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Schöne fraktale Welt -

Annäherungen an ein neues Konzept der Naturwissenschaften

H. Joachim Schlichting

 Sätze in einem Wort. Unendliche Sätze

 Elias Canetti

Das Konzept des Fraktals stellt eine große Herausforderung für fast alle Bereiche der Naturwissenschaften und
darüber hinaus dar. Gleichzeitig hat es wie kaum eine zweite naturwissenschaftliche Idee Publizität innerhalb
einer breiteren Öffentlichkeit erfahren. Die Schulphysik kann sich diesen Entwicklungen nicht verschließen.
Bisher erschienene Aufsätze haben sich meist mit einzelnen Aspekten der Fraktale befaßt. Der vorliegende
Beitrag möchte in einer Art Überblick den inneren Zusammenhang zwischen den zahlreichen Facetten des
Fraktals darstellen, ohne jedoch Vollständigkeit anzustreben. Dabei wird gleichzeitig versucht, die hinter der
Idee des Fraktals stehende Anschauung zu skizzieren, wie sie sich unter anderem auch in nicht naturwissen-
schaftlichen Kontexten spiegelt.

More geometrico

 Es gibt nichts Anthropomorpheres als die gerade Linie

 Paul Valéry

Die Euklidische Geometrie ist eine der tragenden Säulen der klassischen Physik. Geometrische Figuren sind
die Grundelemente physikalischer Objekte im tatsächlichen wie im metaphorischen Sinn; sie verleihen nicht
nur technischen Gegenständen Gestalt, sie kennzeichnen auch in Form der platonischen Ideen

die Theorien und Vorstellungen des klassisch physikalischen Weltbildes. Galilei sieht in der Geometrie die
Sprache der Natur:

"Die Philosophie ist in dem großen Buch der Natur niedergeschrieben, das immer offen vor unseren Augen
liegt, dem Universum. Aber wir können es erst lesen, wenn wir die Sprache erlernt und uns die Zeichen ver-
traut gemacht haben, in denen es geschrieben ist. Es ist in der Sprache der Mathematik geschrieben, deren
Buchstaben Dreiecke, Kreise und andere geometrische Figuren sind; ohne diese Mittel ist es dem Menschen
unmöglich, auch nur ein einziges Wort zu verstehen". (Galilei 1623).

Der Einfluß dieser Denkrichtung bis ins Alltagsleben karikiert Jonathan Swift ein Jahrhundert später anhand
des Verhaltens der Menschen von Laputa:

Die Ideen jener Leute bilden sich stets nach...mathematischen Linien und Figuren. Wollen sie zum Beispiel die
Schönheit einer Frau oder eines Tieres rühmen, so beschreiben sie sie durch Rhomben, Parallelogramme, El-
lipsen und andere geometrische Begriffe. Oder an anderer Stelle: Die Diener zerschnitten das Brot in der
Form von Kegeln, Zylindern, Parallelogrammen und anderen mathematischen Figuren (Swift 1726).

Aus euklidischer Perspektive besteht der wesentliche Aspekt der Weltbeschreibung in einer Rückführung auf
und einer Rekonstruktion aus dem Grundelement der geraden Linie: Letztlich sind alle euklidischen Formen
gerade oder glatt. Bei genügender Vergrößerung kann jede Kurve durch eine Gerade und jede Oberfläche durch
eine Ebene approximiert werden. Die Landvermessung auf der Erde beruht auf der ebenen Geometrie. Selbst
im Zuge der Abwendung von Geometrie und Anschaulichkeit, wie sie in der formalen Ausgestaltung der New-
tonschen Physik zum Ausdruck kommt, bleibt die Linearisierung ein wesentliches Element der Komplexitäts-
reduktion im mathematisch physikalischen Denken. Mit der Entwicklung der Infinitesimalrechnung durch
Leibniz und Newton gelingt es zwar, auch allgemeinere, "krumme" Kurven und Flächen mathematisch zu-
gänglich zu machen, man bleibt aber beschränkt auf Objekte, die letztlich - bei genügender Vergrößerung -
stückweise durch eine Gerade angenähert werden können. Die darauf beruhende Eigenschaft der Differenzier-
barkeit ist daher eine der grundlegenden Voraussetzungen der durch Differentialgleichungen bestimmten Phy-
sik.
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Bleibt die Herrschaft der geraden Linie in der Physik noch weitgehend im Verborgenen, in der durch Naturwis-
senschaften geprägten Technik, der Architektur, dem Verkehrswesen und anderen kulturellen Aktivitäten fin-
det sie ihren sichtbaren Ausdruck:

Diese Linearisierung nimmt Friedensreich Hundertwasser (1985) aufs Korn, wenn er feststellt, daß "die gerade
Linie ...etwas (ist), was man niederträchtig mit Hilfe eines Lineals zieht, ohne nachzudenken und ohne zu füh-
len". Er sieht in der "geraden Linie...die einzige unschöpferische Linie, die einzige Linie, die dem Menschen,
der nach dem Bild Gottes geschaffen wurde, fremd ist, ...in der Natur nicht existiert, ...zur absoluten Tyrannei
geworden (ist)...und zum Untergang der Menschheit führt".

Im Bereich des Alltagslebens werden die negativen Wirkungen der geraden Linie nicht nur aus ästhetischer,
sondern auch praktischer Sicht in zunehmendem Maße erkannt: Flußbegradigungen werden zurückgenommen,
Straßenbegradigungen gestoppt, und die Streichholzschachtelbauweise von Wohnhäusern geht merklich zu-
rück.

Auf der anderen Seite werden euklidische Selbstverständlichkeiten problematisch und wachsen sich zu handfe-
sten Antinomien aus. 50 Jahre nachdem Franz Kafka in seinem Schloß am Beispiel des Landvermessers K. die
Sicherheit der menschlichen Existenz auf grundsätzliche Weise infrage stellt, erreicht diese Unsicherheit die
"euklidische" Landvermessung selbst. Schon bei einer so trivial erscheinenden Aufgabe wie der Feststellung
der gemeinsamen Grenze zweier Länder stößt man auf unüberwindbare Schwierigkeiten, wenn man die Aufga-
be nur einigermaßen ernst nimmt.

Beispielsweise findet man in einem portugiesischen Lexikon für die Grenze zu Spanien eine Längenangabe von
1214 km. In einem spanischen Lexikon wird die Grenze zu Portugal jedoch nur mit einer Länge von 987 km
angegeben. Das ist weder ein Druckfehler noch ein Zufall- für andere Länder lassen sich entsprechende Unter-
schiede finden - sondern der Hinweis auf eine tiefsitzende Antinomie im klassischen Weltbild.

In seinem Aufsatz: "Wie lang ist die Küste Britanniens?" gelingt Benoît Mandelbrot zwar eine Lösung dieses
Landvermessungsproblems, jedoch auf ganz andere Weise als man es aus euklidischer Sicht erwartet hätte: Die
Lösung bildet nicht nur die Schwelle zu einer neuen Geometrie, der fraktalen Geometrie der Natur, sondern
auch zu einem neuen naturwissenschaftlichen Weltbild.

