Schone fraktale Welt -

Anndherungen an ein neues Konzept der Naturwissenschaften
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Satze in einem Wort. Unendliche Sitze
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Das Konzept des Fraktals stellt eine grof3e Herausforderung fir fast alle Bereiche der Naturwissenschaften und
darliber hinaus dar. Gleichzeitig hat es wie kaum eine zweite naturwissenschaftliche Idee Publizitét innerhalb
einer breiteren Offentlichkeit erfahren. Die Schulphysik kann sich diesen Entwicklungen nicht verschlieRRen.
Bisher erschienene Aufsétze haben sich meist mit einzelnen Aspekten der Fraktale befalét. Der vorliegende
Beitrag mochte in einer Art Uberblick den inneren Zusammenhang zwischen den zahlreichen Facetten des
Fraktals darstellen, ohne jedoch Vollsténdigkeit anzustreben. Dabei wird gleichzeitig versucht, die hinter der
Idee des Fraktals stehende Anschauung zu skizzieren, wie sie sich unter anderem auch in nicht naturwissen-
schaftlichen Kontexten spiegelt.

M ore geometrico

Es gibt nichts Anthropomorpheres als die gerade Linie
Paul Vaéry

Die Euklidische Geometrie ist eine der tragenden Saulen der klassischen Physik. Geometrische Figuren sind
die Grundelemente physikalischer Objekte im tatséchlichen wie im metaphorischen Sinn; sie verleihen nicht
nur technischen Gegensténden Gestalt, sie kennzeichnen auch in Form der platonischen Ideen

die Theorien und Vorstellungen des klassisch physikalischen Welthildes. Galilei sieht in der Geometrie die
Sprache der Natur:

"Die Philosophie ist in dem grof3en Buch der Natur niedergeschrieben, das immer offen vor unseren Augen
liegt, dem Universum. Aber wir kdnnen es erst lesen, wenn wir die Sprache erlernt und uns die Zeichen ver-
traut gemacht haben, in denen es geschrieben ist. Es ist in der Sprache der Mathematik geschrieben, deren
Buchstaben Dreiecke, Kreise und andere geometrische Figuren sind; ohne diese Mittel ist es dem Menschen
unmoglich, auch nur ein einziges Wort zu verstehen”. (Galilel 1623).

Der Einflul? dieser Denkrichtung bis ins Alltagsieben karikiert Jonathan Swift ein Jahrhundert spéter anhand
des Verhatens der Menschen von Laputa:

Die Ideen jener Leute bilden sich stets nach...mathematischen Linien und Figuren. Wollen sie zum Beispiel die
Schonheit einer Frau oder eines Tieres rihmen, so beschreiben sie sie durch Rhomben, Parallelogramme, El-
lipsen und andere geometrische Begriffe. Oder an anderer Selle: Die Diener zerschnitten das Brot in der
Form von Kegeln, Zylindern, Parallelogrammen und anderen mathematischen Figuren (Swift 1726).

Aus euklidischer Perspektive besteht der wesentliche Aspekt der Weltbeschreibung in einer Ruickfihrung auf
und einer Rekonstruktion aus dem Grundelement der geraden Linie: Letztlich sind alle euklidischen Formen
gerade oder glatt. Bei gentigender VergrofRerung kann jede Kurve durch eine Gerade und jede Oberfléche durch
eine Ebene approximiert werden. Die Landvermessung auf der Erde beruht auf der ebenen Geometrie. Selbst
im Zuge der Abwendung von Geometrie und Anschaulichkeit, wie sie in der formalen Ausgestaltung der New-
tonschen Physik zum Ausdruck kommt, bleibt die Linearisierung ein wesentliches Element der Komplexitéts-
reduktion im mathematisch physikalischen Denken. Mit der Entwicklung der Infinitesimalrechnung durch
Leibniz und Newton gelingt es zwar, auch algemeinere, "krumme" Kurven und Flachen mathematisch zu-
ganglich zu machen, man bleibt aber beschrankt auf Objekte, die letztlich - bei genligender Vergrof3erung -
stiickweise durch eine Gerade angendhert werden kénnen. Die darauf beruhende Eigenschaft der Differenzier-
barkeit ist daher eine der grundlegenden Voraussetzungen der durch Differentialgleichungen bestimmten Phy-
sik.



Bleibt die Herrschaft der geraden Linie in der Physik noch weitgehend im Verborgenen, in der durch Naturwis-
senschaften geprégten Technik, der Architektur, dem Verkehrswesen und anderen kulturellen Aktivitéten fin-
det sie ihren sichtbaren Ausdruck:

Diese Linearisierung nimmt Friedensreich Hundertwasser (1985) aufs Korn, wenn er feststellt, dal3 "die gerade
Linie ...etwas (ist), was man niedertrachtig mit Hilfe eines Lineals zeht, ohne nachzudenken und ohne zu fuh-
len". Er sieht in der "geraden Linie...die einzige unschopferische Linie, die einzige Linie, die dem Menschen,
der nach dem Bild Gottes geschaffen wurde, fremd ist, ...in der Natur nicht existiert, ...zur absoluten Tyrannei
geworden (ist)...und zum Untergang der Menschheit fiihrt".

Im Bereich des Alltagsiebens werden die negativen Wirkungen der geraden Linie nicht nur aus &sthetischer,
sondern auch praktischer Sicht in zunehmendem Mal3e erkannt: FlufRbegradigungen werden zuriickgenommen,
Stral3enbegradigungen gestoppt, und die Streichholzschachtelbauweise von Wohnhdusern geht merklich zu-
ruck.

Auf der anderen Seite werden euklidische Selbstversténdlichkeiten problematisch und wachsen sich zu handfe-
sten Antinomien aus. 50 Jahre nachdem Franz Kafka in seinem Schlof3 am Beispiel des Landvermessers K. die
Sicherheit der menschlichen Existenz auf grundsétzliche Weise infrage stellt, erreicht diese Unsicherheit die
"euklidische" Landvermessung selbst. Schon bei einer so trivial erscheinenden Aufgabe wie der Feststellung
der gemeinsamen Grenze zweier Lander stof3t man auf uniiberwindbare Schwierigkeiten, wenn man die Aufga-
be nur einigermal3en ernst nimmt.

