Shared Energy Storage and Neighbourhood Energy Exchange:

A Smart Neighbourhood Simulation Environment

Michael Biech, Timo Bigdon, Christian Dielitz, Georg Fromme, Anne Remke

Outline

Motivation

Model Implementation

Simulation Results

Open Questions and Conclusions

How can we make the most of locally produced electricity?

Energy production and consumption times don't align optimally

Central Questions

Increased use of locally generated energy? Financial viability / advantage?

Take into account: Feed-in tariff (EEG) PV installation dates Internal / neighbourhood trade Consumption / production (NEDU, PVWatts) Battery capacity

Model Implementation

Versatile simulation tool Implemented in MATLAB / Simulink Wide array of options

Developed with German / Dutch market in mind but flexible regarding other markets

	Solar panel size (m²)	Yearly power demand (kWh)	Date installatior	of PV n (MM-YYYY
Ĺ	25	3500	05-2013	
2	_17	2870	01-2012	
3	32	5800	12-2015	
4	_12	3280	08-2007	
u	ld house Remove	selected house	500]€
au	tery cost per kwii			1
at	tery capacity		7	kWh
ne	e-time cost		1000	€
it	ial cost per kWh from utilit	:y	0.2881	€
nit Ini	ial cost per kWh from utilit nual change of cost per k	:y Wh from utility	0.2881]€]%
nit Ini	ial cost per kWh from utilit nual change of cost per k te of battery installation	:y Wh from utility	0.2881 3.4 01-2016] €] %] MM-YYYY
iit Ini Iol	ial cost per kWh from utilit nual change of cost per k te of battery installation lar panel efficiency	:y Wh from utility	0.2881 3.4 01-2016 16] €] %] MM-YYYY] %
iit ni ol o:	ial cost per kWh from utilit nual change of cost per k te of battery installation lar panel efficiency st per kWh received from i	:Y Wh from utility micro grid controller	0.2881 3.4 01-2016 16 0.18] €] %] MM-YYYYY] %] €
iit Ini Ioi	ial cost per kWh from utilit nual change of cost per k te of battery installation lar panel efficiency st per kWh received from i mpensation per kWh hanc	:y Wh from utility micro grid controller ded off to micro grid controller	0.2881 3.4 01-2016 16 0.18 0.18] €] %] MM-YYYYY] %] €] €

Create simulation (This min

Display Output GUI

(This might take a considerable amount of time!)

(Please only click this once the simulation has finished!)

11 of 21

Installation Date: 01-2004, Battery Capacity: 7 kWh

Installation Date: 01-2010, Battery Capacity: 7 kWh

Installation Date: 01-2015, Battery Capacity: 7 kWh

House 4: Consumption: 5,000 kWh p.a., PV: 40 m², Installation Date: 01-2015, Battery Capacity: 14 kWh

Internal trade in 3-house neighbourhood

House 1: PV: 35 m², consumption p.a.: 4200 kWh House 2: PV: 45 m², consumption p.a.: 6000 kWh House 3: PV: 40 m², consumption p.a.: 3200 kWh

Amortisation in 5-house neighbourhood 3 with, 2 without PV

Specific setup:

Identifier	Consumption p.a. (kWh)	PV Size (m ²)
House 1	4,200	35
House 2	6,000	45
House 3	3,200	40
House 4	5,000	0
House 5	5,500	0

Amortisation in 5-house neighbourhood 3 with, 2 without PV

Conclusions

Smaller Feed-In-Tariff ⇒ Greater Amortisation

Time until amortisation does not depend on battery capacity in a linear fashion

Neighbourhoods including houses without PV lead to increase in internal trade

Future and Related Work

Non-linear battery models (KiBaM) [6] Internal trade model (llic et al.) [7] Scheduling and optimisation Consumption patterns (ongoing work)

Analyses / Optimisation [1, 2, 3] Velik [4] VIMSEN (van der Burgt et al.) [5]

Thank you! — Questions?

- [1] Y. Guo, M. Pan, and Y. Fang, 'Optimal Power Management of Residential Customers in the Smart Grid', IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 9, pp. 1593–1606, Sep. 2012.
- [2] P. Samadi, A.-H. Mohsenian-Rad, R. Schober, V. W. S. Wong, and J. Jatskevich, "Optimal Real-Time Pricing Algorithm Based on Utility Maximization for Smart Grid", in 2010 First IEEE International Conference on Smart Grid Communications (SmartGridComm), 2010, pp. 415–420.
- [3] N. G. Paterakis, I. N. Pappi, J. P. S. Catalao, and O. Erdinc, "Optimal operational and economical coordination strategy for a smart neighborhood", in PowerTech, 2015 IEEE Eindhoven, 2015, pp. 1–6.
- [4] R. Velik, "Battery Storage versus Neighbourhood Energy Exchange to Maximize Local Photovoltaics Energy Consumption in Grid-Connected Residential Neighbourhoods", International Journal of Advanced Renewable Energy Research, vol. 2, no. 6, 2013.
- [5] J. van der Burgt, G. Sauba, E. Varvarigos, and P. Makris, "Demonstration of the smart energy neighbourhood management system in the VIMSEN project", in PowerTech, 2015 IEEE Eindhoven, 2015, pp. 1–6.
- [6] M. R. Jongerden and B. R. Haverkort, "Battery Modeling", Centre for Telematics and Information Technology, University of Twente, Enschede, info:eu-repo/semantics/report TR-CTI, Jan. 2008.
- [7] D. Ilic, P. G. Da Silva, S. Karnouskos, and M. Griesemer, "An energy market for trading electricity in smart grid neighbourhoods", in 2012 6th IEEE International Conference on Digital Ecosystems Technologies (DEST), 2012, pp. 1–6.