Wenn Galilei die obige Aussage seinem Sagredo in den Mund gelegt hätte, so wäre eine Replik Simplicius'
denkbar gewesen, die etwa folgendermaßen hätte lauten können: "Wolken sind keine Kugeln, Berge keine Ke-
gel, Küstenlinien keine Kreise. Die Rinde ist nicht glatt - und auch der Blitz bahnt sich seinen Weg nicht gera-
de." Sie stammt aber nicht von Simplicius, sondern von Mandelbrot (1987), der mit diesen Worten ein Prinzip
attackiert, das die Physik seit Galilei weitgehend bestimmt hat: die Idealisierung der zu beschreibenden Wirk-
lichkeit bis zur Unkenntlichkeit. So gesehen ist in diesen Worten auch die Hoffnung enthalten, der Empirie des
unmittelbaren Augenscheins wieder größeres Gewicht zu verleihen.

Wie lang ist die Küste Britanniens?

Alles was zählte, spielte sich auf der sich auflösenden Linie zwischen Land und Wasser ab
mit der Folge einer bis an die Grenzen des Faßlichen schwellenden wirklichen Länge.

Volker Erbes

Das Problem der Land- bzw. Küstenvermessung wird sofort deutlich, wenn man sich vor Augen führt, wie eine
solche Vermessung praktisch aussehen könnte. Man beginnt beispielsweise damit, daß man mit Hilfe von Sa-
tellitenaufnahmen zunächst eine grobe Abschätzung vornimmt, indem man einen Polygonzug ausmißt, der
durch Verbindung von 1000km voneinander entfernt liegenden Punkten auf der Küstenlinie entsteht. An-
schließend reduziert man den Maßstab derart, daß sich ein Polygonzug mit 100 oder sogar nur 10km vonein-
ander entfernt liegenden Punkten ergibt. Man erwartet, daß die Länge dieses verfeinerten Polygonzugs der
"wahren Länge" der Küste bereits ziemlich nahe kommt. Es zeigt sich jedoch, daß weitere Verfeinerungen des
Maßstabs bis hinab zur Größe der wasserumspülten Sandkörnchen die Länge der Küste ins "Uferlose" hinaus-
schieben. Die Küsten- bzw. Landesgrenzenlänge ist also keine Größe im gewohnten Verständnis. Ihr Wert
hängt von der zugrundegelegten Genauigkeit bzw. vom Maßstab ab. Die Brisanz dieses Befundes könnte man
mit der Behauptung umschreiben: Alle Küsten und Landesgrenzen sind gleich lang.

"Auf der Grenze liegen immer die seltsamsten Geschöpfe" (Lichtenberg). Das sollte auch der Mathematiker
Helge Koch im Jahre 1904 erfahren, als er eine Kurve konstruierte, mit der das Küsten- oder Landesgrenzen-
problem modellmäßig auf den Punkt gebracht werden kann. Die ihrer Gestalt nach so genannte Schneeflocken-
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kurve (Abb.2) entsteht folgendermaßen: Zunächst wird ein gegebenes Liniensegment in drei gleichlange Teile
zerlegt und das mittlere Drittel durch das "Dach" eines gleichseitigen Dreiecks ersetzt. Sodann wird jedes der
sich ergebenden Teilstücke, derselben Teilungsprozedur unterworfen usw. ad infinitum.

Dieses seltsame Geschöpf eines Mathematikers ist nicht differenzierbar, es besitzt in keinem Punkt eine Tan-
gente und kann nicht auf die gerade Linie zurückgeführt werden. Solche Monster (Mandelbrot) wurden zur
Zeit ihrer Entdeckung als anti-intuitiv und pathologisch angesehen und gerieten in Vergessenheit, um erst in
unseren Tagen mit einem neu geschärften Blick vor allem durch Mandelbrot wieder ans Tageslicht geholt zu
werden.

Die Kochsche Schneeflockenkurve zeichnet sich ebenso durch das Fehlen eines natürlichen Maßstabs aus wie
natürliche Landesgrenzen und Küstenlinien: Sie besitzen durch alle Maßstäbe hindurch eine gleichartige
Struktur. Wie weit man sich auch durch sukzessive Ausschnittsvergrößerungen in die Tiefen dieser Kurve
"hineinzoomen" mag, der Anblick bleibt stets derselbe; nie landet man bei einem nichtzerfransten geraden
Segment: "Alles ist sich gleich, ein jeder Teil repräsentiert das Ganze" (Lichtenberg).

Diese in naheliegender Weise so genannte Selbstähnlichkeit kommt beispielsweise dadurch zum Ausdruck, daß
man ohne Anhaltspunkte für einen absoluten Maßstab (z.B. Pflanzenbewuchs an der Küste) nicht zu entschei-
den vermag, ob man vom Flugzeug aus auf die Küste blickt oder sie aus nächster Nähe betrachtet. Als weiteres
Beispiel mag der Flug über den Wolken dienen. Da eine kleine Wolke wie eine große aussieht, hat man meist
keine Möglichkeit, einen Eindruck von der Entfernung zur Wolkendecke zu gewinnen. Das zeigt sich zuweilen
darin, daß man aufgrund anderer Hinweise bemerkt, daß das Flugzeug sinkt, der Anblick der Wolken sich aber
kaum ändert. Auch von Wirbeln, die hinter einem Objekt im fließenden Wasser entstehen, kennt man seit lan-
gem, daß sie ebenfalls aus einer ganzen Hierarchie ineinandergeschachtelter Wirbel aufgebaut sind. Mit ande-
ren Worten:
Big whirls have little whirls,
That feed on their velocity; And little whirls
Have lesser whirls,
And so on to viscosity"

Richardson 1920

Oder, dasselbe in den Worten des Mathematikers Augustus de Morgan in Abwandlung eines Verses von Jo-
nathan Swift:

"Great fleas have little fleas
Upon their backs to bite 'em,
And little fleas have lesser fleas,
And so ad infinitum.
And the great fleas, themselves in turn,
Have greater fleas to go on;
While these again have greater still,
And greater still, and so on.“

Das ad infinitum ist allerdings wieder eine typische mathematische Übertreibung wie sie in der Realität nicht
auftritt. Darin äußert sich ein wesentlicher Unterschied zwischen Modell und Wirklichkeit. Während man sich
der infinitesimalen "Brüchigkeit" der Kochschen Schneeflockenkurve wenn schon nicht darstellungsmäßig, so
doch wenigstens prozessual gedanklich annähern kann, stößt man bei realen Strukturen, Küstenlinien, Wolken,
Wirbeln u.ä. irgendwann einmal auf das "körnige" Substrat, das spätestens durch die mikroskopischen Baustei-
ne gegeben ist. Die Selbstähnlichkeit in realen Systemen erstreckt sich nur über eine endliche "Tiefe".

Ein weiterer Unterschied zwischen realen und mathematischen Fraktalen besteht im "Grad" der Ähnlichkeit.
Während die schrittweise Vergrößerung von Abschnitten der Kochschen Kurve stets zu exakt derselben Struk-
tur führt, zeigt sich bei der Vergrößerung von Küstenlinienausschnitten nur eine statistische Ähnlichkeit zwi-
schen den einzelnen Ausschnitten, die allerdings so weitgehend ist, daß auch sie keine Rückschlüsse auf einen
Maßstab erlaubt und das Prinzip der Skaleninvarianz erfüllt.