Beispiel sweise findet man in einem portugiesischen Lexikon fur die Grenze zu Spanien eine Langenangabe von
1214 km. In einem spanischen Lexikon wird die Grenze zu Portugal jedoch nur mit einer Lange von 987 km
angegeben. Das ist weder ein Druckfehler noch ein Zufall- fir andere Lander lassen sich entsprechende Unter-
schiede finden - sondern der Hinweis auf eine tiefsitzende Antinomie im klassischen Weltbild.

In seinem Aufsatz: "Wie lang ist die Kiste Britanniens?' gelingt Benoit Mandelbrot zwar eine Losung dieses
Landvermessungsproblems, jedoch auf ganz andere Weise als man es aus euklidischer Sicht erwartet hétte: Die
Losung bildet nicht nur die Schwelle zu einer neuen Geometrie, der fraktalen Geometrie der Natur, sondern
auch zu einem neuen naturwissenschaftlichen Weltbild.

Wenn Gadlilei die obige Aussage seinem Sagredo in den Mund gelegt hétte, so wére eine Replik Simplicius
denkbar gewesen, die etwa folgendermaf3en hétte lauten kdnnen: "Wolken sind keine Kugeln, Berge keine Ke-
gel, Kustenlinien keine Kreise. Die Rinde ist nicht glatt - und auch der Blitz bahnt sich seinen Weg nicht gera-
de." Sie stammt aber nicht von Simplicius, sondern von Mandelbrot (1987), der mit diesen Worten ein Prinzip
attackiert, das die Physik seit Galilei weitgehend bestimmt hat: die Idealisierung der zu beschreibenden Wirk-
lichkeit bis zur Unkenntlichkeit. So gesehen ist in diesen Worten auch die Hoffnung enthalten, der Empirie des
unmittelbaren Augenscheins wieder gréflieres Gewicht zu verleihen.

Wielang ist die Kiiste Britanniens?

Alles was zéhlte, spielte sich auf der sich auflsenden Linie zwischen Land und Wasser ab
mit der Folge einer bis an die Grenzen des Fafdlichen schwellenden wirklichen Lange.

Volker Erbes

Das Problem der Land- bzw. Kustenvermessung wird sofort deutlich, wenn man sich vor Augen fuhrt, wie eine
solche Vermessung praktisch aussehen kdénnte. Man beginnt beispielsweise damit, dal3 man mit Hilfe von Sa-
tellitenaufnahmen zunéchst eine grobe Abschétzung vornimmt, indem man einen Polygonzug ausmifdt, der
durch Verbindung von 1000km voneinander entfernt liegenden Punkten auf der Kustenlinie entsteht. An-
schlieffend reduziert man den Mal3stab derart, dafd sich ein Polygonzug mit 100 oder sogar nur 10km vonein-
ander entfernt liegenden Punkten ergibt. Man erwartet, dald die Lénge dieses verfeinerten Polygonzugs der
"wahren Lange" der Kiiste bereits ziemlich nahe kommt. Es zeigt sich jedoch, dal’ weitere Verfeinerungen des
Malf3stabs bis hinab zur Grof3e der wasserumspllten Sandkdrnchen die Lange der Kiste ins "Uferlose" hinaus-
schieben. Die Kisten- bzw. Landesgrenzenlénge ist also keine Gréfle im gewohnten Verstéandnis. Thr Wert
héngt von der zugrundegel egten Genauigkeit bzw. vom Mal3stab ab. Die Brisanz dieses Befundes kénnte man
mit der Behauptung umschreiben: Alle Kisten und Landesgrenzen sind gleich lang.

"Auf der Grenze liegen immer die seltsamsten Geschopfe" (Lichtenberg). Das sollte auch der Mathematiker
Helge Koch im Jahre 1904 erfahren, as er eine Kurve konstruierte, mit der das Kiisten- oder Landesgrenzen-
problem modelIméafig auf den Punkt gebracht werden kann. Die ihrer Gestalt nach so genannte Schneeflocken-



kurve (Abb.2) entsteht folgendermalen: Zunéchst wird ein gegebenes Liniensegment in drei gleichlange Teile
zerlegt und das mittlere Drittel durch das "Dach" eines gleichseitigen Dreiecks ersetzt. Sodann wird jedes der
sich ergebenden Teilstlicke, derselben Teilungsprozedur unterworfen usw. ad infinitum.

Dieses seltsame Geschopf eines Mathematikers ist nicht differenzierbar, es besitzt in keinem Punkt eine Tan-
gente und kann nicht auf die gerade Linie zuriickgefihrt werden. Solche Monster (Mandelbrot) wurden zur
Zeit ihrer Entdeckung a's anti-intuitiv und pathologisch angesehen und gerieten in Vergessenheit, um erst in
unseren Tagen mit einem neu geschérften Blick vor allem durch Mandelbrot wieder ans Tagedlicht geholt zu
werden.

Die Kochsche Schneeflockenkurve zeichnet sich ebenso durch das Fehlen eines natiirlichen Mal3stabs aus wie
natUrliche Landesgrenzen und Kustenlinien: Sie besitzen durch alle Mal3stébe hindurch eine gleichartige
Struktur. Wie weit man sich auch durch sukzessive Ausschnittsvergrof3erungen in die Tiefen dieser Kurve
"hineinzoomen" mag, der Anblick bleibt stets derselbe; nie landet man bei einem nichtzerfransten geraden
Segment: "Allesist sich gleich, ein jeder Teil représentiert das Ganze" (Lichtenberg).

