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Das „Schwert der Sonne“ -
Alltägliche Reflexionen im Lichte eines einfachen optischen Phänomens.

Teil 2: Mathematische Modellierung und Simulation

H. Joachim Schlichting  Essen

1. Einleitung

In einem früheren Beitrag [1] wurde das u.a. als Schwert der Sonne bezeichnete Lichtphäno-
men in einigen seiner zahlreichen Varianten dargestellt und qualitativ physikalisch beschrie-
ben. Im folgenden soll diese Beschreibung durch quantitative Zugänge ergänzt werden. Die
Darstellung wird nicht so sehr dadurch motiviert, physikalische Beschreibungen würden erst
in der quantitativen Modellierung zum Ziel kommen. Für viele Belange des Physikunterrichts
erweist sich eine qualitative Darstellung als völlig ausreichend. Vielmehr soll eine Alternative
zur weit verbreiteten Praxis des Physikunterrichts skizziert werden, Unterrichtsgegenstände
stets auf jene Idealgestalten zu reduzieren, die dadurch zwar zugänglich gemacht, gleichzeitig
aber so weit vom ursprünglichen Alltags- und Naturphänomen entfernt werden, daß die von
ihnen ausgehende (meist nicht physikalisch begründete) Motivation zum Erliegen kommt.

Beschreibt man demgegenüber die komplexen Phänomene mit Hilfe eines einfachen Algo-
rithmus, dessen Ausführung mit ähnlicher Selbstverständlichkeit dem Computer überlassen
werden kann, wie beispielsweise die Ausführung der Reihenentwicklung von sin (50°) dem
Taschenrechner, so läßt sich das Schwert der Sonne mit vergleichbarem Aufwand "berechnen"
wie das Spiegelbild eines selbstleuchtenden Punktes. Denn in beiden Fällen wird nur das Re-
flexionsgesetz benötigt.

Damit ist bereits gesagt, daß wir uns auf die geometrisch optischen Aspekte des Phänomens
beschränken. Die mit dem Einfallswinkel variierende Intensität des Lichtes (Fresnelsche Glei-
chungen) wird ebenso vernachlässigt, wie die Farbeffekte die zumindest bei den Lichtbahnef-
fekten einer CD nicht zu übersehen sind. Auch jene Effekte, die aufgrund der zeitlichen Ver-
änderung des Neigungswinkels zustandekommen, werden hier nicht betrachtet.

2. Vom Phänomen zum Polynom

Rein qualitativ gesehen kommt das Phänomen des Schwertes der Sonne dadurch zustande,
daß das von einem leuchtenden Gegenstand ausgehende Licht auf zahlreichen Wegen das Au-
ge erreicht. Das setzt voraus, daß die das Licht reflektierende Oberfläche Flächenelemente
unterschiedlicher Neigungen aufweist, also uneben (gewellt, zerkratzt u.ä.) strukturiert ist. Je
größer die "Winkelvielfalt", die das auftreffende Licht vorfindet, desto weiter entfernt vom
"Spiegelpunkt" (dem einzigen Punkt, an dem das Licht bei einer ebenen Fläche reflektiert
würde) treten Reflexe auf.

Wir gehen im folgenden zunächst von einem völlig ungeordneten Wellenmuster aus. Jedem
Flächenelement P(x,y) der Oberfläche läßt sich ein senkrecht darauf stehender Normalenvek-
tor n

r
 zuordnen. Das von der Lichtquelle L ausgehende Licht trifft P(x,y) unter einem Ein-

fallswinkel γ bezüglich n
r

 und wird von hier unter einem gleich großen Ausfallswinkel ins
Auge des Beobachters B reflektiert (Abb. 1). Unterstellt man, daß die Neigungen der Wellen
einen bestimmten Maximalwinkel αm nicht überschreiten, so läßt sich die Lichtbahn als Ge-
samtheit aller Flächenelemente P(x,y) auffassen, deren Normale n

r
 einen Winkel α < αm gegen
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die Vertikale v
r

 besitzen. Die Randkurve der Lichtbahn (gestrichelt gezeichnet) ist der geo-
metrische Ort all jener Flächenelemente P(x,y), deren Normale mit der Vertikalen gerade den

Winkel αm bilden: α =αm.

