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Kurzfassung 
Das Programm SINIS dient zur Simulation nichtlinearer Systeme. Die Ergebnisse werden als Zeit-
reihe und im zweidimensionalen Phasenraum dargestellt, der zusätzlich in einer dreidimensionalen 
Darstellung betrachtet werden kann. Das Potential der Systeme kann ausgegeben und es können 
Poincaréschnitte angefertigt werden, deren Abhängigkeit von der Phasenlage aus der Poincaré-
Animation hervorgeht. Die Bifurkationsszenarien können mit Feigenbaumdiagrammen untersucht 
werden. Zur weiteren Auswertung der mit SINIS erhaltenen Ergebnisse können alle erstellten Dia-
gramme in drei verschiedenen Formaten und die ihnen zu Grunde liegenden Daten im Textformat 
abgespeichert werden. Hier werden die Ergebnisse der Simulation des Exzentrischen Drehpendels 
kurz dargestellt. Der Übergang vom geordneten Zustand über chaotische Zustände wieder in einen 
geordneten Zustand wird demonstriert. Die Abhängigkeit des Poincaréschnitts von der Phasenlage 
wird gezeigt. Ein 32er-Zyklus wird in Zeit-, Phasendiagramm und Poincaréschnitt betrachtet. 
 

 
1.Einleitung
Innerhalb der physikalischen Forschung ist die 
numerische Simulation ein wichtiger Bestandteil 
und ebenso ein grundlegendes Hilfsmittel zur Er-
kenntnisgewinnung. Mit ihr können reale Systeme 
untersucht werden, deren Verhalten in der Realität 
nicht oder nicht genau genug betrachtet werden 
kann, da Experimente entweder nicht durchführbar 
sind oder zu schnell bzw. zu langsam für Beobach-
tungen ablaufen. Durch die Simulation dieser Sys-
teme werden solche Probleme umgangen. 
Aus den gleichen Gründen nimmt die numerische 
Simulation eine wichtige Rolle in der Schule und 
im Physikunterricht ein und bietet neben dem Expe-
riment neue Möglichkeiten und Zugänge zu im 
Unterricht behandelten Systemen. Dies gilt insbe-
sondere für nichtlineare Systeme, deren Bewe-
gungsgleichungen nicht analytisch gelöst werden 
können und sich eine Behandlung auf das Aufstel-
len der Bewegungsgleichung und eine qualitative 
Analyse der Bewegungsstruktur beschränken wür-
de. Durch den Einsatz von Computersimulationen 
wird das selbstständige Lernen der Schüler unter-
stützt, und sie lernen wissenschaftliche Arbeitsme-
thoden kennen. Außerdem setzen sich die Schüler 
aktiv mit Computern auseinander, die in der heuti-
gen Arbeitswelt und somit auch in der Schule einen 
immer wichtigeren Stellenwert einnehmen. 
Mit dem im Rahmen einer Examensarbeit entwi-
ckelten Programm SINIS lässt sich das Verhalten 
der nichtlinearen Systeme Drehpendel, Über-
schlagspendel, Toda-Oszillator, Lorenz-System und 
Rössler-System untersuchen. Dabei werden die 
Zustandsgrößen, die die Systeme beschreiben, als 
Zeitreihe und im zweidimensionalen Phasenraum 
dargestellt. Der Phasenraum kann zusätzlich in 

einer dreidimensionalen Darstellung betrachtet 
werden. Außerdem kann das Potential der Systeme 
ausgegeben und Poincaréschnitte angefertigt wer-
den. Die Abhängigkeit der Poincaréschnitte von der 
Phasenlage kann mit der Poincaré- Animation de-
monstriert werden. Weiter können die Bifurkati-
onsszenarien mit Feigenbaumdiagrammen unter-
sucht werden. Beim Drehpendel und beim Über-
schlagspendel wird die Bewegung zusätzlich durch 
eine grafische Darstellung des Auslenkungswinkels 
visualisiert. Zur weiteren Auswertung der mit SINIS 
erhaltenen Ergebnisse können alle erstellten Dia-
gramme und die ihnen zu Grunde liegenden Daten 
abgespeichert werden. Dabei stehen bei den Dia-
grammen drei unterschiedliche Formate zur Aus-
wahl; die Tabellen werden im Textformat gespei-
chert. Die Systeme Pohlsches Rad, Überschlags-
pendel und Toda-Oszillator sind mit schulischen 
Mitteln relativ einfach als Experiment zu realisieren 
[2]. Auch das Lorenzsystem ist mit Hilfe eines 
Wasserrades experimentell zugänglich [3]. Die 
Simulation kann zur physikalischen Auswertung 
und theoretischen Vertiefung der Experiment im 
Unterricht eingesetzt werden.  
In dieser Arbeit sollen einige Simulationsergebnisse 
am Beispiel des exzentrischen Drehpendels vorge-
stellt werden. 
 