Diese in naheliegender Weise so genannte Selbstahnlichkeit kommt bei spiel sweise dadurch zum Ausdruck, daf3
man ohne Anhaltspunkte fir einen absoluten Mal3stab (z.B. Pflanzenbewuchs an der Kiiste) nicht zu entschei-
den vermag, ob man vom Flugzeug aus auf die Kiste blickt oder sie aus néchster Néhe betrachtet. Als weiteres
Beispiel mag der Flug Uber den Wolken dienen. Da eine kleine Wolke wie eine grof3e aussieht, hat man meist
keine Mdglichkeit, einen Eindruck von der Entfernung zur Wolkendecke zu gewinnen. Das zeigt sich zuweilen
darin, dafd man aufgrund anderer Hinweise bemerkt, dal3 das Flugzeug sinkt, der Anblick der Wolken sich aber
kaum andert. Auch von Wirbeln, die hinter einem Objekt im flieffenden Wasser entstehen, kennt man seit lan-
gem, dal3 sie ebenfalls aus einer ganzen Hierarchie ineinandergeschachtelter Wirbel aufgebaut sind. Mit ande-
ren Worten:

Big whirls have little whirls,

That feed on their velocity; And little whirls

Have lesser whirls,

And so on to viscosity"

Richardson 1920

Oder, dasselbe in den Worten des Mathematikers Augustus de Morgan in Abwandlung eines Verses von Jo-
nathan Swift:

"Great fleas have little fleas

Upon their backs to bite 'em,

And little fleas have lesser fleas,

And so ad infinitum.

And the great fleas, themselves in turn,
Have greater fleasto go on;

While these again have greater still,
And greater till, and so on.”

Das ad infinitum ist allerdings wieder eine typische mathematische Ubertreibung wie sie in der Realitét nicht
auftritt. Darin &uRert sich ein wesentlicher Unterschied zwischen Modell und Wirklichkeit. Wahrend man sich
der infinitesimalen "Briichigkeit" der Kochschen Schneeflockenkurve wenn schon nicht darstellungsméafdig, so
doch wenigstens prozessual gedanklich annéghern kann, stéf3t man bei realen Strukturen, Kustenlinien, Wolken,
Wirbeln u.a. irgendwann einmal auf das "kérnige" Substrat, das spétestens durch die mikroskopischen Baustei-
ne gegeben ist. Die Selbstéhnlichkeit in realen Systemen erstreckt sich nur Uber eine endliche "Tiefe".

Ein weiterer Unterschied zwischen realen und mathematischen Fraktalen besteht im "Grad" der Ahnlichkeit.
Waéhrend die schrittweise VergrofRerung von Abschnitten der Kochschen Kurve stets zu exakt derselben Struk-
tur fihrt, zeigt sich bei der VergréRerung von Kistenlinienausschnitten nur eine statistische Ahnlichkeit zwi-
schen den einzelnen Ausschnitten, die alerdings so weitgehend ist, dafd auch sie keine Rickschllsse auf einen
Maf3stab erlaubt und das Prinzip der Skaleninvarianz erflillt.

Die Idee, die Natur mit Hilfe skaleninvarianter Systeme sich wiederholender dhnlicher Muster zu beschreiben,
findet man im abendlandischen Denken von Anfang an vor. Anaxagoras (1968)weist beispielsweise darauf hin,
daf3 es "von dem Kleinen... immer noch ein Kleineres gibt. Aber auch von dem Grof3en gibt es immer noch ein
GrofReres. Und esist gleich dem Kleineren an Menge; an sich aber jedes Ding sowohl grofd wie klein”. Konnte
er ahnen, dai3 die Wissenschaftler dereinst mit Hilfe der Linse und deren nichtoptischen Nachfolgern auf Hier-



archien dhnlicher Strukturen stof3en wirden, wie weit sie sich auch hinab in den Mikrokosmos der Atome und
Elementarteilchen oder hinaus in den Makrokosmos der Sonnensysteme und Galaxienclustern vorwagen
mochten? Auch Leibniz (1933) hatte bereits in ausdruckstarken Bildern auf die Skaleninvarianz und Selb-
stéhnlichkeit hingewiesen, die sich hinter der scheinbar "verworrenen Bewegung und dem Gewimmel" der
Realitdt verbirgt: "Die Maschinen der Natur..., d.h. die lebenden Korper, sind noch in ihren kleinsten Teilen,
bis ins Unendliche hinein, Maschinen...Jedes Stlick Materie kann gleichsam a's ein Garten voller Pflanzen oder
alsein Teich voller Fische aufgefal’t werden. Aber jeder Zweig der Pflanze, jedes Glied des Tieres, jeder Trop-
fen seiner Sifte ist wieder ein solcher Garten und ein solcher Teich... So gibt es nichts Odes, nichts Unfrucht-
bares, nichts Totes im Universum, kein Chaos, keine Verwirrung auf3er dem Anschein nach" .

Selbst im Bereich kinstlerischer und literarischer Darstellungen hat die Idee der Selbstdhnlichkeit immer wie-
der fasziniert. So 183t beispielsweise Aldous Huxley in seinem Roman "Kontrapunkt des Lebens' Philip Quar-
les einen Roman Uber einen Romancier schreiben, der einen Roman schreibt usw. Auch in Andre Gides
"Falschminzer" oder E. Cummings Theaterstiick "Him" ist dieses Motiv vorhanden. Sogar die Werbung hat
sich eine Zeit lang dieses formalen Prinzips bedient: "Als Kind kroch ich immer in die Bilder auf Reklamen,
wo Kinder Kekse aus einer Blichse naschen, Miitter Suppe aus einer Packung auftischen, auf der sich das glei-
che Bild wiederholt, ins Unendliche. Manchmal konnte ich noch ein flinftes oder gar sechstes Kind ausmachen,
eine vierte Mutter, die der Familie I&chelnd die Suppe aufzwang, ich wufdte, dal? es da nicht endet - so viele
Kekse konnte die Fabrik niemals backen! Ich frage dich: wenn jedes Kind eine Blichse mit zwanzig Keksen
hélt- und das Ganze wiederholt sich unendlichmal, wovon gibt es mehr, Kinder oder Kekse, Mtter oder Sup-
penwirfel?' (Monikova 1986).