Um die Lichtbahn zu ermitteln muß demnach für
alle P(x,y) festgestellt werden, unter welchem
Winkel α das Licht ins Auge reflektiert wird und
ob α < αm. Wie läßt sich α  mit Hilfe der bekann-
ten Größen als Funktion von x und y darstellen?
Dazu muß man zunächst die Flächennormale n

r

finden. Da nach dem Reflexionsgesetz der Ein-
fallswinkel gleich dem Ausfallswinkel bezüglich
n
r

 ist, halbiert n
r

 gerade den Winkel 2γ zwischen
dem von L kommenden (durch den Vektor a

r
 be-

schriebenen) und dem ins Auge des Beobachters

reflektierten (durch den Vektor b
r

 beschriebenen)
Lichtstrahl. n

r
 läßt sich aus der Differenz der Ein-

heitsvektoren b̂ und â  von b
r

 und a
r

 bestimmt
werden, weil – anschaulich gesprochen - n

r
 als

Diagonale und damit als Winkelhalbierende der durch b̂ und â  aufgespannten Raute aufge-
faßt werden kann. Da die Normale n

r
 die Vertikale v

r
 unter dem Neigungswinkel α schneidet,

ist das Verhältnis der Längenabschnitte von n
r

 und v
r

 gleich dem Kosinus von α. Da dieses
Verhältnis gerade der z- Komponente zn̂  des Einheitsvektors von n

r
 ist, gilt:

cosα = zn . (1)

Wie im Anhang ausgeführt wird, läßt sich zn̂  mit Hilfe der Parameter h0, hl, l (h0,= Höhe des
Beobachters, hl = Höhe der Lichtquelle, l = Abstand von Beobachter und Lichtquelle) als
Funktion von x und y schreiben. Für α = αm erhält man auf diese Weise einen analytischen
Ausdruck für die Randkurve der Lichtbahn, ein Polynom 6. Ordnung, das sich nur numerisch
auswerten ließe.

3. Didaktische Probleme

Um jedoch keinen falschen Eindruck zu erwecken: Die numerische Auswertung dürfte im
Zeitalter des Computers kaum das Problem sein. Problematisch ist vielmehr die Herleitung
eines expliziten Ausdrucks von Gl. (1). Wie man sich durch den bloßen Nachvollzug des im
Anhang skizzierten Lösungsweges vor Augen führt, kann man zumindest in der Sekundarstufe
I nicht auf mathematische Fertigkeiten der Schülerinnen und Schüler zurückgreifen, die eine
solche Herleitung in einem vertretbaren Zeitrahmen erlauben würden. Aber auch für den Phy-
sikunterricht der Sekundarstufe II sind Zweifel angebracht. Selbst wenn dort die Herleitung
gelänge, bliebe zu fragen, was damit gewonnen wäre. Liefe man nicht Gefahr, das ursprüngli-
che Phänomen zu "zerrechnen" 51/7 (1998), S.xxx

[2], indem das auf ganz anderen Motiven, (als umfangreiche Rechnungen durchzuführen), be-
ruhende Interesse der Schülerinnen und Schüler verschüttet wird? Der Anspruch und zeitliche
Aufwand, den die mathematische Modellierung von Natur- und Alltagsphänomenen unter die-
ser Perspektive erfordern, sind vermutlich ein wesentlicher Grund dafür, daß ihre Behandlung
trotz der hohen Anfangsmotivation und des direkten Bezuges zur Umwelt bislang so gut wie
keinen Eingang in den Physikunterricht gefunden hat.

Abb. 1: Das Licht der Quelle L erreicht über ver-
schiedene Wege das Auge des Beobachters B.
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Aus diesem Grund hat man sich immer wieder bemüht, Alternativen in Form von Nähe-
rungslösungen bzw. Beschränkungen auf Spezialfälle zu entwickeln. Es zeigt sich jedoch, daß
derartige Bemühungen (vgl. z.B. die Ausführungen von MARCEL MINNAERT in dem anson-
sten exellenten Werk, das zu einer Zeit geschrieben wurde, als Computersimulationen noch
nicht allgemein zugänglich waren [3]), oft ebenfalls aufwendig, anspruchsvoll und wenig mo-
tiviert erscheinen. Wenn zudem als Ergebnis nicht viel mehr herauskommt, als daß das

Schwert der Sonne in der Regel länger als
breiter ist (wie ja bereits der Name anschau-
lich zum Ausdruck bringt), so werden die
Schülerinnen und Schüler dadurch nicht ge-
rade von der Sinnhaftigkeit von Berechnun-
gen überzeugt.