Die Idee, die Natur mit Hilfe skaleninvarianter Systeme sich wiederholender ähnlicher Muster zu beschreiben,
findet man im abendländischen Denken von Anfang an vor. Anaxagoras (1968)weist beispielsweise darauf hin,
daß es "von dem Kleinen... immer noch ein Kleineres gibt. Aber auch von dem Großen gibt es immer noch ein
Größeres. Und es ist gleich dem Kleineren an Menge; an sich aber jedes Ding sowohl groß wie klein". Konnte
er ahnen, daß die Wissenschaftler dereinst mit Hilfe der Linse und deren nichtoptischen Nachfolgern auf Hier-
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archien ähnlicher Strukturen stoßen würden, wie weit sie sich auch hinab in den Mikrokosmos der Atome und
Elementarteilchen oder hinaus in den Makrokosmos der Sonnensysteme und Galaxienclustern vorwagen
mochten? Auch Leibniz (1933) hatte bereits in ausdruckstarken Bildern auf die Skaleninvarianz und Selb-
stähnlichkeit hingewiesen, die sich hinter der scheinbar "verworrenen Bewegung und dem Gewimmel" der
Realität verbirgt: "Die Maschinen der Natur..., d.h. die lebenden Körper, sind noch in ihren kleinsten Teilen,
bis ins Unendliche hinein, Maschinen...Jedes Stück Materie kann gleichsam als ein Garten voller Pflanzen oder
als ein Teich voller Fische aufgefaßt werden. Aber jeder Zweig der Pflanze, jedes Glied des Tieres, jeder Trop-
fen seiner Säfte ist wieder ein solcher Garten und ein solcher Teich... So gibt es nichts Ödes, nichts Unfrucht-
bares, nichts Totes im Universum, kein Chaos, keine Verwirrung außer dem Anschein nach" .

Selbst im Bereich künstlerischer und literarischer Darstellungen hat die Idee der Selbstähnlichkeit immer wie-
der fasziniert. So läßt beispielsweise Aldous Huxley in seinem Roman "Kontrapunkt des Lebens" Philip Quar-
les einen Roman über einen Romancier schreiben, der einen Roman schreibt usw. Auch in Andre Gides
"Falschmünzer" oder E. Cummings Theaterstück "Him" ist dieses Motiv vorhanden. Sogar die Werbung hat
sich eine Zeit lang dieses formalen Prinzips bedient: "Als Kind kroch ich immer in die Bilder auf Reklamen,
wo Kinder Kekse aus einer Büchse naschen, Mütter Suppe aus einer Packung auftischen, auf der sich das glei-
che Bild wiederholt, ins Unendliche. Manchmal konnte ich noch ein fünftes oder gar sechstes Kind ausmachen,
eine vierte Mutter, die der Familie lächelnd die Suppe aufzwang, ich wußte, daß es da nicht endet - so viele
Kekse konnte die Fabrik niemals backen! Ich frage dich: wenn jedes Kind eine Büchse mit zwanzig Keksen
hält- und das Ganze wiederholt sich unendlichmal, wovon gibt es mehr, Kinder oder Kekse, Mütter oder Sup-
penwürfel?" (Monikova 1986).

Während man bei zeichnerischen und schriftlichen Darstellungen die realen Begrenzungen wenigstens noch
gedanklich überwinden kann, stößt man bei ineinandergeschachtelten russichen Puppen jedoch sehr schnell an
die durch die Realität vorgegebenen Grenzen.

Das Muster, das verbindet

Jedes Existierende ist ein Analogon allen Existierenden;
daher erscheint uns das Dasein immer zu gleicher Zeit gesondert und verknüpft.

J.W.v. Goethe

Die Untersuchung fraktaler Strukturen beinhaltet insofern eine Abkehr von der fachsystematisch orientierten
Forschung, als der Blick gewissermaßen quer durch alle Disziplinen hindurch gerichtet wird auf das Muster,
das die verschiedensten Strukturen sowohl räumlicher als auch zeitlicher Art verbindet. Dies führt beispiels-
weise dazu, daß die Zeitaufnahme eines Blitzes verglichen wird mit den Baumstrukturen der Blutgefäße oder
dem chaotische Verhalten eines physikalischen Systems, wie es sich in der Phasenraumdarstellung eines chao-
tischen Attraktors manifestiert.

Welche neuen Aspekte der Blick auf die fraktalen Eigenschaften von Systemen liefern kann, sei an einem Bei-
spiel aus dem Bereich des tierischen Stoffwechsels demonstriert: Eine wichtige Rolle spielt dabei die von einem
Tier pro Zeiteinheit mit den Nahrungsmitteln aufgenommene Energie, die sogenannte Stoffwechselintensität P.
Da die Energieversorgung des Organismus allen Zellen, also dem gesamten Körpervolumen dient, könnte man
naiverweise erwarten, P müßte proportional zur Köpermasse m variieren. Diese Annahme läßt sich aber leicht
durch den Hinweis relativieren, daß die Versorgung des Organismus mit Nahrungsmitteln und Sauerstoff durch
die Oberflächen erfolgt, die die jeweiligen Volumina begrenzen. Flächen wachsen aber "langsamer" mit zu-
nehmender Masse als Volumina, weshalb vielmehr eine Proportionalität von P zu m2/3 zu erwarten sein sollte.
Diese lange Zeit für gültig gehaltene Rubnersche Flächenregel mußte jedoch schließlich fallengelassen werden.
Sorfältige empirische Untersuchungen zeigten, daß P über fast fünf Zehnerpotenzen, von den größten bis zu
den kleinsten Tieren wie m3/4 variiert. Außerdem stellte man fest, daß isolierte Körperzellen unabhängig von
der Masse des jeweiligen Tieres gleiche Energieumsatzraten besitzen, die Stoffwechselintensität P also maß-
stabsunabhängig, skaleninvariant ist.

Diese Formel ist bis heute unverstanden geblieben. Im Rahmen der fraktalen Geometrie bietet sich nunmehr die
Erklärung an, daß die für die Stoffwechselmechanismen wesentlichen Organe wie Lunge, Blutgefäße und
Darmsystem fraktale Eigenschaften besitzen: Durch eine Art fraktaler Faltung, ähnlich wie bei der Kochschen
Kurve, gelingt es offenbar, das Flächenhafte zu übertreffen ohne das Volumenhafte zu erreichen (vgl. Sernetz
et al. 1985).
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Natürlich kann man von einem realen Organ nicht erwarten, daß es durch eine solche Faltung eine unendlich
große Fläche realisiert. Die Tatsache, daß die menschliche Lunge auf einem relativ kleinen Volumen immerhin
eine Fläche von 100 m2 und das Darmsystem eine Fläche von 200 m2 entfaltet, kommt diesem Ideal allerdings
erstaunlich nahe. Die fraktale Selbstähnlichkeit von Lunge und Blutgefäßen offenbart sich rein anschaulich da-
durch, daß diese Organe durch zahlreiche Vergrößerungen hindurch dieselbe Baumstruktur besitzen: Jede Ader
hat wieder Adern, die ihr zur Unterhaltung dienen, und diese kleinen haben wieder andere (Lichtenberg ).