Wéhrend man bei zeichnerischen und schriftlichen Darstellungen die realen Begrenzungen wenigstens noch
gedanklich tUberwinden kann, stél3t man bei ineinandergeschachtelten russichen Puppen jedoch sehr schnell an
die durch die Realitdt vorgegebenen Grenzen.

Das Muster, das verbindet

Jedes Existierende ist ein Analogon allen Existierenden;
daher erscheint uns das Dasein immer zu gleicher Zeit gesondert und verkniipft.

JW.v. Goethe

Die Untersuchung fraktaler Strukturen beinhaltet insofern eine Abkehr von der fachsystematisch orientierten
Forschung, a's der Blick gewissermal3en quer durch ale Disziplinen hindurch gerichtet wird auf das Muster,
das die verschiedensten Strukturen sowohl réumlicher als auch zeitlicher Art verbindet. Dies fihrt beispiels-
weise dazu, dal3 die Zeitaufnahme eines Blitzes verglichen wird mit den Baumstrukturen der Blutgefélie oder
dem chaotische Verhalten eines physikalischen Systems, wie es sich in der Phasenraumdarstellung eines chao-
tischen Attraktors manifestiert.

Welche neuen Aspekte der Blick auf die fraktalen Eigenschaften von Systemen liefern kann, sei an einem Bei-
spiel aus dem Bereich des tierischen Stoffwechsels demonstriert: Eine wichtige Rolle spielt dabei die von einem
Tier pro Zeiteinheit mit den Nahrungsmitteln aufgenommene Energie, die sogenannte Stoffwechselintensitét P.
Da die Energieversorgung des Organismus allen Zellen, also dem gesamten Kérpervolumen dient, kdnnte man
naiverweise erwarten, P mif3te proportional zur Kdpermasse m variieren. Diese Annahme 1803t sich aber leicht
durch den Hinwelis relativieren, dal3 die Versorgung des Organismus mit Nahrungsmitteln und Sauerstoff durch
die Oberflachen erfolgt, die die jeweiligen Volumina begrenzen. Flachen wachsen aber "langsamer” mit zu-
nehmender Masse als Volumina, weshalb vielmehr eine Proportionalitét von P zu m?® zu erwarten sein sollte.
Diese lange Zeit fur gultig gehaltene Rubnersche Flachenregel mufdte jedoch schliefdlich fallengelassen werden.
Sorféltige empirische Untersuchungen zeigten, dal3 P Uber fast funf Zehnerpotenzen, von den grofdten bis zu
den kleinsten Tieren wie m¥* variiert. AuRerdem stellte man fest, dai? isolierte Korperzellen unabhéngig von
der Masse des jeweiligen Tieres gleiche Energieumsatzraten besitzen, die Stoffwechsdlintensitét P also mal3-
stabsunabhéngig, skaleninvariant ist.

Diese Formel ist bis heute unverstanden geblieben. Im Rahmen der fraktalen Geometrie bietet sich nunmehr die
Erklérung an, dal? die fir die Stoffwechselmechanismen wesentlichen Organe wie Lunge, Blutgeféf3e und
Darmsystem fraktale Eigenschaften besitzen: Durch eine Art fraktaler Faltung, dhnlich wie bei der Kochschen
Kurve, gelingt es offenbar, das Fléchenhafte zu Ubertreffen ohne das VVolumenhafte zu erreichen (vgl. Sernetz
et al. 1985).



Natirlich kann man von einem realen Organ nicht erwarten, daf3 es durch eine solche Faltung eine unendlich
grof3e Fléche redlisiert. Die Tatsache, dal3 die menschliche Lunge auf einem relativ kleinen Volumen immerhin
eine Flache von 100 m2 und das Darmsystem eine Flache von 200 m2 entfaltet, kommt diesem Ideal allerdings
erstaunlich nahe. Die fraktale Selbstdhnlichkeit von Lunge und Blutgeféai3en offenbart sich rein anschaulich da-
durch, dal3 diese Organe durch zahlreiche VergroRerungen hindurch dieselbe Baumstruktur besitzen: Jede Ader
hat wieder Adern, dieihr zur Unterhaltung dienen, und diese kleinen haben wieder andere (Lichtenberg ).

Das hierin zum Ausdruck kommende Prinzip der optimalen Anpassung zwischen verschiedenen "Medien” liegt
vielen fraktalen Gebilden in der Natur zugrunde. Bei den botanischen Baumen geht es oberirdisch um eine
moglichst optimale Ausnutzung der Oberflache des durch den Baum beanspruchten Volumens zur Absorption
von Licht einerseits und Austausch von Stoffen (z.B. Wasser, CO2 und O2) andererseits. Unterirdisch sorgt das
fraktale Wurzelgeflecht fur eine mdglichst grof3e flachenméflige Erschlieffung des Erdreichs zur Gewinnung
von Wasser und Minera stoffen.

Fraktale Dimension

Konnte ich nur meinen Arm hinausstof3en Uber die Grenzen,
dieihm gesetzt sind..., so kdnnte ich in tausend Dimensionen reichen.

H.G. Wells

Wie 18 sich die in vielen Beispielen qualitativ zum Ausdruck kommende Uberwindung der topologischen
Dimension aufgrund fraktaler Selbstéhnlichkeit quantitativ untermauern?

So merkwirdig die Eigenschaften der Kustenlinien, Landesgrenzen und der Kochschen Kurve auch anmuten,
sie finden sich trivialerweise und daher ohne besondere Bedeutung erlangt zu haben, in zahlreichen bekannten
geometrischen Objekten wieder, beispielsweise in einer Linie.

