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SINIS — Simulation nichtlinearer Systeme
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Kurzfassung

Das Programm SINIS dient zur Simulation nichtlinearer Systeme. Die Ergebnisse werden als Zeit-
reihe und im zweidimensionalen Phasenraum dargestellt, der zusétzlich in einer dreidimensionalen
Darstellung betrachtet werden kann. Das Potential der Systeme kann ausgegeben und es kénnen
Poincaréschnitte angefertigt werden, deren Abhangigkeit von der Phasenlage aus der Poincaré-
Animation hervorgeht. Die Bifurkationsszenarien kénnen mit Feigenbaumdiagrammen untersucht
werden. Zur weiteren Auswertung der mit SINIS erhaltenen Ergebnisse kdnnen alle erstellten Dia-
gramme in drei verschiedenen Formaten und die ihnen zu Grunde liegenden Daten im Textformat
abgespeichert werden. Hier werden die Ergebnisse der Simulation des Exzentrischen Drehpendels
kurz dargestellt. Der Ubergang vom geordneten Zustand tiber chaotische Zustande wieder in einen
geordneten Zustand wird demonstriert. Die Abhangigkeit des Poincaréschnitts von der Phasenlage
wird gezeigt. Ein 32er-Zyklus wird in Zeit-, Phasendiagramm und Poincaréschnitt betrachtet.

1.Einleitung

Innerhalb der physikalischen Forschung ist die
numerische Simulation ein wichtiger Bestandteil
und ebenso ein grundlegendes Hilfsmittel zur Er-
kenntnisgewinnung. Mit ihr kdnnen reale Systeme
untersucht werden, deren Verhalten in der Realitat
nicht oder nicht genau genug betrachtet werden
kann, da Experimente entweder nicht durchfihrbar
sind oder zu schnell bzw. zu langsam fiir Beobach-
tungen ablaufen. Durch die Simulation dieser Sys-
teme werden solche Probleme umgangen.

Aus den gleichen Grinden nimmt die numerische
Simulation eine wichtige Rolle in der Schule und
im Physikunterricht ein und bietet neben dem Expe-
riment neue Mdoglichkeiten und Zugénge zu im
Unterricht behandelten Systemen. Dies gilt insbe-
sondere flr nichtlineare Systeme, deren Bewe-
gungsgleichungen nicht analytisch gelést werden
kénnen und sich eine Behandlung auf das Aufstel-
len der Bewegungsgleichung und eine qualitative
Analyse der Bewegungsstruktur beschranken wiir-
de. Durch den Einsatz von Computersimulationen
wird das selbststdndige Lernen der Schiler unter-
stitzt, und sie lernen wissenschaftliche Arbeitsme-
thoden kennen. Aullerdem setzen sich die Schiler
aktiv mit Computern auseinander, die in der heuti-
gen Arbeitswelt und somit auch in der Schule einen
immer wichtigeren Stellenwert einnehmen.

Mit dem im Rahmen einer Examensarbeit entwi-
ckelten Programm SINIS ldsst sich das Verhalten
der nichtlinearen Systeme Drehpendel, Uber-
schlagspendel, Toda-Oszillator, Lorenz-System und
Rdéssler-System untersuchen. Dabei werden die
ZustandsgroRen, die die Systeme beschreiben, als
Zeitreihe und im zweidimensionalen Phasenraum
dargestellt. Der Phasenraum kann zusétzlich in

einer dreidimensionalen Darstellung betrachtet
werden. AuBerdem kann das Potential der Systeme
ausgegeben und Poincaréschnitte angefertigt wer-
den. Die Abhéngigkeit der Poincaréschnitte von der
Phasenlage kann mit der Poincaré- Animation de-
monstriert werden. Weiter konnen die Bifurkati-
onsszenarien mit Feigenbaumdiagrammen unter-
sucht werden. Beim Drehpendel und beim Uber-
schlagspendel wird die Bewegung zusétzlich durch
eine grafische Darstellung des Auslenkungswinkels
visualisiert. Zur weiteren Auswertung der mit SINIS
erhaltenen Ergebnisse kénnen alle erstellten Dia-
gramme und die ihnen zu Grunde liegenden Daten
abgespeichert werden. Dabei stehen bei den Dia-
grammen drei unterschiedliche Formate zur Aus-
wahl; die Tabellen werden im Textformat gespei-
chert. Die Systeme Pohlsches Rad, Uberschlags-
pendel und Toda-Oszillator sind mit schulischen
Mitteln relativ einfach als Experiment zu realisieren
[2]. Auch das Lorenzsystem ist mit Hilfe eines
Wasserrades experimentell zugéanglich [3]. Die
Simulation kann zur physikalischen Auswertung
und theoretischen Vertiefung der Experiment im
Unterricht eingesetzt werden.