Das hierin zum Ausdruck kommende Prinzip der optimalen Anpassung zwischen verschiedenen "Medien" liegt
vielen fraktalen Gebilden in der Natur zugrunde. Bei den botanischen Bäumen geht es oberirdisch um eine
möglichst optimale Ausnutzung der Oberfläche des durch den Baum beanspruchten Volumens zur Absorption
von Licht einerseits und Austausch von Stoffen (z.B. Wasser, CO2 und O2) andererseits. Unterirdisch sorgt das
fraktale Wurzelgeflecht für eine möglichst große flächenmäßige Erschließung des Erdreichs zur Gewinnung
von Wasser und Mineralstoffen.

Fraktale Dimension

Könnte ich nur meinen Arm hinausstoßen über die Grenzen,
die ihm gesetzt sind..., so könnte ich in tausend Dimensionen reichen.

 H.G. Wells

Wie läßt sich die in vielen Beispielen qualitativ zum Ausdruck kommende Überwindung der topologischen
Dimension aufgrund fraktaler Selbstähnlichkeit quantitativ untermauern?

So merkwürdig die Eigenschaften der Küstenlinien, Landesgrenzen und der Kochschen Kurve auch anmuten,
sie finden sich trivialerweise und daher ohne besondere Bedeutung erlangt zu haben, in zahlreichen bekannten
geometrischen Objekten wieder, beispielsweise in einer Linie.

Eine Linie kann in n identische Teile zerlegt, also
um den Faktor f= 1/N verkleinert werden, und sie
bleibt trotzdem eine Linie. Leibniz benutze übrigens
diese Selbstähnlichkeit zur Definition einer Linie.
Auch bei zwei und dreidimensionalen Figuren findet
man eine entsprechende Skaleneigenschaft. Zerlegt
man etwa ein Quadrat in N identische Teilquadrate,
so wird jedes dieser Teile auf den Bruchteil f =1/N1/2

des ursprünglichen Quadrats verkleinert; und die N
Miniaturwürfel, die sich bei einer entsprechenden
Zerlegung eines Würfels ergeben, werden auf f =
1/N1/3 herunterskaliert (Abb.1). Ein solcher Skalie-
rungsfaktor f beschreibt die Größenvariation der
(selbstähnlichen) Objekte bei Ähnlichkeitstransfor-
mation und hängt offenbar eng mit dessen topologi-
scher Dimension Dt zusammen. Da wir hier nur von
der Eigenschaft der Selbstähnlichkeit Gebrauch ge-
macht haben, liegt es nahe, einen entsprechenden
Zusammenhang auch für andere selbstähnliche
Strukturen wie beispielsweise der oben erwähnten
Kochschen Kurve zugrundezulegen:

Die Kochsche Kurve (Abb.2) wurde dadurch gene-
riert, daß ein Liniensegment in N = 4 identische

Teile zerlegt wurde, von denen jedes f = 1/3 der ursprüngliche Länge besitzt. Damit ergibt sich gemäß obiger
Gleichung eine Dimension von D = ln 4/ln 3 = 1,26, also eine gebrochene oder nach Mandelbrot fraktal ge-
nannte Dimension D. Fraktale interpolieren gewissermaßen zwischen den euklidischen Räumen. Die fraktale
Dimension geht insofern über die bloße "Container"- Eigenschaft der topologischen Dimension hinaus, als sie
eine Charakterisierung der Objekte selbst ermöglicht. Eine gebrochene Dimension zwischen 1 und 2 charakte-
risiert ein hybrides Objekt zwischen Linie und Fläche. Dies ist mehr als ein formaler Trick: Die bis ins Unend-
liche getriebene Fragmentierung und Faltung beispielsweise der Kochschen Kurve macht auch auf anschauli-
che Weise deutlich, daß dieses Gebilde mehr ist als eine Linie, da jeder Kurvenabschnitt unendlich lang ist,
aber weniger als eine Fläche, da es zu keiner Verschmelzung bzw. Überschneidung der Faltungen kommt und

Bild 1: Zur Einführung der fraktalen Dimension
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der Flächeninhalt demnach Null ist. Sogar die in dem Zahlenwert zum Ausdruck kommende Quantifizierung
hat einen anschaulichen Aspekt: Einer vielfältigeren Fragmentierung entspricht eine höhere Dimension. Das
läßt sich beispielsweise durch einen Vergleich der Schneeflockenkurve (Abb. 2a) mit der quadratischen Koch-
schen Kurve (Abb. 2b)erkennen. Man kann auf diese Weise sogar Kurven finden, die die nächst

höhere topologische Dimension 2 annehmen. Ein Beispiel ist die ursprünglich auf Peano zurückgehende Vari-
ante einer quadratischen Kochschen Kurve (Abb. 2c), die die Ebene mit einem immer enger werdenden Gitter-
netz überzieht und daher auch anschaulich als ebenenfüllend anzusehen ist. Hier zeigt sich auf eindrückliche
Weise, daß die fraktale Dimension stets größer ist als die topologische Dimension des zugrundeliegenden eu-
klidischen Elements. Sie kann im Extremfall die nächst höhere topologische Dimension erreichen.

Welt als Konstrukt: Simulation fraktaler Strukturen

Daß es einen Ritter gibt, der nicht existiert, macht mir, offen gestanden, Angst...
Und doch bewundere ich ihn; in allem was er tut,

ist er so vollendet; er flößt mehr Sicherheit ein, als wenn es ihn wirklich gäbe..

 Italo Calvino

Einfache Linienfraktale

Die Selbstähnlichkeit der Kochschen Kurven kommt durch die Wiederholung desselben Strukturelementes
durch alle Maßstäbe hindurch zustande. Dieses einfache Bauprinzip macht es möglich, auf rekursive Weise
weitere fraktale Strukturen zu konstruieren: Der Ausgangspunkt ist stets ein euklidisches Grundelement, ein
sogenannter Initiator (z.B. eine Linie oder ein Quadrat), aus dem durch eine meist einfache Vorschrift ein so-
genannter Generator geformt wird. Den Generator läßt man auf den Initiators wirken, der dadurch entspre-
chend verformt wird (Abb. 2 ). Auf dieses Gebilde wird dann der Generator erneut angewandt usw. Mit jeder
Iteration nimmt sowohl die Zerklüftung bzw. Detailliertheit als auch die "Länge" der fraktalen Struktur zu.

Interessant und typisch für Fraktale ist jedoch, daß es trotz dieses sowohl hinsichtlich der Beschreibung als
auch hinsichtlich der Erzeugung einfachen Algorithmus keinen analytischen Ausdruck zur Bestimmung ein-

zelner Kurvenpunkte gibt. Die Einfachheit der Er-

Bild 2: Linienfraktale: Initiator ist ein Liniensegment, auf
das der jeweils darunter liegende Generator angewandt
wird und das rechts danebenstehende Fraktal liefert. N
gibt die Zahl der Streckenabschnitte an, in die das Seg-
ment zerlegt wird, f die Länge des Abschnitts als Bruch-
teil der Länge des Initiators.

Bild 3: Genese der Kochschen Insel. Initiator ist ein gleichseitiges Dreieck. Der Generator wirkt nach außen faltend auf die
Streckenabschnitte.

geht über in

N = 4, f= 1/3
D = log 4/log 3 = 1,26...