Im übrigen machten diese Bemühungen oh-
nehin nur einen Sinn für den Unterricht der
Sekundarstufe II. Es fragt sich aber, ob das
Schwert der Sonne sowohl vom physikali-
schen Gehalt (geometrische Optik) als auch
von den Interessen der Schülerinnen und
Schüler her nicht eher zum Stoffplan der Se-

kundarstufe I gehören sollte. Für die Sekundarstufe II gäbe es genügend Natur- und Alltags-
phänomene, die mit anspruchsvolleren physikalischen Inhalten (z.B. Wellenoptik) verknüpft
sind.

4. Einfache Algorithmen

Vor diesem Hintergrund soll demonstriert werden, wie mit einfach nachzuvollziehenden Al-
gorithmen, deren Auswertung man ohne Einbußen für das eigentliche (physikalische) Ver-
ständnis getrost dem Computer überlassen kann, die wesentlichen quantitativen Aspekte der
verschiedensten Lichtbahnphänomene erschlossen werden können.

4.1 Die Form der Lichtbahn
In einem in [1] beschriebenen Experiment wird mit einem geneigten Miniaturspiegel (Die
Neigung αm sollte frei wählbar aber jeweils fest eingestellt sein.) die Randkurve des Sonnen-
schwertes abgescannt. Dabei muß der Spiegel für jeden Punkt P(x,y) dieser Kurve so orientiert
(verschoben und gedreht) werden, daß man die Lichtquelle L von Punkt B aus sieht, bzw. die
von L ausgehenden Lichtstrahlen das Auge treffen. Hat man diese Randkurve, so weiß man,
daß für jeden Punkt innerhalb des von der Kurve berandeten Bereiches kleinere Winkel α <
αm ausreichen, die Reflexionsbedingung zu erfüllen, und die Punkte daher zur Lichtbahn ge-
hören.

Dieses Experiment läßt sich direkt in einen Algorithmus übersetzen, indem man statt den
Spiegel zu orientieren, den Computer nach der eingangs skizzieren Methode berechnen läßt,
wie groß der Winkel der Flächennormalen an dieser Stelle sein müßte, damit der Beobachter
bei P(x,y) die Lichtquelle sehen kann. Nur wenn sich ein kleinerer als der vorgegebene maxi-
male Winkel, α < αm, ergibt, gehört der Punkt zum Bereich der Lichtbahn und kann entspre-
chend eingefärbt werden. Die Punkte P(x,y), für die α = αm ist, entsprechen der Randkurve
des Lichtbahnbereichs.

Für die Fälle, in denen die Ausdehnung der Lichtquelle von erkennbarem Einfluß auf die
Form der Lichtbahn ist, ist es außerdem keine Schwierigkeit, dieser Ausdehnung Rechnung zu

Abb. 2: Randkurve der Lichtsäule für Wellenneigungen
γ = 5°, 10°, 15° und 20° bei verschiedenen Sonnenstän-
den.
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tragen, indem die obige Prozedur für jeden Punkt der (hier stets als kreisrund vorausgesetzten)
Lichtquelle ausgeführt wird [4].

Für die Schülerinnen und Schüler reicht es m.E. völlig aus, wenn sie verstehen, daß aufgrund
des Reflexionsgesetzes die Normale gerade den Winkel zwischen dem einfallenden und re-
flektierten Lichtstrahl halbiert, und wenn sie für einen ausgewählten Punkt die Prozedur nach-
vollziehen, die zur Auffindung der Normalen und des Neigungswinkels α führt. Auf eine
konkrete Ableitung und Berechnung kann ohne Einbuße für das physikalische Verständnis
verzichtet werden. Dies und vor allem die zahllosen Wiederholungen der Rechnung für alle
Punkte der betrachteten Fläche sind typische Routineaufgaben für einen Computer. Auf diese
Weise ist die ursprüngliche Komplexität des Problems weitgehend auf die Wiederholung einer
einfach zu beschreibenden Prozedur zurückgeführt worden: Die Komplexität ist demnach ein-
fach, einfach, einfach...