In dieser Arbeit sollen einige Simulationsergebnisse
am Beispiel des exzentrischen Drehpendels vorge-
stellt werden.

2. Bewegungsgleichung des Drehpendels

Beim exzentrischen Drehpendel handelt es sich um
das aus dem Anféangerpraktikum bekannte Pohlsche
Rad, an dem eine Unwucht angebracht ist. Zusatz-
lich zur Reibung kann das Pendel mit Hilfe einer
Wirbelstrombremse geddmpft werden. Das Dreh-
pendel ohne Unwucht zeigt das Verhalten eines
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harmonischen Oszillators mit oder ohne erregender
Kraft, bzw. Dampfung. Ungedampft schwingt es
harmonisch, d.h. die Frequenz o ist konstant und
unabhéngig von der Amplitude der Auslenkung x.
Die Periodenlédnge héngt lediglich von der Feder-
konstanten D ab. Wird eine Unwucht der Masse m
im Abstand r von der Drehachse angebracht, so
erhdlt die Bewegungsgleichung einen nichtlinearen
Term und das Pendel zeigt ein chaotisches Schwin-
gungsverhalten. Die zugehorige Bewegungsglei-
chung lautet:

Q

Abb. 1: Schematische Darstellung des Drehpen-
dels (¢ ist die Auslenkung, m die Zusatzmasse
(Unwucht), I die Dampfungsstromstarke;aus[1]].

J%+ = -D(x - x, )+mgrsin(x)-

Dabei ist J das Tragheitsmoment des gesamten
Pendels, x die Auslenkung, x die Geschwindigkeit
und % die Beschleunigung des Pendels. g be-
schreibt die Dampfung, x, gibt den Einfluss der
erregenden Kraft wieder, und es gilt:

X, = o, + fsin(at)-

o ist die Mittellage und f die Amplitude der Anre-
gung. Die D&mpfung g setzt sich zusammen aus der
Démpfung durch Reibung und der D&mpfung durch
die Wirbelstrombremse. Dabei ist der Anteil der
Reibung immer entgegengesetzt zur Bewegungs-
richtung und wird durch den Reibungskoeffizienten
a beschrieben (Stokessche Reibung). Die Damp-
fung der Wirbelstrombremse besitzt den Reibungs-
koeffizienten b und ist abhéngig vom Dampfungs-
strom 1. Es gilt:
f=r;
X
Nach Umformung der Bewegungsgleichung und
Auflosen nach % lautet die endgliltige Differential-
gleichung:

+bl?-

K= %[_ﬁ;(_ D(x - x, )+ mgrsin(x)]
(vgl. [1D).

Auf Grund der durch das Drehmoment der Un-
wucht hervorgerufenen Nichtlinearitat ist diese
Gleichung analytisch nicht lésbar.

3. Bifurkationsszenario des Drehpendels

Die Schrittweite bei der Untersuchung des Dreh-
pendels betrégt At = 0,001s. In Abb. 2 ist das mit
SINIS aufgenommene Feigenbaumdiagramm des
Drehpendels dargestellt, das einen Uberblick tiber
die gesamte Bewegungsstruktur bietet.

Bei der Erstellung des Diagramms werden zu ver-
schiedenen Dampfungsstromwerten Poincaréschnit-
te bei der Anregungsphase w = 0 aufgezeichnet, die
zu einem Feigenbaumdiagramm zusammengesetzt
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Abb. 2: Uberblick tiber die Bewegungsstruktur des Drehpendels Rades. Nach 500 Ein-
schwingperioden werden je 50 Punkte pro Dampfungsstromwert eingetragen. Die Schrittweite

des Dampfungsstroms betragt Al = 0,5mA.
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werden. Dabei startet das Drehpendels bei jedem
Schnitt mit der Anfangsauslenkung x = 0° und der
Anfangsgeschwindigkeit X = 0°/s. Fir die System-
parameter wurden typische Werte eingesetzt:

Lange des Lastarms r = 0,085m

Federkonstante D = 0,01655kg/s
Erdbeschleunigung g = 9,81m/s

Es werden 500 Einschwingperioden abgewartet,
damit sich die Bewegungszustidnde stabilisieren
koénnen. Dann werden die Werte der Auslenkung
aus dem Poincaréschnitt gegen den speziellen
Démpfungsstromwert aufgetragen. Dieser VVorgang
wird mehrmals wiederholt, sodass man ein kom-
plettes Feigenbaumdiagramm erhélt.