N = 8, f = ¼
D = log 8/log 4 = 1,5

N = 9, f = 1/3
D = log 9/log 3 = 2
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zeugung der fraktalen Gebilde erinnert an die Erzeugung eines Kristallgitters. Der Translationsinvarianz des
Gitters entspricht die Skaleninvarianz des Fraktals, welche sich somit als eine Art Symmetrieeigenschaft an
sich unsymmetrischer, ungeordneter Gebilde erweist.

Dendritisches Wachstum

Den vielfältigen "Aufgaben" realer Strukturen, insbesondere biologischer Systeme, werden solche einfachen
Wachstumsalgorithmen allein nicht gerecht. Da sie stets zu identischen Gebilden führen, können sie nicht auf
die zufallsbestimmten Änderungen der Umwelt- und Lebensbedingungen reagieren. Dies muß aber als eine für
das Überleben realer Systeme notwendige Voraussetzung angesehen werden: Die Notwendigkeit deterministi-
scher Wachstumsregeln muß mit der Zufälligkeit konkreter Einflüsse gekoppelt werden. Ein äußerst einfaches
Modell, in dem diese Bedingungen in elementarer Weise erfüllt werden, ist von Witten und Sander (1981 ) zur

Simulation diffusionsgesteu-
erter Wachstumsprozesse
entwickelt worden. Im zwei-
dimensionalen Fall wird ein
Teilchen im Ursprung eines
Koordinatensystems fixiert.
Dann läßt man ein zweites
Teilchen von einem zufällig
ausgewählten Punkt auf ei-
nem großen, um den Ur-
sprung gezogenen Kreis
"starten" und einen random
walk ausführen, bis es den
"Keim" im Ursprung erreicht
und daran kleben bleibt. Ein

solcher Diffusionsvorgang wird beliebig oft wiederholt. Während sich die ersten Teilchen rein zufällig an den
verschiedenen Seiten des Keims anlagern und dadurch kleine Auswüchse hervorrufen, ist die Wahrscheinlich-
keit größer, daß die von außen herandiffundierenden Teilchen, an diesen Auswüchsen hängenbleiben, als daß
sie in die "Fjorde" eindringen.

Damit ist die dendritische, zer-
klüftete Gestalt der entstehenden Strukturen zwar vorprogrammiert, die konkrete Ausgestaltung ist jedoch Sa-
che des Zufalls. Auffallend ist, daß durch viele Ausschnittsvergrößerungen hindurch statistisch ähnliche Äste
auftreten(Selbstähnlichkeit).

Die fraktale Dimension dieses Clusters läßt sich sehr einfach durch das sogenannte box-counting - Verfahren
ermitteln. Dabei wird von dem für Fraktale charakteristischen Zusammenhang zwischen Masse M (Zahl der
Teilchen) eines (Flächen-) Ausschnitts der Größe R (hier: konzentrische Kreisscheiben um den Ursprung vom
Radius R) und der Dimension D, M ∼ RD, ausgegangen (Abb. 6), der unabhängig von R gilt. Dazu trägt man
die Größe R der Flächenausschnitte gegen die jeweilige Masse der Flächenausschnitte (Zahl der Teilchen) dop-
peltlogarithmisch auf. Die Steigung der die Punkte verbindenden Ausgleichsgeraden liefert dann den Wert der

Bild 4: Weitere einfache Linienfraktale. A) Die Kochsche Schneeflocke geht aus einem
Dreieck hervor, auf dessen Seiten der Kochsche Generator nach innen wirkt. B) Der
Pythagoras- Baum geht aus einer hausförmigen Figur hervor, auf dessen „Dachschrä-
gen“ jeweils entsprechend verkleinerte „Hauser“ aufgesetzt werden.

Bild 5: Witten- Sander- Modellcluster. Bild 6: Zur Berechnung der fraktalen
Dimension werden die innerhalb der
verschiedenen Kreise liegenden Pi-
xel ausgezählt.

Bild 7: Ausgleichsgerade zur Er-
mittlung der fraktalen Dimension.

log N

Anstieg = D

log R
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Dimension (Abb. 7). Sie beträgt im vorliegenden Falle D = 1,7. Entsprechende Rechnungen im Dreidimensio-
nalen führen zu einem Wert D3 = 2,5.

Iterierte Funktionensysteme

Im allgemeinen gibt es verschiedene Rekursionsverfahren zur Konstruktion eines Fraktals. Beispielsweise läßt
sich der sogenannte Sierpinski- Teppich sowohl durch das Initiator- Generator Konzept gewinnen als auch
durch das in Abb. 9 dargestellte Verfahren des sukzessiven Herausschneidens von Dreiecken aus den jeweils
zurückbleibenden Teildreiecken des Ausgangsdreiecks.

Interessanter ist jedoch das von Michael Barnsley vorgeschlagene Chaosspiel, das mit Hilfe eines Würfels zum
Sierpinski - Teppich führt. Ausgangspunkt sind die drei Eckpunkte eines gleichseitigen Dreiecks und ein belie-
biger weiterer Punkt in der Ebene. Jedem Dreieckspunkt ordnet man jeweils zwei Augenzahlen des Würfels zu;
beispielsweise Punkt A die Augenzahlen 1 und 6, Punkt B die 4. Die Entfernung zwischen dem ( beliebigen)
Startpunkt 0 und dem erwürfelten Dreieckspunkt wird halbiert(Abb. 10a). Die Entfernung von diesem Punkt 1
zur nächsten erwürfelten Seite wird wieder halbiert usw. Nach sehr vielen Wiederholungen tritt allmählich der
Sierpinski- Teppich schemenhaft hervor (Abb. 10b), um sich schließlich immer mehr der Idealgestalt anzunä-
hern(Abb.10c).

Barnsley hat diese Idee, fraktale Pixelgraphiken mit Hilfe einfacher Codes und
passender meist zufallsiterierter Algorithmen zu erzeugen, weiterverfolgt und
zur sog. Theorie Iterierter Funktionen Systeme (kurz: IFS ) ausgebaut. Die
IFS-Theorie hat es sich zur Aufgabe gemacht, zu einem gegebenen Bild ein
"IFS" zu finden, desses "Limesgestalt" dem Bild möglichst nahe kommt. Ge-
lingt dies, so können die Parameter des "IFS" als extrem kompakte (zumindest
approximative) Speicherform des Bildes angesehen werden. Gegenwärtig wird
an einem "Rezept" zu einer solchen Bildcodierung experimentiert, die u.a.
auch füür die Nachrichtentechnik Bedeutung erlangen könnte. . Einen Ein-
druck von den Möglichkeiten der IFS vermittelt Abb. 11, in der das "Produkt",

eines einfachen IFS- Codes dargestellt ist (Weitergehende Information zur IFS- Theorie siehe z.B. Barnsley in:
Peitgen et al.1988; Barnsley 1988).

Ein weiteres erfolgreiches Konzept zur computergraphischen Nachbildung fraktaler Gebilde ist u.a. von P. Pru-
sinkiewicz auf der Grundlage von Ideen A. Lindenmayers entwickelt worden. Mit Hilfe dieser sog. L- Systeme
gelingt es, vor allem Pflanzen und Blumen mit verblüffender Ähnlichkeit der Wirklichkeit nachzubilden (vgl.
Barnsley 1988; Prusinkiewicz 1986).

Bild 8: Genese des Sierpinski- Teppichs durch Herausschneiden von Dreiecken aus den jeweils zurückbleibenden Drei-
ecken.