Eine Linie kann in n identische Teile zerlegt, also
um den Faktor f= 1/N verkleinert werden, und sie
bleibt trotzdem eine Linie. Leibniz benutze Ubrigens
diese Selbstdhnlichkeit zur Definition einer Linie.
Auch bei zwei und dreidimensionalen Figuren findet
) man eine entsprechende Skaleneigenschaft. Zerlegt
N-Teile-des-Bruchteals £ = 1/N man etwa ein Quadrat in N identische Teilquadrate,
so wird jedes dieser Teile auf den Bruchteil f =1/NY2
des urspriinglichen Quadrats verkleinert; und die N
Miniaturwirfel, die sich bei einer entsprechenden
Zerlegung eines Wirfels ergeben, werden auf f =
o 1/NY® herunterskaliert (Abb.1). Ein solcher Skalie-
e rungsfaktor f beschreibt die GroRenvariation der
(selbstahnlichen) Objekte bei Ahnlichkeitstransfor-
mation und héngt offenbar eng mit dessen topologi-
F= /N3 scher Dimension D, zusammen. Da wir hier nur von
der Eigenschaft der Selbstéhnlichkeit Gebrauch ge-
macht haben, liegt es nahe, einen entsprechenden
Zusammenhang auch fir andere selbstéhnliche
Strukturen wie beispielsweise der oben erwédhnten
Kochschen Kurve zugrundezul egen:

f : { M Teile des Bruchieils = 1/N

4 W Teile des Bruchteals

Bild 1: Zur Einfthrung der fraktalen Dimension Die Kochsche Kurve (Abb.2) wurde dadurch gene-

riert, da3 ein Liniensegment in N = 4 identische
Teile zerlegt wurde, von denen jedes f = 1/3 der urspriingliche Lange besitzt. Damit ergibt sich gemal3 obiger
Gleichung eine Dimension von D = In 4/In 3 = 1,26, aso eine gebrochene oder nach Mandelbrot fraktal ge-
nannte Dimension D. Fraktale interpolieren gewissermalen zwischen den euklidischen Rdumen. Die fraktale
Dimension geht insofern Uber die blofze "Container”- Eigenschaft der topologischen Dimension hinaus, als sie
eine Charakterisierung der Objekte selbst erméglicht. Eine gebrochene Dimension zwischen 1 und 2 charakte-
risiert ein hybrides Objekt zwischen Linie und Flache. Diesist mehr as ein formaler Trick: Die bis ins Unend-
liche getriebene Fragmentierung und Faltung beispielsweise der Kochschen Kurve macht auch auf anschauli-
che Weise deutlich, dal’ dieses Gebilde mehr ist als eine Linie, da jeder Kurvenabschnitt unendlich lang ist,
aber weniger als eine Flache, da es zu keiner Verschmelzung bzw. Uberschneidung der Faltungen kommt und



der Flécheninhalt demnach Null ist. Sogar die in dem Zahlenwert zum Ausdruck kommende Quantifizierung
hat einen anschaulichen Aspekt: Einer vielféltigeren Fragmentierung entspricht eine hthere Dimension. Das
[&3%t sich beispielsweise durch einen Vergleich der Schneeflockenkurve (Abb. 2a) mit der quadratischen Koch-
schen Kurve (Abb. 2b)erkennen. Man kann auf diese Weise sogar Kurven finden, die die nachst

hohere topol ogische Dimension 2 annehmen. Ein Beispiel ist die urspriinglich auf Peano zurtickgehende Vari-
ante einer quadratischen Kochschen Kurve (Abb. 2¢), die die Ebene mit einem immer enger werdenden Gitter-
netz Uberzieht und daher auch anschaulich als ebenenfiillend anzusehen ist. Hier zeigt sich auf eindriickliche
Weise, dal3 die fraktale Dimension stets grofier ist as die topologische Dimension des zugrundeliegenden eu-
klidischen Elements. Sie kann im Extremfall die néchst hdhere topologische Dimension erreichen.

Welt als Konstrukt: Simulation fraktaler Strukturen

Dal3 es einen Ritter gibt, der nicht existiert, macht mir, offen gestanden, Angst...
Und doch bewundere ich ihn; in allemwas er tut,
ist er so vollendet; er fl6f3t mehr Sicherheit ein, als wenn esihn wirklich gébe..

Italo Calvino

Einfache Linienfraktale

Die Selbstéhnlichkeit der Kochschen Kurven kommt durch die Wiederholung desselben Strukturelementes
durch alle Maf3stébe hindurch zustande. Dieses einfache Bauprinzip macht es mdglich, auf rekursive Weise
weitere fraktale Strukturen zu konstruieren: Der Ausgangspunkt ist stets ein euklidisches Grundelement, ein
sogenannter Initiator (z.B. eine Linie oder ein Quadrat), aus dem durch eine meist einfache Vorschrift ein so-
genannter Generator geformt wird. Den Generator |&3t man auf den Initiators wirken, der dadurch entspre-
chend verformt wird (Abb. 2 ). Auf dieses Gebilde wird dann der Generator erneut angewandt usw. Mit jeder
Iteration nimmt sowohl die Zerkltftung bzw. Detailliertheit als auch die "Lénge" der fraktalen Struktur zu.

Interessant und typisch fur Fraktale ist jedoch, dai es trotz dieses sowohl hinsichtlich der Beschreibung als
auch hinsichtlich der Erzeugung einfachen Algorithmus keinen analytischen Ausdruck zur Bestimmung ein-

N
geht Uber in
N =4,f= 13
D =log4/log 3=1,26... N=9,f=1/3
D=log9/log3=2 t

Bild 2: Linienfraktale: Initiator ist ein Liniensegment, auf
das der jewells darunter liegende Generator angewandt
wird und das rechts danebenstehende Fraktal liefert. N
gibt die Zahl der Streckenabschnitte an, in die das Seg-
ment zerlegt wird, f die Lange des Abschnitts als Bruch-

teil der Léange des Initiators.
fln, zelner Kurvenpunkte gibt. Die Einfachheit der Er-
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Bild 3: Genese der Kochschen Insel. Initiator ist ein gleichseitiges Dreieck. Der Generator wirkt nach auf3en faltend auf die
Streckenabschnitte.



zeugung der fraktalen Gebilde erinnert an die Erzeugung eines Kristallgitters. Der Tranglationsinvarianz des
Gitters entspricht die Skaleninvarianz des Fraktals, welche sich somit as eine Art Symmetrieeigenschaft an
sich unsymmetrischer, ungeordneter Gebilde erweist.

