
Microgrid Controller.

Houses without any solar panels are currently saving the
most money. This could be ameliorated by choosing a higher
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Fig. 9. Gridsales of houses with and without a microgrid Controller and a
battery

TABLE IV
SETTINGS USED TO COMPARE THE DIFFERENT SCENARIOS IN FIG. 10/11/12

Identifier YC [kWh] Size of PV [m2]

House 1 4,200 35
House 2 6,000 45
House 3 3,200 40
House 4 5,000 0
House 5 5,500 0

YC = Yearly Consumption

internal trading price or shifting more of the initial costs for
the wiring onto these houses. However this is nothing we can
optimise with our model.

When examining House 1 in Figure 11, we see that it
would have sold 30,517 kWh over 10 years without the smart
neighbourhood. However with the smart neighbourhood and
other houses buying a lot of the produced energy, it has only
sold 13,839 kWh in total. This means we sold 54.65% less
energy to the utility. This is also a great improvement to
Figure 9. The other 2 houses have also sold less energy. In
total, all 3 houses have sold 48,215 kWh to the utility. Without
the 2 houses that have no production, those 3 houses sold
73,234 kWh to the utility.

On top of that, these results behave in a fashion similar to
the grid-friendly (i.e. low in sales to the grid) battery strategy
Delayed Loading [41], which starts charging the battery only
when solar production is at its peak. Instead of selling the first
produced kWh to the utility, we trade most of our energy. In
Figure 12 we see that even on one of the days with highest
production throughout the year, we delay selling to the utility
by nearly 5 hours. On more average days we delay selling to
the utility even more.

In general, adding houses lacking energy production on their
own to a smart neighbourhood, results in more trade taking
place in the neighbourhood. This means that less energy is
sold to the utility and costs of a battery purchase are split more
evenly, leading to an improved situation for the grid and the
customers. On top of this, if all these houses would exhibit
more realistic patterns, amortisation might occur even faster,
since more strongly divergent patterns result in more trade
between these houses, as outlined before.
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Fig. 11. Energy sold to the utility with settings from Table IV

V. CONCLUSIONS

In this paper, we have presented: 1) a toolkit for the
simulation of a smart neighbourhood environments, which
allows for energy trade between participants with the possibility
of additional battery storage, 2) simulation results of our tool
for realistic neighbourhood scenarios based on German and
Dutch production and consumption data respectively.

The former allows researchers to conduct further experiments
on their own, while the latter has shown that 1) houses with
recently installed solar panels benefit the most from investing
in energy storage, which is caused mainly by feed-in tariff
degression, 2) energy trading within a neighbourhood yields
the best results when patterns in production and consumption
are dissimilar, 3) adding houses that provide no production to a
smart neighbourhood, can improve the situation for all houses,
i.e. splitting initial costs while also increasing local energy
usage. Thus, ultimately, investing in a Microgrid controller and
central battery storage can indeed be profitable for shareholders,
if certain conditions are met.

Substituting input data files, researchers and potentially
interested consumers alike could modify the model to their
needs. This would allow for a flexible analysis of given
situations, i.e. the planning of a connected neighbourhood.

We have shown that the results our tool generates line up well
with existing literature, suggesting that the described toolkit
might well be suited to explore scenarios that have not yet
been covered by existing research.
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Fig. 12. Battery Charge and Energy Production on May 20th with settings
from Table IV

VI. FUTURE WORK

As a next step, we would like to explore the option of
re-implementing our model using non-linear battery models
[42]. This would make the simulation and its results represent
reality more accurately and might very well yield entirely new
insights.

Additionally, we think that it would prove tremendously
interesting to implement something akin to the work of Ilic
et al. [43]. In the model’s current state, once set, the values
for monetary compensation when “selling” to the battery and
cost when “buying” from the battery remain fixed throughout
the run of a simulation. What is proposed by Ilic et al., is
employing a stock exchange model to dynamically adjust these
values depending on demand and production at any given point
in time. Another approach to this angle can be found in game
theory, as for example investigated by [44] and [45].

Implementing additional battery strategies (e.g. Peak Shaving,
Load Balancing [41]) and evaluating their behaviour within a
neighbourhood might also prove to be worthwhile enhancement,
especially from the perspective of utility companies. Adding
such strategies would allow for the simulation and evaluation
of environments in which energy self-use might not be the
decisive factor. Instead, the focus may, for example, lie on more
shallow grid-sale gradients. The foundations for implementing
additional battery strategies are present. What is currently
lacking are translation of those strategies in MATLAB code.
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