Bild 9: Entstehung des Sierpinski- Teppichs durch Würfeln. A) Die ersten zehn Punkte.
B) Nach einigen tausend Punkten tritt der Teppich bereits schemenhaft hervor, um in c)
die perfekte Gestalt anzunehmen.

Bild 10: Aus der IFS- Retorte
hervorgegangener Farnwedel.
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Das Apfelmännchen

Die Generierung von Fraktalen ist nicht beschränkt auf geometrische Regeln und Figuren. Ein Fraktal kann
auch das Ergebnis einer (nichtlinearen) mathematischen Abbildung sein. Das wohl berühmteste Beispiel eines

Fraktals, das auf diese Weise erzeugt wurde, ist das von Benoit Mandelbrot "erfundene" und aufgrund seines
äußeren Erscheinungsbildes sogenannte Apfelmännchen. Ihm liegt die einfa-
che Formel zn+1 0 zn2 + c zugrunde, wobei z und c komplexe Zahlen sind.
Was geschieht, wenn man für alle Werte der durch c aufgespannten Ebene
jeweils bei zo 0 0 beginnend die Formel immer wieder mit ihrem Ergebnis
"füttert" (mathematische Rückkopplung)? Man wird feststellen, daß das Er-
gebnis für gewisse c konvergiert und für die restlichen c divergiert. Färbt
man die Punkte, für die Konvergenz vorliegt, schwarz, so gelangt man zu
dem in Abbildung 12a dargestellten Apfelmännchen. Das Besondere an die-
ser Figur ist, daß der Rand nicht glatt ist, sondern fraktal und bei näherem
"Hinsehen", durch entsprechende Vergrößerungen einen unerschöpflichen
Reichtum von selbstähnlichen Mustern und Strukturen offenbart. Die Abbil-
dungen 12 b-e sollen davon einen kleinen Eindruck vermitteln. Variiert man
auf dieselbe Weise die Anfangswerte bei jeweils festen c - Werten, so kommt
man zu teilweise sehr filligranen Strukturen, die nach ihrem Entdecker Ga-
ston Julia Juliamengen genannt werden (Abb. 13 ).

Höherdimensionale Fraktale

Ohne auf Details einzugehen, sei erwähnt, daß es in voller Analogie zu den Linienfraktalen auch höherdimen-
sionale Fraktale gibt. Erwähnt seien hier nur die Flächenfraktale. Ähnlich wie die Länge der Küstenlinien vom
gewählten linearen Maßstab abhängt, variiert die Fläche eines Flächenfraktals mit der Größe des flächenhaften
Maßstabs, beispielsweise quadratischer Meßflächen, mit denen man die "Fläche" des Fraktals ausmessen kann.
Ein bekanntes Beispiel eines Flächenfraktals ist Aktivkohle. Ihre Oberfläche läßt sich über die Adsorption von
Gasen mit unterschiedlich "großen" Molekülen abtasten. Trägt man dann die jeweils adsorbierte Gasmenge ge-
gen die Moleküloberfläche doppeltlogarithmisch auf, so läßt sich aus dem Anstieg der Ausgleichsgeraden die
fraktale Dimension ermitteln (Abb. 14). Die fraktale Dimension eines Flächenfraktals variiert je nach der
"Luftigkeit" des Gebildes zwischen 2 und 3.

Bild 11: Annäherungen an das Apfel-
männchen (links oben). Die folgenden
Bilder sind zunehmende Ausschnitts-
vergrößerungen aus dem Rand des Ap-
felmännchens (Auschnitt durch Recht-
eck gekennzeichnet).

Bild 12: Zum Apfelmännchen ge-
hörige gefüllte Juliamenge.
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Fraktale Strukturem im Schulexperiment

"Why", said the Dodo, "the best way to explain it is to do it".

 Lewis Carroll

Simulationen von Fraktalen sind natürlich kein Selbstzweck. Sie dienen dazu, Bildungsgesetze und Struktur
realer fraktaler Gebilde zu erschließen. Für den Physikunterricht ergibt sich daraus das Problem, reale Fraktale
experimentell darzustellen, die sich mit entsprechenden Computersimulationen vergleichen lassen und deren
fraktale Dimension bestimmt werden kann.

Viskoses Verästeln

Ein besonders einfaches Exemplar eines solchen Fraktals soll im folgenden skizziert werden: Durchdringt eine
weniger viskose Flüssigkeit (z.B. Wasser) eine Flüssigkeit mit höherer Viskosität (z.B. Öl), so läßt sich die
Entwicklung dendritischer Verästelungen beobachten. Eine systematische Untersuchung dieser Strukturbildung
gelingt mit einer leicht herzustellenden (radialen) Hele- Shaw- Zelle. Diese Zelle besteht aus zwei an den Rän-

dern zusammengeschraubten durch-
sichtigen Platten (z.B. Plexiglas), von
denen die obere in der Mitte ein kleines
Loch enthält. Preßt man z.B. mit einer
Einwegspritze durch dieses Loch nach-
einander eine mehr und eine weniger
viskose Flüssigkeit zwischen die Plat-
ten, so durchdringen sich die Flüssig-
keiten unter Ausbildung (je nach Flüs-
sigkeit) mehr oder weniger stark struk-
turierter Verästelungen: In Abb. 15 sind
Verästelungen dargestellt, wie sie ent-
stehen, wenn man a) flüssige Seife und
b) Rizinusöl mit gefärbtem Wasser
durchsetzt. Durch Ermittlung der "Flä-
che" der Struktur (z.B. durch Auszählen

mit Hilfe von Millimeterpapier oder mit Hilfe eines geeigneten Computerprogramms, das man auf die digitali-
sierten (gescannten) Bilder der Strukturen anwendet,) läßt sich wie bei den Witten- Sander- Mustern die frak-
tale Dimension der Gebilde ermitteln.

Lichtenbergfiguren

Obwohl physikalisch völlig verschieden, entstehen auch die bereits von G.Chr. Lichtenberg (1972) entdeckten
Staubfiguren, nach ähnlichen universalen Gesetzen, wie die Verästelun-
gen von Flüssigkeiten. Lichtenberg hatte seiner zeit eine isolierende
Harzplatte (heute würde man z.B. Hartgummi verwenden) mit feinem
Pulver (z.B. Lycopodium) bestreut und auf eine geerdeten Metallplatte
gelegt. Setzte er nun eine kurzzeitig aufgeladene Spitzenelektrode auf
diesen Kuchen, so entstanden Staubfiguren, die den Witten- Sander-
Dendriten täuschend ähnlich sind. Solche Strukturen lassen sich auch
herstellen, wenn man die Entladung (im Dunkeln) auf der Schichtseite
einer fotographischen Platte ablaufen läßt. Eine moderne Variante einer
Lichtenbergfigur ist die in Abb. 16 dargestellte Struktur, die durch Be-
schuß einer Plexiglasplatte mit energiereichen Elektronen entsteht (aus
Brix 1985).