Dendritisches Wachstum

Den viefdtigen "Aufgaben" realer Strukturen, insbesondere biologischer Systeme, werden solche einfachen
Wachstumsalgorithmen allein nicht gerecht. Da sie stets zu identischen Gebilden fuhren, kdnnen sie nicht auf
die zufallsbestimmten Anderungen der Umwelt- und L ebensbedingungen reagieren. Dies muR aber als eine fiir
das Uberleben realer Systeme notwendige Voraussetzung angesehen werden: Die Notwendigkeit deterministi-
scher Wachstumsregeln mul? mit der Zufélligkeit konkreter Einfllisse gekoppelt werden. Ein aul3erst einfaches
Modell, in dem diese Bedingungen in elementarer Weise erfiillt werden, ist von Witten und Sander (1981 ) zur
Simulation diffusionsgesteu-
erter Wachstumsprozesse
entwickelt worden. Im zwei-
dimensionalen Fall wird ein
Teilchen im Ursprung eines
Koordinatensystems  fixiert.
Dann 183t man ein zweites
Teilchen von einem zuféllig
ausgewadhiten Punkt auf ei-
nem grof3en, um den Ur-
Bild 4: Weitere einfache Linienfraktale. A) Die Kochsche Schneeflocke geht auseinem  sprung  gezogenen  Kreis
Dreieck hervor, auf dessen Seiten der Kochsche Generator nach innen wirkt. B) Der "starten” und einen random
Pythagoras- Baum geht aus einer hausférmigen Figur hervor, auf dessen ,, Dachschré- walk ausfilhren. bis es den
gen” jeweils entsprechend verkleinerte ,Hauser* aufgesetzt werden. "Keim" im Ursp;rung erreicht

und daran kleben bleibt. Ein
solcher Diffusionsvorgang wird beliebig oft wiederholt. Wahrend sich die ersten Teilchen rein zuféllig an den
verschiedenen Seiten des Keims anlagern und dadurch kleine Auswiichse hervorrufen, ist die Wahrscheinlich-
keit grofer, dal3 die von auffen herandiffundierenden Teilchen, an diesen Auswiichsen héngenbleiben, als daid
siein die "Fjorde" eindringen.

, P
loa N Vi
o, 0/0
% . Anstieg = D
logR
Bild 5: Witten- Sander- Modellcluster. Bild 6: Zur Berechnung der fraktalen ;| d 7: Ausgleichsgerade zur Er-

Dimension werden die innerhalb der
verschiedenen Kreise liegenden Pi-
xel ausgezéhit.

mittlung der fraktalen Dimension.

Damit ist die dendritische, zer-
kllftete Gestalt der entstehenden Strukturen zwar vorprogrammiert, die konkrete Ausgestaltung ist jedoch Sa-
che des Zufalls. Auffallend ist, da3 durch viele AusschnittsvergroRerungen hindurch statistisch ahnliche Aste
auftreten(Selbstahnlichkeit).

Die fraktale Dimension dieses Clusters 183t sich sehr einfach durch das sogenannte box-counting - Verfahren
ermitteln. Dabel wird von dem fir Fraktale charakteristischen Zusammenhang zwischen Masse M (Zahl der
Teilchen) eines (Flachen-) Ausschnitts der Gréfie R (hier: konzentrische Kreisscheiben um den Ursprung vom
Radius R) und der Dimension D, M ~ R, ausgegangen (Abb. 6), der unabhangig von R gilt. Dazu trégt man
die Grofe R der Flachenausschnitte gegen die jeweilige Masse der Fléchenausschnitte (Zahl der Teilchen) dop-
peltlogarithmisch auf. Die Steigung der die Punkte verbindenden Ausgleichsgeraden liefert dann den Wert der



Dimension (Abb. 7). Sie betrégt im vorliegenden Falle D = 1,7. Entsprechende Rechnungen im Dreidimensio-
nalen fihren zu einem Wert D;= 2,5.

Iterierte Funktionensysteme

Im allgemeinen gibt es verschiedene Rekursionsverfahren zur Konstruktion eines Fraktals. Beispielsweise &3t
sich der sogenannte Sierpinski- Teppich sowohl durch das Initiator- Generator Konzept gewinnen als auch
durch das in Abb. 9 dargestellte Verfahren des sukzessiven Herausschneidens von Dreiecken aus den jewelils
zuriickbleibenden Teildreiecken des Ausgangsdreiecks.

Bild 8: Genese des Sierpinski- Teppichs durch Herausschneiden von Dreiecken aus den jeweils zuriickbleibenden Drei-
ecken.

Interessanter ist jedoch das von Michael Barndey vorgeschlagene Chaosspiel, das mit Hilfe eines Wirfels zum
Sierpinski - Teppich fuhrt. Ausgangspunkt sind die drei Eckpunkte eines gleichseitigen Dreiecks und ein belie-
biger weiterer Punkt in der Ebene. Jedem Dreieckspunkt ordnet man jeweils zwei Augenzahlen des Wiirfels zu;
beispielsweise Punkt A die Augenzahlen 1 und 6, Punkt B die 4. Die Entfernung zwischen dem (  beliebigen)
Startpunkt 0 und dem erwiirfelten Dreieckspunkt wird halbiert(Abb. 10a). Die Entfernung von diesem Punkt 1
zur néchsten erwirfelten Seite wird wieder halbiert usw. Nach sehr vielen Wiederholungen tritt allméahlich der
Sierpinski- Teppich schemenhaft hervor (Abb. 10b), um sich schliefdlich immer mehr der Idealgestalt anzuné-
hern(Abb.10c).