2. Bewegungsgleichung des Drehpendels 
Beim exzentrischen Drehpendel handelt es sich um 
das aus dem Anfängerpraktikum bekannte Pohlsche 
Rad, an dem eine Unwucht angebracht ist. Zusätz-
lich zur Reibung kann das Pendel mit Hilfe einer 
Wirbelstrombremse gedämpft werden. Das Dreh-
pendel ohne Unwucht zeigt das Verhalten eines 
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harmonischen Oszillators mit oder ohne erregender 
Kraft, bzw. Dämpfung. Ungedämpft schwingt es 
harmonisch, d.h. die Frequenz ω  ist konstant und 
unabhängig von der Amplitude der Auslenkung x. 
Die Periodenlänge hängt lediglich von der Feder-
konstanten D ab. Wird eine Unwucht der Masse m 
im Abstand r von der Drehachse angebracht, so 
erhält die Bewegungsgleichung einen nichtlinearen 
Term und das Pendel zeigt ein chaotisches Schwin-
gungsverhalten. Die zugehörige Bewegungsglei-
chung lautet:  

( ) ( )xmgrxxDxxJ a sin+−−=+ &&& β . 
 
Dabei ist J das Trägheitsmoment des gesamten 
Pendels, x die Auslenkung, x&  die Geschwindigkeit 
und x&&  die Beschleunigung des Pendels. β  be-
schreibt die Dämpfung, xa gibt den Einfluss der 
erregenden Kraft wieder, und es gilt: 

 

( )tfxa ωα sin0 += . 
 

α0  ist die Mittellage und f die Amplitude der Anre-
gung. Die Dämpfung β setzt sich zusammen aus der 
Dämpfung durch Reibung und der Dämpfung durch 
die Wirbelstrombremse. Dabei ist der Anteil der 
Reibung immer entgegengesetzt zur Bewegungs-
richtung und wird durch den Reibungskoeffizienten 
a beschrieben (Stokessche Reibung). Die Dämp-
fung der Wirbelstrombremse besitzt den Reibungs-
koeffizienten b und ist abhängig vom Dämpfungs-
strom I. Es gilt: 

2bI
x
a

+=
&

β . 

Nach Umformung der Bewegungsgleichung und 
Auflösen nach x&&  lautet die endgültige Differential-
gleichung: 
 

( ) ( )[ ]xmgrxxDx
J

x a sin1
+−−−= &&& β , 

(vgl. [1]). 
Auf Grund der durch das Drehmoment der Un-
wucht hervorgerufenen Nichtlinearität ist diese 
Gleichung analytisch nicht lösbar. 
 
3.  Bifurkationsszenario des Drehpendels 
Die Schrittweite bei der Untersuchung des Dreh-
pendels beträgt ∆t = 0,001s. In Abb. 2 ist das mit 
SINIS aufgenommene Feigenbaumdiagramm des 
Drehpendels dargestellt, das einen Überblick über 
die gesamte Bewegungsstruktur bietet. 
Bei der Erstellung des Diagramms werden  zu ver-
schiedenen Dämpfungsstromwerten Poincaréschnit-
te bei der Anregungsphase ω = 0 aufgezeichnet, die 
zu einem Feigenbaumdiagramm zusammengesetzt 

 
Abb. 1: Schematische Darstellung des Drehpen-
dels (ϕ ist die Auslenkung, m die Zusatzmasse 
(Unwucht), I die Dämpfungsstromstärke;aus[1]].  