In Abb. 2 ist der gesamte Bereich der Bewegungs-
struktur des Drehpendels vom geordneten Zustand
Uber das Chaos bis hin zum wieder geordneten
Zustand zu erkennen. Bei starkem Dampfungsstrom
I liegt ein Einerzyklus vor, der sich bei geringer
werdendem Dampfungsstrom | immer weiter auf-
spaltet und schlieBlich ins Chaos (bergeht. Der
chaotische Bereich wird immer wieder von Fens-

tern im Chaos unterbrochen; diese erkennt man an
den senkrechten weil3 erscheinenden Bereichen. Die
Baumstruktur scheint sich durch das gesamte Dia-
gramm fortzusetzen. Dieser Eindruck entsteht, da
Zusténde, die nahe an den stabilen Zustanden lie-
gen, haufiger angenommen werden als weit davon
entfernt liegende und somit in der Né&he der stabilen
Zustédnde mehr Punkte eingetragen werden.

In Abb. 3 ist der Bereich von I = 750mA bis | =
695mA vergroRert dargestellt. Der Ubergang von
der Ordnung ins Chaos tber ein Bifurkationsszena-
rio ist deutlich zu erkennen. Aus einem Einerzyklus
wird ein Zweierzyklus, der sich in einen Viererzyk-
lus aufspaltet, der sich wiederum in einen Achter-
zyklus aufspaltet, usw.. Auch hier werden Zustan-
de, die nahe an stabilen Zusténden liegen, héufiger
eingenommen als die anderen. Ebenso sind wieder
Fenster im Chaos durch die weilRen Bereiche zu
erkennen, z.B. im linken Teil des Diagramms. Das
Rad nimmt drei verschiedene Auslenkungen an, die
alle Giber Bifurkationen ins Chaos Uibergehen.
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Abb. 3: VergréBRerung des Feigenbaumdiagramms mit 500 Einschwingperioden und 100 Punkten pro Déamp-
fungsstromwert. Die Schrittweite des Dampfungsstroms betragt Al = 0,1mA.
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Abb.4: VergroRerung des oberen Astes aus Abb. 3
mit 500 Einschwingperioden, 100 Punkten und Al =
0,05mA.

Abb.4 gibt den oberen Ast aus Abb. 3 vergroBert
wieder. Hier ist auch die Aufspaltung in den Sech-
zehnerzyklus zu erkennen.

Abb.5 gibt den oberen und den unteren Ast aus
Abb.4 wieder, sodass hier auch die Aufspaltung in
den ZweiunddreiBigerzyklus zu erkennen ist. Die
Feigenbaumdiagramme gleichen sich nicht nur
untereinander, sondern auch den ,,ibergeordneten”
Darstellungen mit kleinerem Malstab. Diese
Selbstahnlichkeit ist eine charakteristische Eigen-
schaft von chaotischen Systemen. Aullerdem ist zu
erkennen, dass das Verhdltnis der Abstdnde zwi-
schen den einzelnen Aufspaltungen konstant ist.
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Abb.5: VergréRerung a) des oberen und b) des
unteren Astes aus Abb.4 mit 500 Einschwingperio-
den, 100 Punkten und Al = 0,01mA.

4. Poincaré-Animation

Bei der Erstellung des Poincaréschnitts werden die
das System beschreibenden Zustandsgréfien gegen
eine periodische GroBe des Systems aufgetragen,
beim Drehpendel gegen die Phase der anregenden
Kraft. Dann wird zu einem bestimmten Wert dieser

GrolRe eine Ebene durch den Phasenraum gelegt,
die von der Trajektorie geschnitten wird und die
den Poincaréschnitt ergibt. Die Abhangigkeit des
Poincaréschnitts von dem Wert der periodischen
GroRe kann mit der Option Poincaré-Animation
von SINIS demonstriert werden, indem eine Abfol-
ge von Poincaréschnitten zu verschiedenen Phasen-
lagen aufgenommen wird und hintereinander als
GIF-File abgespielt wird (s. Onlinehilfe zu SINIS).
Zwei Beispiele fiir eine Poincaré-Animation sind
dem Text beigefiigt. Dabei wurden beim Drehpen-
del bei jedem Schnitt bei einem Dampfungsstrom
von | = 460mA nach 500 Einschwingperioden 1500
Punkte aufgenommen. Beim Uberschlagspendel
wurden je zwei Poincaréschnitte nebeneinander
dargestellt. Wieder wurden nach 500 Einschwing-
perioden 1500 Punkte aufgenommen. Die Anre-
gungsamplitude betrug f = 110° (Parameter des
Pendels s. Onlinehilfe zu SINIS). Beide Filme lau-
fen mit halber Originalgeschwindigkeit.