Bild 9: Entstehung des Sierpinski- Teppichs durch Wirfeln. A) Die ersten zehn Punkte.
B) Nach einigen tausend Punkten tritt der Teppich bereits schemenhaft hervor, umin c)
die perfekte Gestalt anzunehmen.

Barndley hat diese Idee, fraktale Pixelgraphiken mit Hilfe einfacher Codes und
passender meist zufallsiterierter Algorithmen zu erzeugen, weiterverfolgt und
zur sog. Theorie Iterierter Funktionen Systeme (kurz: IFS ) ausgebaut. Die
IFS-Theorie hat es sich zur Aufgabe gemacht, zu einem gegebenen Bild ein
"IFS" zu finden, desses "Limesgestalt” dem Bild mdglichst nahe kommt. Ge-
lingt dies, so kénnen die Parameter des "IFS" a's extrem kompakte (zumindest
approximative) Speicherform des Bildes angesehen werden. Gegenwartig wird
an einem "Rezept" zu einer solchen Bildcodierung experimentiert, die u.a
auch fuur die Nachrichtentechnik Bedeutung erlangen kénnte. . Einen Ein-
druck von den Mdglichkeiten der IFS vermittelt Abb. 11, in der das "Produkt”,
eines einfachen IFS- Codes dargestellt ist (Weitergehende Information zur IFS- Theorie siehe z.B. Barnsley in:
Peitgen et al.1988; Barnsley 1988).

Bild 10: Aus der IFS- Retorte
hervorgegangener Farnwedel.

Ein weiteres erfolgreiches Konzept zur computergraphischen Nachbildung fraktaler Gebilde ist u.a. von P. Pru-
sinkiewicz auf der Grundlage von Ideen A. Lindenmayers entwickelt worden. Mit Hilfe dieser sog. L- Systeme
gelingt es, vor alem Pflanzen und Blumen mit verbliffender Ahnlichkeit der Wirklichkeit nachzubilden (vgl.
Barnsley 1988; Prusinkiewicz 1986).



Das Apfelmannchen

Die Generierung von Fraktalen ist nicht beschrénkt auf geometrische Regeln und Figuren. Ein Fraktal kann
auch das Ergebnis einer (nichtlinearen) mathematischen Abbildung sein. Das wohl berlihmteste Beispiel eines

Bild 11: Anngherungen an das Apfel-
mannchen (links oben). Die folgenden
Bilder sind zunehmende Ausschnitts-
vergrofRerungen aus dem Rand des Ap-
felmannchens (Auschnitt durch Recht-
eck gekennzeichnet).

Fraktals, das auf diese Weise erzeugt wurde, ist das von Benoit Mandelbrot "erfundene” und aufgrund seines

Bild 12: Zum Apfelménnchen ge-
horige gefllte Juliamenge.

auReren Erscheinungshildes sogenannte Apfelméannchen. I|hm liegt die einfa-
che Formel zn+1 0 zn2 + ¢ zugrunde, wobei z und ¢ komplexe Zahlen sind.
Was geschieht, wenn man fir alle Werte der durch ¢ aufgespannten Ebene
jeweils bei zo 0 0 beginnend die Formel immer wieder mit ihrem Ergebnis
"flttert" (mathematische Riickkopplung)? Man wird feststellen, dai3 das Er-
gebnis fur gewisse ¢ konvergiert und fir die restlichen ¢ divergiert. Férbt
man die Punkte, fir die Konvergenz vorliegt, schwarz, so gelangt man zu
dem in Abbildung 12a dargestellten Apfelmannchen. Das Besondere an die-
ser Figur ist, dal3 der Rand nicht glatt ist, sondern fraktal und bei ndherem
"Hinsehen", durch entsprechende Vergrof3erungen einen unerschopflichen
Reichtum von selbstéhnlichen Mustern und Strukturen offenbart. Die Abbil-
dungen 12 b-e sollen davon einen kleinen Eindruck vermitteln. Variiert man
auf dieselbe Weise die Anfangswerte bel jewelils festen ¢ - Werten, so kommt
man zu teilweise sehr filligranen Strukturen, die nach ihrem Entdecker Ga-
ston Julia Juliamengen genannt werden (Abb. 13).

Hoherdimensiona e Fraktale

Ohne auf Details einzugehen, sei erwahnt, dal3 es in voller Analogie zu den Linienfraktalen auch héherdimen-
sionale Fraktale gibt. Erwahnt seien hier nur die Flachenfraktale. Ahnlich wie die Lange der Kiistenlinien vom
gewdhlten linearen Mal3stab abhangt, variiert die Flache eines Flachenfraktals mit der Grofde des flachenhaften
Mal3stabs, beispielsweise quadratischer Mef¥flachen, mit denen man die "Flache" des Fraktals ausmessen kann.
Ein bekanntes Beispiel eines Flachenfraktals ist Aktivkohle. Thre Oberfléche 183t sich Uber die Adsorption von
Gasen mit unterschiedlich "grof3en" Molekilen abtasten. Tragt man dann die jeweils adsorbierte Gasmenge ge-
gen die Molekuloberflache doppeltlogarithmisch auf, so &3t sich aus dem Anstieg der Ausgleichsgeraden die
fraktale Dimension ermitteln (Abb. 14). Die fraktale Dimension eines Fléchenfraktals variiert je nach der
"Luftigkeit" des Gebildes zwischen 2 und 3.



Fraktale Strukturem im Schulexperiment

"Why", said the Dodo, "the best way to explain it isto do it".
Lewis Carrall

Simulationen von Fraktalen sind natlrlich kein Selbstzweck. Sie dienen dazu, Bildungsgesetze und Struktur
realer fraktaler Gebilde zu erschlief3en. Fir den Physikunterricht ergibt sich daraus das Problem, reale Fraktale
experimentell darzustellen, die sich mit entsprechenden Computersimulationen vergleichen lassen und deren
fraktale Dimension bestimmt werden kann.