Mit Mitteln der Schulphysik lassen sich weitere zweidimensionale frak-
tale Gebilde herstellen (Nordmeier 1990). Zum Beispiel: Ein Glasschäl-
chen, dessen Innenrand mit einer geerdeten Elektrode versehen ist, wird
mit Rhizinusöl einige Millimeter aufgefüllt. Darin verteilt man statistisch

kleine Stahlkügelchen (z.B. Kugellagerkugeln mit 1 bis 2 mm Durchmesser). Positioniert man über der Mitte
des Schälchens eine "spitze" Elektrode, die auf ein Potential von 15 bis 20 kV gebracht wird, so bildet sich in
kurzer Zeit eine baumartig verzweigte dendritische Struktur, die den Lichtenbergfiguren ähnlich ist.

Bild 13: a)Stark verzweigte Struktur, durch Injektion von (gefärbtem) Was-
ser in flüssige Seife hervorgerufen. Die fraktale Dimension berechnet sich
zu 1,85. B) Weniger stark verzweigt Struktur, durch Injektion von (gefärb-
tem)  Wasser in Rizinusöl. Die fraktale Dimension berechnet sich zu 1,83.

Bild 14: Moderne Variante einer
Lichtenberg Figur.
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Fraktale und Chaos

Das Geringste bewirkt das meiste, die Ordnung entsteht aus der Unordnung

 Paul Valéry

Die bisherige Betrachtung der Fraktale beschränkte sich auf den räumlichen Aspekt von Strukturen. Bei der
Beschreibung des Verhaltens physikalischer Systeme spielt jedoch die zeitliche Entwicklung, d.h. der Verlauf
von Trajektorien, eine zentrale Rolle. Es hat sich gezeigt, daß auch zur Charakterisierung des zeitlichen Ver-
haltens dynamischer Systeme die fraktale Geometrie der Natur von großer Erschließungsmächtigkeit ist, und
zwar vor allem dann, wenn es - wie wir es im Räumlichen gesehen haben- um die Beschreibung von anschei-
nend ungeordneten, mit den klassischen Mitteln nicht zu handhabenden Vorgängen geht. In diesem Sinne un-
geordnet sind die seit einigen Jahren mit zunehmender Intensität untersuchten chaotischen Systeme. Es handelt
sich dabei um Systeme, deren Verhalten zwar durch Differentialgleichungen beschrieben werden kann, die aber
eine sensitive Abhängigkeit von den Anfangsbedingungen zeigen mit der Konsequenz, daß beliebig kleine Ab-
weichungen sich nach kurzer Zeit zu beliebig großen Wirkungen auswachsen. Einzelne Bahnen, Trajektorien,
solcher Systeme sind daher praktisch nicht vorhersagbar. Verschafft man sich jedoch einen Überblick über die
Gesamtheit der Verhaltensmöglichkeiten des Systems, indem man alle möglichen Trajektorien im Zustands-
raum auf einmal betrachtet, so ergibt sich rein geometrisch- anschaulich ein kompaktes Gebilde von charakteri-
stischer Struktur. Ein solcher chaotischer Attraktor kann daher als das topologische Äquivalent des Gesamt-
verhaltens des Systems angesehen werden. Er bringt zum Ausdruck, daß trotz der lokalen Unvorhersagbarkeit
das Systemverhalten global vorhersagbar ist. Nähere Informationen über die Verhaltensweise des an sich chao-
tischen Systems ergeben sich aus der Analyse dieses Attraktors.

Das haben wir weiter oben am Beispiel eines chaotischen Drehpendels (Pohlsches Rad) dargestellt.. Der At-
traktor dieses angetriebenen Pendels offenbart sich als wollknäuelartiges Gebilde von höchster Komplexität.
Die Komplexität läßt sich dadurch reduzieren, daß man das Systemverhalten "stroboskopiert", d.h. im Rhyth-
mus des periodischen Antriebs nur zu einem bestimmten Phasenwert der Anregung betrachtet. Vergleicht man
solche stroboskopierten Schnitte (Poincare - Schnitte) des Attraktors für verschiedene Werte der Anregungs-
phase, so offenbaren die Veränderungen zeitlich aufeinanderfolgender Attraktoren den für die Entstehung von
"Chaos" typischen Mischmechanismus, durch den die Trajektorien wie beim Rühren von Farben durcheinan-
dergewirbelt werden.

Durch das Mischen werden Trajektorien der unterschiedlichsten Startpunkte im Rhythmus des Antriebs anein-
andergefaltet. Wegen der Eindeutigkeit der Lösung der zugrundeliegenden Differentialgleichung kommt es da-
bei zu keiner Verschmelzung sondern zur Ausbildung einer infinitesimal feinen Blätterteigstruktur: Unendlich
viele Schichten werden in einem endlichen Volumen zusammengepreßt. Damit stellt sich uns der chaotische
Attraktor als ein hybrides Objekt zwischen Fläche und Linie dar, also als Fraktal. Die Selbstähnlichkeit bzw.
Skaleninvarianz offenbart sich darin, daß jede Ausschnittsvergrößerung des chaotischen Attraktors dieselbe
Struktur aufweist.

Die fraktale Dimension des Attraktors ist übrigens eine der wichtigsten Größen zur quantitativen Charakteri-
sierung des Chaos in einem dynamischen System. Es scheint so, als lieferte die Mathematik der Fraktale über-
haupt erst die adäquate "Sprache" zur Beschreibung chaotischer Systeme.

Die Bedeutung der fraktalen Geometrie zeigt sich auch beim Übergang eines komplexen Systems vom regulä-
ren zum chaotischen Verhalten. Wie in Abbildung 18 zu erkennen ist, geht im vorliegenden System die regulä-
re Schwingung mit konstanter Amplitude bei kontinuierlicher Variation eines für das System wesentlichen
Kontrollparameters (hier: die Dämpfung des Pendels) zunächst in eine Schwingung mit zwei verschiedenen
Amplituden über. Bald darauf spalten diese ihrerseits in zwei verschiedene Amplituden auf, die dann erneut
aufspalten usw. in immer kürzer werden Abständen bis sich schließlich unendlich viele Amplituden einstellen
und ein sog. chaotisches Band bilden. Die chaotischen Bänder werden immer wieder von Fenstern geordneten
Verhaltens unterbrochen. Die in den Fenstern vorhandenen regulären Linien entwickeln sich aber ihrerseits
über ein Bifurkationsdiagramm ins Chaos, das wieder reguläre Fenster aufweist usw. Durch Ausschnittsvergrö-
ßerungen kann man demonstrieren, wie sich dieselbe Struktur kaskadenartig wiederholt(kleine Bilder in Abb.
18). Hier manifestiert sich erneut die für Fraktale typische Selbstähnlichkeit. Der nach einem seiner Entdecker,
Mitchel Feigenbaum, so genannte Feigenbaum zeigt auch rein äußerlich die für viele Fraktale typische Baum-
struktur, obwohl es im vorliegenden Fall nicht um eine Darstellung räumlicher sondern zeitlicher Verhaltens-
weisen geht.
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Nichtlinearität und Rekursion

Es gibt geistige Räume, welche diese Welt nicht nur bedeuten,
sondern in einem höheren Sinne diese Welt sind

 Gertrud von Le Fort

Fraktale sind durch unendliche Vielfalt unauflösbar ineinander verschachtelter Muster, unvorhersagbarer
räumlicher und zeitlicher Strukturen, kurzum: durch Komplexität gekennzeichnet. Ordnung und Chaos er-
scheinen als komplementäre Aspekte einer kreativen Welt des Werdens. Die mit dem Übergang zur fraktalen
Geometrie verbundene Revolution des physikalischen Denkens ist eng mit der Überwindung der Herrschaft der
geraden Linie verbunden. Nichtlineare Zusammenhänge kennzeichnen die Tiefenstruktur der Komplexität.