4.2 Die Struktur der Lichtbahn

Bisher haben wir uns auf eine Fläche beschränkt, die insofern strukturlos ist, als die Flä-
chenelemente in jedem Punkt alle Winkel α < αm annehmen können. In vielen Fällen führt
aber gerade die besondere Beschaffenheit der Oberfläche zu auffälligen Strukturierungen des
Lichtbahn, die teilweise so stark von der statistischen Verteilung der Lichtpunkte im ur-
sprünglichen Phänomen des Schwertes der Sonne abweichen, daß man den physikalischen Zu-
sammenhang zunächst gar nicht erkennt (vergleiche die zahlreichen Beispiele in [1]).

Zerkratzte Oberflächen

Nehmen wir etwa jene auf den ersten Blick merkwürdigen Ringstrukturen, die man beispiels-
weise auf einem ge-
brauchten Löffel oder
einer polierten Mes-
singtafel sieht, wenn
sie von einer (mög-
lichst punktförmigen)
Lichtquelle beleuch-
tet wird. Die Gesamt-
heit der Kratzerab-
schnitte, die Flanken
passenden Neigung
besitzen, um das
Licht ins Auge zu re-
flektieren, erscheint
auf konzentrischen
Ringen um das Spie-

gelbild der Lichtquelle orientiert. Diese Ringe nähern sich um so stärker der Kreisform an, je
senkrechter man auf die reflektierende Fläche blickt. (Ganz ist das natürlich nicht möglich,
weil der Kopf die Lichtquelle verdecken würde).

Auch dieses Phänomen kann im Rahmen des obigen Algorithmus simuliert werden, wenn
man nur noch den auf bestimmten Geraden (d.h. den Kratzern bzw. Riefen) liegenden Flä-
chenelementen – und nicht mehr jedem - erlaubt, Orientierungen α < αm anzunehmen. Dazu
wird die Fläche vorher „zerkratzt“, d.h. mit zufällig orientierten Geraden zufallsverteilter
Länge versehen. Dabei stellt der wieder frei wählbare Maximalwinkel αm. gewissermaßen die

Abb. 3: Im Vergleich zu den sichtbaren
Abschnitten der Kratzer (Abb. 4) die tat-
sächlich vorhandenen Kratzer.

Abb. 4: Reflexionsmuster einer durch
Gebrauchsspuren zerkratzten glänzenden
Platte.
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Stärke oder Tiefe der Kratzer bzw. Riefen dar. In der Simulation werden nunmehr nur genau
diejenigen Abschnitte der Kratzer eingefärbt, bei denen unter den gegebenen Bedingungen
Licht von L nach B reflektiert werden kann (siehe Abb. 4).

Anders als in der Wirklichkeit, die uns normalerweise nur jene Riefenabschnitte vor Augen
führt, die Licht zum Beobachter zu reflektieren vermögen, und damit das Lichtbahnphänomen
ausmachen, hat man in der Computersimulation [5] darüber hinaus die Möglichkeit, im Ver-
gleich dazu alle vorhandenen Riefen in voller Länge sichtbar zu machen (Abb. 3). Durch die-
sen Vergleich läßt sich die Täuschung, bei der die sichtbare Kratzerstruktur für die gesamte
gehalten wird, eindrucksvoll entlarven. Eindrucksvoll vor allem deshalb, weil man auf einen
Blick erkennt, daß normalerweise nur sehr kurze Abschnitte von den passend orientierten tat-
sächlichen Kratzern zu erkennen sind.