— 150

o

= 100 :

= Sy

© 50 £

= ! .

I PTG

£ ; ry A

: m0dt IRLIME

i T -fiw

& 100 s

AT S el A S S—
-100 =50 0 a0 100

Avzlenkung x [

Abb.6: Poincaréschnitt mit 500 Einschwingperio-
den und 1500 Punkten.
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Abb.7: Zeitdiagramm des stabilen 32er-Zyklus des Drehpendels.
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Abb.8: a) Phasendiagramm und b) Poincaréschnitt des stabilen 32er-Zyklus.

5. ZweiunddreiRigerzyklus

Zum Schluss soll noch der stabile Zweiunddreif3i-
gerzyklus betrachtet werden. Dieser wird beim
Drehpendel mit Standardparametern bei einem
Démpfungsstrom von | = 713,95mA erreicht und
liegt nur 0,05mA neben dem Sechzehnerzyklus
(z.B. liegen Zweier- und Viererzyklus 19mA aus-
einander). Der stabile 64er-Zyklus bei einem
Dé&mpfungsstrom von | = 713,92mA soll hier nicht
dargestellt werden, da die einzelnen Bahnen der
Trajektorie kaum zu trennen sind. In diesem Zu-
sammenhang sei darauf hingewiesen, dass sich die

Bahnen im Phasendiagramm schneiden, was ein
Widerspruch zur schwachen Kausalitat ware. Dies
liegt an der zweidimensionalen Projektion des Pha-
senraums. Mit der Option ,,3D-Darstellung® von
SINIS ist eine dreidimensionale Anzeige mdglich,
die den gesamten Phasenraum darstellt, sodass die
Trajektorien ohne vorherige Schnittpunkte in sich
zuriicklaufen.

Beim ZweiunddreiRigerzyklus nimmt das Pendel 32
verschiedene Maxima und Minima ein. Da die
einzelnen Minima und Maxima nicht genau zu
trennen sind, wird das Phasenraumdiagramm
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zweimal vergroBert. Abb.9a) zeigt die linke Spitze [2] Boysen et al.: Oberstufe Physik (Sachsen An-

der Trajektorie in Abb.8a) stark vergroRert. Auch halt 11). Berlin: Cornelsen Verlag 2000.

hier sind keine 32 diskreten Linien zu erkennen, [3] Schlichting, H. Joachim, Bachhaus, Udo, Kiip-

sodass in Abb.9b) der rechte Teil von Abb.9a) noch ker, H.G. Chaos beim Wasserrad - ein einfa-

einmal vergroRert dargestellt ist. Hier sind nun acht ches mechanisches Modell fur das Lorenzsys-

Doppellinien zu erkennen. tem. Physik und Didaktik 19/3, 196- 219
(1991)
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Abb.9: Vergrélierungen des Phasenraumdiagramms
des Zweiunddreiligerzyklus.

6. Schluss

Mit SINIS kénnen Eigenschaften nichtlinearer Sys-
teme untersucht werden, die in Realexperimenten
nur schwer oder gar nicht zu beobachten sind. Dies
liegt vor allem an den stérenden Einfllssen, die das
Finden dieser Phdnomene und besonders die Re-
produzierbarkeit der Ergebnisse erschweren. Den-
noch treten diese Ph&nomene im Prinzip auch in
den Realexperimenten auf und sind ein wichtiger
Bestandteil dieser Systeme. SINIS bietet also eine
Madglichkeit, diese nichtlinearen Systeme zu unter-
suchen und stellt damit eine Erweiterung und Be-
reicherung der bisherigen Behandlungsmethoden
nichtlinearer Systeme dar.

7. SINIS auf der Tagungs-CD

Auf der Tagungs-CD befinden sich neben diesem
Text zwei Beispiele zur Poincaré-Animation des
Pohlschen Rades und des Uberschlagpendels, sowie
eine Version von SINIS zur Installation und eine
Version zum direkten Starten von der CD.
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