Linear: einfach und berechenbar

Indem sich die klassische Physik weitgehend auf lineare und reversible Vorgänge beschränkt, gelingt es ihr, die
Welt auf ein Maß zu reduzieren, das eine quantitative, mathematisch einfache Beschreibung ermöglicht. Dabei
wird die Dynamik eines physikalischen Systems typischerweise durch Differentialgleichungen beschrieben und
durch deren Lösung explizit gemacht. Die Tatsache, daß das Auffinden der Lösung bei linearen Differential-
gleichungen sehr einfach ist, dürfte nicht unwesentlich zum Erfolg der klassischen Physik beigetragen haben:
Die allgemeine Lösung ergibt sich einfach aus der Summe zweier spezieller Lösungen. Hierin manifestiert sich
das für das klassische Naturverständnis typische Überlagerungsprinzip, wonach ein komplexer Vorgang aus der
Summe einfacher Vorgänge zusammengesetzt werden kann. Daher hat man mit der allgemeinen Lösung der
Differentialgleichung die gesamte Entwicklung des Systems auf einmal in der Hand, vorausgesetzt nur, man
kennt dessen gegenwärtigen Zustand mit hinreichender Genauigkeit. Überraschungen sind daher ausgeschlos-
sen: "Die Herrschaft über den Augenblick ist die Herrschaft über das Leben" (Marie von Ebner- Eschenbach).

Der Erfolg der klassischen Physik zeigt uns, daß die Natur sich tatsächlich in vielen Fällen so verhält, wie in
den Berechnungen unterstellt wird. Man denke nur an die Voraussagen von Sonnen- und Mondfinsternissen
und an die erfolgreiche Landung von Menschen auf dem Mond.

Nichtlinear: selbstorganisiert und "unberechenbar"

Andererseits gab es schon Lichtenberg zu denken, daß man zwar die "Durchgänge der Venus voraussagen
(kann), aber nicht die Witterung und ob heute in Petersburg die Sonne scheinen wird". Erst in unseren Tagen
wird "anerkannt", daß es auch prizipiell unberechenbare physikalische Vorgänge und Phänomene gibt. Im
Rahmen der nichtlinearen Physik wird der Tatsache Rechnung getragen, daß durch die bislang so erfolgreiche
Linearisierung in zahlreichen Fällen nicht nur unwichtige Details, sondern gerade jene Phänomene unterdrückt
werden, deren Verständnis für die Bewältigung einer nicht zuletzt durch die naturwissenschaftlichen Technik
veränderten Welt unerläßlich erscheinen. Zu diesen Phänomenen gehören vor allem die Entstehung und Auf-
rechterhaltung von Strukturen, die meist unter den Begriffen Selbstorganisation und Chaos subsummiert wer-
den. Typische Beispiele sind

- regelmäßig Muster am Wolkenhimmel oder auf dem Milchkaffee,

- das Umkippen eines Ökosystems,

- räumlich und zeitlich oszillierende chemische Reaktionen,

- Muster strömender Flüssigkeiten und Gase,

- das Wachstum von biologischen Strukturen.

Entscheidend für die kreative, strukturbildende und strukturverändernde Potenz nichtlinearer Systeme sind die
dem linearen Ursache - Wirkungsdenken abgehenden Eigenschaften,

- "daß kleine Unterschiede in den Anfangsbedingungen große Unterschiede in den späteren Erscheinungen be-
dingen" können (Poincaré 1957) (Sensitive Abhängigkeit von den Anfangsbedingungen) und

- daß die das System bestimmenden Größen sich gegenseitig zu steuern vermögen (Rückkopplung).

Dadurch wird es dem nichtlinearen System möglich, ständig Kontrolle über seine internen Verhaltensmöglich-
keiten zu behalten, auf Störungen flexibel zu reagieren und damit eine dynamische Stabilität in einer durch
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zufällige Veränderungen geprägten Welt zu bewahren. Das Systemverhalten ist im einzelnen nicht mehr vor-
hersagbar.

Die die Systemdynamik erfassenden nichtlinearen Differentialgleichungen besitzen zwar auch eindeutige Lö-
sungen. Aber im Unterschied zu linearen Systemen ergibt die Summe zweier spezieller Lösungen keine neue
Lösung. Das Überlagerungsprinzip funktioniert nicht mehr. Komplexe Systeme lassen sich daher nicht mehr in
voneinander unabhängige Teilsysteme zerlegen: Das Ganze ist mehr als die Summe der Teile (Aristoteles).
Statt also wie im linearen Fall, den Systemzustand zu einem gewünschten Zeitpunkt durch Einsetzen der An-
fangsbedingungen in die Lösungsfunktion aus der Menge aller möglichen Lösungen auszusondern, erreicht
man im nichtlinearen Fall sein Ziel in der Regel nur dadurch, daß man sich vom Anfangszustand ausgehend
Schritt für Schritt von einem Zustand zum nächsten vortastet: Der Zustand eines nichtlinearen Systems hängt
vom unmittelbar vorausgehenden ab.

Nichtlinear: rekursiv

Die dadurch nahegelegte Methode zur Lösung der Differentialgleichung ist die Rekursion: Vom gegebenen
Anfangszustand beginnend berechnet man mit Hilfe einer möglichst einfachen Vorschrift näherungsweise den
benachbarten Zustand, den man nunmehr als Ausgangspunkt nimmt zur Berechnung des näch-

sten Zustands mit derselben Vorschrift. Durch genügend häufige Wiederholung dieser Vorschrift vollzieht man
gewissermaßen den durch die Differentialgleichungen beschriebenen Prozeß nach.

Dieses Vorgehen hat zur Konsequenz, daß sich die Lösung nur durch eine im Idealfall unendliche Sequenz von
Punkten, bzw. geometrisch ausgedrückt, durch eine Struktur manifestiert, in der die schlichte Wiederholung
einer einfachen Vorschrift in einem selbstähnlichen Grundmuster reflektiert wird.

Die Bedeutung der Rekursion ist natürlich nicht auf die Berechnung von Differentialgleichungen beschränkt.
Sie wurde überhaupt erst dadurch anwendbar auf die Differentialgleichung, daß man diese in diskrete Differen-
zengleichungen zerlegte und auf diese Weise auf einen einfachen Algorithmus reduzierte. So gesehen ist die
rekursive Lösung einer Differentialgleichung nur ein spezieller Fall, Strukturen zu generieren. Damit wird der
Zusammenhang deutlich zwischen den rekursiv erzeugten räumlichen Mustern, wie wir sie im ersten Teil die-
ser Arbeit beschrieben haben, und den "zeitlichen Mustern", wie sie am Beispiel des chaotischen Drehpendels
demonstriert wurden, deutlich. In beiden Fällen wird eine nichtlineare Regel beliebig oft auf ein Grundelement
angewandt und führt zu komplexen Gebilden, die in vielen Fällen Teilbereiche der realen Welt besser zu mo-
dellieren vermögen als die der klassischen Physik zugrundeliegenden statischen, linearen Strukturen der eukli-
dischen Geometrie und linearen Algebra.
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