Edelstahlplatten

Eine weitere Klasse von Lichtbahnphänomen besteht aus Lichtschweifen, die vornehmlich auf

Edelstahlplatten vom reflek-
tierten Bild der Lichtquelle ausgehen. Sie kommen dadurch

zustande, daß die Oberfläche nicht mit statistisch verteilten Gebrauchsspuren versehen ist,
sondern mit feinsten, weitgehend parallel verlaufenden Riefen, die vom Herstellungsvorgang
herrühren. Manchmal sind sie auch noch von senkrecht dazu verlaufenden Riefen überlagert,
was sich durch ein kreuzförmiges Schweifmuster verrät. Auch diese Schweife lassen sich mit
unserem Algorithmus simulieren, wenn man die Fläche statt mit statistisch verteilten mit pa-
rallelen Geraden versieht (vgl. Abb. 5). Auch die Überlagerung der regelmäßigen parallelen
Riefen und der Gebrauchsspuren, in Form eines von Ringen überlagerten Schweifmusters läßt
sich auf diese Weise simulieren (Abb. 6).

Schallplatten und CDs

Abb. 5: Lichtschweife, wie sie typi-
scherweise bei einer durch Kratzer
unversehrten, aber Spuren des Her-
stellungsprozesses aufweisenden
Edelstahlplatte zu sehen sind.

Abb. 6: Wie Abb. 5 mit einen Ge-
brauchsspuren auf der Platte, die
andeutungsweise die Ringstruktur
(Abb. 4) erkennen lassen.

Abb. 7: Das normalerweise unsicht-
bare Muster des Herstellungsver-
fahrens der Edelstahlplatte.

Abb. 8: Simulationen der Reflexe einer Schallplatte bei verschiedenen Stellungen von Lichtquelle und Beobach-
ter (von links nach rechts: symmetrische Lage, Verschiebung nach rechts, Verschiebung nach unten, Verschie-
bung nach unten und rechts). Ganz rechts: Modellschallplatte mit 60 Rillen, die den Simulationen zugrunde ge-
legt wurde.
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Versieht man die betrachtete Fläche mit einem konzentrischen Ringmuster, so lassen sich jene
Lichtschweifphänomene simulieren, die Schallplatten und CDs im (monochromatischen)
Licht aufweisen (Abb. 8.).

Da neben αm auch die übrigen Parameter h0, hl, l bei allen Simulationen variiert werden kön-
nen, lassen sich auch Phänomene aufspüren, die man aufgrund einer ungewöhnlichen Per-
spektive zunächst nicht als spezielle Lichtbahn erkennt.

Durchsichtsphänomene

Bei durchsichtigen Flächen kann man ebenfalls Schwert-, Schweif- und Ringmuster beob-
achten, wenn man durch die transparenten Materialien hin-
durch auf eine Lichtquelle blickt. Solche Flächen findet man
im Alltag häufig vor, wenn man sie zu sehen gelernt hat. Ty-
pisch sind fein zerkratzte Scheiben (Fensterscheiben in Bus-
sen und Bahnen, die Windschutzscheibe eines PKW), und
durchsichtige Folien der unterschiedlichsten Art. Aber auch
innerlich gesprungener Plexiglasscheiben (u.ä), wie man sie
beispielsweise als innere Abdeckung der Flugzeugfenster
antrifft, gehören dazu. In diesem Fall muß der Algorithmus
etwas modifiziert werden. Es muß im Programm berück-
sichtigt werden, daß nicht mehr die Reflexion, sondern die
Lichtbrechung an den unterschiedlich orientierten Flanken
der Riefen und Kratzer für die Ablenkung der Lichtstrahlen

verantwortlich ist. Interessanterweise erhält man aber ganz ähnliche Muster wie bei der Refle-
xion (siehe Abb. 9). Einige Beispiele aus der Vielzahl derartiger Phänomene ist in [1] be-
schrieben.

4.3 Das Schwert der Sonne auf einer mit Riefen versehenen Wasseroberfläche

Die zahlreichen Reflexmuster, die wir im Alltag in den verschiedensten Variationen beob-
achten, sind physikalisch gesehen nur eine Variante des ursprünglichen Naturphänomens des
Schwertes der Sonne. Dieser Gedanke liegt allerdings zunächst nicht auf der Hand. Denn zum

einen sind bei
den meisten All-
tagsphänomenen
Beobachter und
Lichtquelle rela-
tiv zur reflektie-
renden Fläche
ganz anders posi-
tioniert als etwa
beim Sonnenun-
tergang relativ
zur Oberfläche
des Gewässers.
Zum anderen er-
fährt das über
vergleichsweise
riesige Flächen

Abb. 9: Ringstruktur, wie sie zuwei-
len beim Blick durch Scheiben zu
beobachten ist.