 
Abb. 2: Überblick über die Bewegungsstruktur des Drehpendels Rades. Nach 500 Ein-
schwingperioden werden je 50 Punkte pro Dämpfungsstromwert eingetragen. Die Schrittweite 
des Dämpfungsstroms beträgt ∆I = 0,5mA. 
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werden. Dabei startet das Drehpendels bei jedem 
Schnitt mit der Anfangsauslenkung x = 0° und der 
Anfangsgeschwindigkeit x& = 0°/s. Für die System-
parameter wurden typische Werte eingesetzt: 
Länge des Lastarms r = 0,085m 
Federkonstante D = 0,01655kg/s 
Erdbeschleunigung g = 9,81m/s2 
Es werden 500 Einschwingperioden abgewartet, 
damit sich die Bewegungszustände stabilisieren 
können. Dann werden die Werte der Auslenkung 
aus dem Poincaréschnitt gegen den speziellen 
Dämpfungsstromwert aufgetragen. Dieser Vorgang 
wird mehrmals wiederholt, sodass man ein kom-
plettes Feigenbaumdiagramm erhält.  
In Abb. 2 ist der gesamte Bereich der Bewegungs-
struktur des Drehpendels vom geordneten Zustand 
über das Chaos bis hin zum wieder geordneten 
Zustand zu erkennen. Bei starkem Dämpfungsstrom 
I liegt ein Einerzyklus vor, der sich bei geringer 
werdendem Dämpfungsstrom I immer weiter auf-
spaltet und schließlich ins Chaos übergeht. Der 
chaotische Bereich wird immer wieder von Fens-

tern im Chaos unterbrochen; diese erkennt man an 
den senkrechten weiß erscheinenden Bereichen. Die 
Baumstruktur scheint sich durch das gesamte Dia-
gramm fortzusetzen. Dieser Eindruck entsteht, da 
Zustände, die nahe an den stabilen Zuständen lie-
gen, häufiger angenommen werden als weit davon 
entfernt liegende und somit in der Nähe der stabilen 
Zustände mehr Punkte eingetragen werden. 
In Abb. 3 ist der Bereich von I = 750mA bis I = 
695mA vergrößert dargestellt. Der Übergang von 
der Ordnung ins Chaos über ein Bifurkationsszena-
rio ist deutlich zu erkennen. Aus einem Einerzyklus 
wird ein Zweierzyklus, der sich in einen Viererzyk-
lus aufspaltet, der sich wiederum in einen Achter-
zyklus aufspaltet, usw.. Auch hier werden Zustän-
de, die nahe an stabilen Zuständen liegen, häufiger 
eingenommen als die anderen. Ebenso sind wieder 
Fenster im Chaos durch die weißen Bereiche zu 
erkennen, z.B. im linken Teil des Diagramms. Das 
Rad nimmt drei verschiedene Auslenkungen an, die 
alle über Bifurkationen ins Chaos übergehen. 

 
Abb. 3: Vergrößerung des Feigenbaumdiagramms mit 500 Einschwingperioden und 100 Punkten pro Dämp-
fungsstromwert. Die Schrittweite des Dämpfungsstroms beträgt ∆I = 0,1mA. 

 
Abb.4: Vergrößerung des oberen Astes aus Abb. 3 
mit 500 Einschwingperioden, 100 Punkten und ∆I = 
0,05mA. 

Abb.4 gibt den oberen Ast aus Abb. 3 vergrößert 
wieder. Hier ist auch die Aufspaltung in den Sech-
zehnerzyklus zu erkennen.  
Abb.5 gibt den oberen und den unteren Ast aus 
Abb.4 wieder, sodass hier auch die Aufspaltung in 
den Zweiunddreißigerzyklus zu erkennen ist. Die 
Feigenbaumdiagramme gleichen sich nicht nur 
untereinander, sondern auch den „übergeordneten“ 
Darstellungen mit kleinerem Maßstab. Diese 
Selbstähnlichkeit ist eine charakteristische Eigen-
schaft von chaotischen Systemen. Außerdem ist zu 
erkennen, dass das Verhältnis der Abstände zwi-
schen den einzelnen Aufspaltungen konstant ist. 
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Abb.5: Vergrößerung a) des oberen und b) des 
unteren Astes aus Abb.4 mit 500 Einschwingperio-
den, 100 Punkten und ∆I = 0,01mA.  