Abb. 10: Die größere Lichtintensität des
Schwertes der Sonne im Hintergrund und
die Zerklüftung im Vordergrund werden
durch die Simulation gut wiedergegeben.
Im vorliegenden Fall wird die Sonne durch
ein 500mm- Teleobjektiv gesehen.

Abb. 11: Das Schwert der Sonne, wie es
sich im perspektivenfreien (d.h. von einem
Menschen nicht einnehmbaren )Blick er-
geben würde. Die Lösung der exakten
Rechnung ergibt ebenfalls dieses Dreieck.
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sich erstreckende Schwert der Sonne durch die perspektivische Verkürzung eine mehr oder
weniger große Deformation, die bei den meist aus der Nähe und im Aufblick gesehenen ver-
hältnismäßig kleinen Flächen (wie blanke Löffel, Edelstahlplatten und zerkratzte Scheiben)
nicht ins Gewicht fallen und vernachlässigt werden können. Mit anderen Worten: Das Schwert
der Sonne auf dem Wasser wird kaum so gesehen, wie es "an und für sich" ist. Mit "an und für
sich" soll auf die Form verwiesen werden, die sich aufgrund der Berechnung bzw. Computer-
simulation ergibt, wenn man die Perspektive unberücksichtigt läßt. Diese Form kann so nie-
mals wahrgenommen werden und ist daher nur von theoretischem Interesse. Die in Abb. 2
dargestellten Kurven sind von dieser Art. Um die „exakte“ Rechnung auch noch realistisch zu
machen, hätte auch hier die Perspektive mit einbezogen werden müssen, was zu einer weite-
ren Verkomplizierung der Ausdrücke geführt hätte. Deshalb wurde in den hier beschriebenen
Algorithmen stets die Perspektive mit berücksichtigt. (siehe Abb. 10 und Abb. 11).

Indem wir das Meer wie eine zerkratzte Edelstahlplatte behandeln, kommen wir dem tatsäch-
lich beobachteten Schwert der Sonne näher als im Rahmen des ersten Modells, bei dem das
durch die Randkurve eingeschlossene Gebiet einheitlich eingefärbt wurde. Jedenfalls gibt das
so gewonnene Bild (Abb. 10) die auch in Wirklichkeit zu beobachtenden Zerklüftungen und
die statistische Verteilung der Helligkeit des Schwertes wieder. Die durch die Wellenbewe-
gung des Wassers hervorgerufene Dynamik der Lichtbahn wird natürlich auch in diesem Mo-
dell nicht erfaßt.

5. Plädoyer für den Einsatz des Computers

Naturphänomene und Computersimulationen werden nur zaghaft miteinander in Verbindung
gebracht. Die Ursache dafür ist einerseits in der nicht immer unberechtigten Befürchtung zu
sehen, daß Reales durch Virtuelles, Sein durch Schein ersetzt wird mit allen negativen Folgen
für eine adäquate Wahrnehmung der natürlichen und wissenschaftlich technischen Welt. An-
dererseits dürften auch rein affektiv begründete Vorbehalte eine Rolle spielen, derart daß der
Natur und Naturerlebnissen zugewandte Menschen oft Akzeptanzprobleme mit simulierten
Phänomenen äußern.

Die obige Skizze des Computereinsatzes zur Erschließung von Natur- und Alltagsphänome-
nen soll auch als Beleg dafür gesehen werden, daß Simulationen nicht notwendig mit einer
Entfernung und Entfremdung von der Natur und der Realität verbunden sind, sondern in zahl-
reichen Fällen überhaupt erst einen über das reine gefühlsmäßige Erleben hinausgehenden
Zugang zu den Phänomenen erlauben und über diesen Umweg eine Vertiefung und Bereiche-
rung des physikalisch "gestärkten" Blicks ermöglichen.

Darüberhinaus sollte man folgende Argumente nicht unterschätzen:

•   Die experimentell erhobenen Daten (abscannen der Schwertform) [1] lassen sich mit der
simulierten Form vergleichen. Damit kann u.a. Vertrauen dafür erworben werden, daß das
der Simulation zugrunde gelegte Modell leistet, was man von ihm erwartet.

•  Darauf aufbauend kann die Simulation helfen, über den empirisch zugänglichen Bereich
hinauszugehen (ähnlich wie es das Fernrohr erlaubt, über den mit unbewaffneten Auge
wahrgenommenen Phänomenbereich hinauszugehen). Man wird auf diese Weise in die La-
ge versetzt, sich über jene Situationen ein „anschauliches“ Bild zu verschaffen, die uns die
Natur nur zu ungünstigen Zeiten, an ungünstigen Orten oder überhaupt nicht zugänglich
macht. Insbesondere ermöglicht uns die Simulation im vorliegenden Beispiel, den Unter-
schied zwischen der theoretischen, perspektivenlosen „Ansicht“ der Schwertform, (wie sie
allenfalls von Gott gesehen werden kann) und der aus den unterschiedlichsten Perspektiven
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tatsächlich wahrgenommenen Formen zu verdeutlichen. Auf diese Weise kann man bei-
spielsweise zeigen, wie das Schwert der Sonne unter den gegebenen Bedingungen aus ei-
nem Flugzeug aussehen würde oder erklären wieso bei Sonnenuntergang keine sich zum
Horizont hin verjüngende Bahn zu sehen ist.

•  Mit Hilfe einer Computersimulation kann man sich auch eine Anschauung über irreale Ex-
trapolationen eines Phänomens verschaffen. Parameter sind in der Simulation unabhängig
davon, was in der Realität möglich ist, nahezu beliebig variierbar.

•  Denkbar ist sogar, im Rahmen physikalischer Gesetze Phänomene "sichtbar" zu machen,
die es in Wirklichkeit überhaupt nicht gibt. (Man denke etwa an die Luftspiegelungen, die
sich ergeben würden, wenn der Brechungsindex der Luft sehr viel stärker mit der Tempe-
ratur variierte, als er es tatsächlich tut).

•  Die analytisch- geometrische Behandlung des Phänomens ist äußerst kompliziert (siehe
oben). Selbst wenn man die Randkurve abzuleiten und das entsprechende Polynom hinzu-
schreiben vermag, hat man damit insofern nichts gewonnen, als die Auswertung auch wie-
der nur numerisch möglich ist und auch in diesem Fall auf den Computer zurückgegriffen
werden muß.

6. Anhang
Die Randkurve der Lichtbahn ist der geometrische Ort aller Punkte P(x,y), für die gilt:

cos αm  = zn̂ (1)

zn̂ ist die z- Komponente des Einheitsvektors der Wellennormalen. Er läßt sich folgenderma-
ßen durch die gegebenen Größen h0, hl, l als Funktion von x und y ausdrücken:

Seien Br
r

= (0,0,ho), Lr
r

 = (l,0,hl) und r
r

 = (x,y,0) die Ortsvektoren des Beobachters B und der

Lichtquelle L, dann gilt für die die Blickrichtung von B über P(x,y) nach L charakterisierenden

Vektoren  a
r

 und b
r

:

a
r

 = Lr
r

 - r
r

 und b
r

 = r
r

 - Lr
r

.

Die Einheitsvektoren von a
r

 und b
r

 lauten:

â  = ((l-x)/a, -y/a, hl/a), mit  a = 222)( lhyxl ++− .

b̂  = (x/b, y/b, - ho/b), mit b =  2
0

22 hyx ++ .

Ihre Differenz ist gleich dem Normalenvektor

n
r

 = b̂  - â , = (x/b – (l-x)/a, y/b + y/a, -ho/b- hl/a). Daraus ergibt sich:

n̂  = n
r

/n, mit n = 222

z
n

y
n

x
n ++ .= abhhxlyx lo /))(1(2 22 ++++ ,

wie sich durch Einsetzen und einigen Umformungen ergibt. Gleichung (1) lautet somit:

cosα = zn  = - (ho/b + hl/a)/n = -(hoa +hlb)/(abn).
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