 
4. Poincaré-Animation 
Bei der Erstellung des Poincaréschnitts werden die 
das System beschreibenden Zustandsgrößen gegen 
eine periodische Größe des Systems aufgetragen, 
beim Drehpendel gegen die Phase der anregenden 
Kraft. Dann wird zu einem bestimmten Wert dieser 

Größe eine Ebene durch den Phasenraum gelegt, 
die von der Trajektorie geschnitten wird und die 
den Poincaréschnitt ergibt. Die Abhängigkeit des 
Poincaréschnitts von dem Wert der periodischen 
Größe kann mit der Option Poincaré-Animation 
von SINIS demonstriert werden, indem eine Abfol-
ge von Poincaréschnitten zu verschiedenen Phasen-
lagen aufgenommen wird und hintereinander als 
GIF-File abgespielt wird (s. Onlinehilfe zu SINIS). 
Zwei Beispiele für eine Poincaré-Animation sind 
dem Text beigefügt. Dabei wurden beim Drehpen-
del bei jedem Schnitt bei einem Dämpfungsstrom 
von I = 460mA nach 500 Einschwingperioden 1500 
Punkte aufgenommen. Beim Überschlagspendel 
wurden je zwei Poincaréschnitte nebeneinander 
dargestellt. Wieder wurden nach 500 Einschwing-
perioden 1500 Punkte aufgenommen. Die Anre-
gungsamplitude betrug f = 110° (Parameter des 
Pendels s. Onlinehilfe zu SINIS). Beide Filme lau-
fen mit halber Originalgeschwindigkeit. 
  

 
Abb.6: Poincaréschnitt mit 500 Einschwingperio-
den und 1500 Punkten. 
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Abb.7: Zeitdiagramm des stabilen 32er-Zyklus des Drehpendels. 

b) 

a) 

Periode n Periode n+1 
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Abb.8: a) Phasendiagramm und b) Poincaréschnitt des stabilen 32er-Zyklus. 

 
5. Zweiunddreißigerzyklus 
Zum Schluss soll noch der stabile Zweiunddreißi-
gerzyklus betrachtet werden. Dieser wird beim 
Drehpendel mit Standardparametern bei einem 
Dämpfungsstrom von I = 713,95mA erreicht und 
liegt nur 0,05mA neben dem Sechzehnerzyklus 
(z.B. liegen Zweier- und Viererzyklus 19mA aus-
einander). Der stabile 64er-Zyklus bei einem 
Dämpfungsstrom von I = 713,92mA soll hier nicht 
dargestellt werden, da die einzelnen Bahnen der 
Trajektorie kaum zu trennen sind. In diesem Zu-
sammenhang sei darauf hingewiesen, dass sich die 

Bahnen im Phasendiagramm schneiden, was ein 
Widerspruch zur schwachen Kausalität wäre. Dies 
liegt an der zweidimensionalen Projektion des Pha-
senraums. Mit der Option „3D-Darstellung“ von 
SINIS ist eine dreidimensionale Anzeige möglich, 
die den gesamten Phasenraum darstellt, sodass die 
Trajektorien ohne vorherige Schnittpunkte in sich 
zurücklaufen. 
Beim Zweiunddreißigerzyklus nimmt das Pendel 32 
verschiedene Maxima und Minima ein. Da die 
einzelnen Minima und Maxima nicht genau zu 
trennen sind, wird das Phasenraumdiagramm 

je vier Punkte 

acht Punkte

a) 

b) 
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zweimal vergrößert. Abb.9a) zeigt die linke Spitze 
der Trajektorie in Abb.8a) stark vergrößert. Auch 
hier sind keine 32 diskreten Linien zu erkennen, 
sodass in Abb.9b) der rechte Teil von Abb.9a) noch 
einmal vergrößert dargestellt ist. Hier sind nun acht 
Doppellinien zu erkennen.  
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Abb.9: Vergrößerungen des Phasenraumdiagramms 
des Zweiunddreißigerzyklus. 

 
6. Schluss 
Mit SINIS können Eigenschaften nichtlinearer Sys-
teme untersucht werden, die in Realexperimenten 
nur schwer oder gar nicht zu beobachten sind. Dies 
liegt vor allem an den störenden Einflüssen, die das 
Finden dieser Phänomene und besonders die Re-
produzierbarkeit der Ergebnisse erschweren. Den-
noch treten diese Phänomene im Prinzip auch in 
den Realexperimenten auf und sind ein wichtiger 
Bestandteil dieser Systeme. SINIS bietet also eine 
Möglichkeit, diese nichtlinearen Systeme zu unter-
suchen und stellt damit eine Erweiterung und Be-
reicherung der bisherigen Behandlungsmethoden 
nichtlinearer Systeme dar. 
 
7. SINIS auf der Tagungs-CD 
Auf der Tagungs-CD befinden sich neben diesem 
Text zwei Beispiele zur Poincaré-Animation des 
Pohlschen Rades und des Überschlagpendels, sowie 
eine Version von SINIS zur Installation und eine 
Version zum direkten Starten von der CD.  
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