Viskoses Verdsteln

Ein besonders einfaches Exemplar eines solchen Fraktals soll im folgenden skizziert werden: Durchdringt eine
weniger viskose Flussigkeit (z.B. Wasser) eine Flissigkeit mit hoherer Viskositét (z.B. Ol), so I&Rt sich die
Entwicklung dendritischer Verastelungen beobachten. Eine systematische Untersuchung dieser Strukturbildung
gelingt mit einer leicht herzustellenden (radialen) Hele- Shaw- Zelle. Diese Zelle besteht aus zwei an den Ran-
dern  zusammengeschraubten durch-
sichtigen Platten (z.B. Plexiglas), von
denen die obere in der Mitte ein kleines
Loch enthdlt. Pref3t man z.B. mit einer
Einwegspritze durch dieses Loch nach-
einander eine mehr und eine weniger
viskose FlUssigkeit zwischen die Plat-
ten, so durchdringen sich die Flissig-
keiten unter Ausbildung (je nach Flis
sigkeit) mehr oder weniger stark struk-
turierter Verastelungen: In Abb. 15 sind

Bild 13: a)Stark verzweigte Struktur, durch Injektion von (gefarbtem) Was- Verastelungen dargestellllt, . wie S.|e ent-
ser in flUssige Seife hervorgerufen. Die fraktale Dimension berechnet sich steher_l, Wenn mar_1 a) qu”SSIge Seife und
2u1,85. B) Weniger stark verzweigt Struktur, durch Injektion von (gefarb-  B)  Rizinusdl - mit gefar btem Wasser
tem) Wasser in Rizinusdl. Die fraktale Dimension berechnet sich zu 1,83, durchsetzt. Durch Ermittlung der "Fl&

che" der Struktur (z.B. durch Auszadhlen
mit Hilfe von Millimeterpapier oder mit Hilfe eines geeigneten Computerprogramms, das man auf die digitali-
sierten (gescannten) Bilder der Strukturen anwendet,) [&3t sich wie bei den Witten- Sander- Mustern die frak-
tale Dimension der Gebilde ermitteln.

Lichtenbergfiguren

Obwohl physikalisch vdllig verschieden, entstehen auch die bereits von G.Chr. Lichtenberg (1972) entdeckten
o Staubfiguren, nach dhnlichen universalen Gesetzen, wie die Verastelun-

):‘ e L gen von FlUssigkeiten. Lichtenberg hatte seiner zeit eine isolierende
R 21 {; o Harzplatte (heute wirde man z.B. Hartgummi verwenden) mit feinem

¥ : ! ¥ . i Pulver (z.B. Lycopodium) bestreut und auf eine geerdeten Metallplatte
{ AARE RTINS gelegt. Setzte er nun eine kurzzeitig aufgeladene Spitzenelektrode auf
AN AN diesen Kuchen, so entstanden Staubfiguren, die den Witten- Sander-
SRR I A Dendriten tauschend ahnlich sind. Solche Strukturen lassen sich auch

FLX e herstellen, wenn man die Entladung (im Dunkeln) auf der Schichtseite

¥ )7 Qe einer fotographischen Platte ablaufen 1&3t. Eine moderne Variante einer

AN TN 4 =2l Lichtenbergfigur ist die in Abb. 16 dargestellte Struktur, die durch Be-
% s ’ schul3 einer Plexiglasplatte mit energiereichen Elektronen entsteht (aus
G A Brix 1985).

! —_
i P
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Mit Mitteln der Schulphysik lassen sich weitere zweidimensionale frak-
tale Gebilde herstellen (Nordmeier 1990). Zum Beispiel: Ein Glasschél-
chen, dessen Innenrand mit einer geerdeten Elektrode versehen ist, wird
mit Rhizinusol einige Millimeter aufgefillt. Darin verteilt man statistisch
kleine Stahlkiigelchen (z.B. Kugellagerkugeln mit 1 bis 2 mm Durchmesser). Positioniert man Uber der Mitte
des Schélchens eine "spitze" Elektrode, die auf ein Potential von 15 bis 20 kV gebracht wird, so bildet sich in
kurzer Zeit eine baumartig verzweigte dendritische Struktur, die den Lichtenbergfiguren hnlich ist.

Bild 14: Moderne Variante einer
Lichtenberg Figur.
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Fraktale und Chaos

Das Geringste bewirkt das meiste, die Ordnung entsteht aus der Unordnung
Paul Vaéry

Die bisherige Betrachtung der Fraktale beschrénkte sich auf den rdumlichen Aspekt von Strukturen. Bei der
Beschreibung des Verhaltens physikalischer Systeme spielt jedoch die zeitliche Entwicklung, d.h. der Verlauf
von Trgjektorien, eine zentrale Rolle. Es hat sich gezeigt, dal? auch zur Charakterisierung des zeitlichen Ver-
haltens dynamischer Systeme die fraktale Geometrie der Natur von grofer Erschlief3ungsméchtigkeit ist, und
zwar vor allem dann, wenn es - wie wir es im Raumlichen gesehen haben- um die Beschreibung von anschei-
nend ungeordneten, mit den klassischen Mitteln nicht zu handhabenden Vorgéangen geht. In diesem Sinne un-
geordnet sind die seit einigen Jahren mit zunehmender Intensitét untersuchten chaotischen Systeme. Es handelt
sich dabei um Systeme, deren Verhalten zwar durch Differentialgleichungen beschrieben werden kann, die aber
eine sensitive Abhangigkeit von den Anfangsbedingungen zeigen mit der Konsequenz, dal? beliebig kleine Ab-
weichungen sich nach kurzer Zeit zu beliebig grofen Wirkungen auswachsen. Einzelne Bahnen, Trajektorien,
solcher Systeme sind daher praktisch nicht vorhersagbar. Verschafft man sich jedoch einen Uberblick tber die
Gesamtheit der Verhatensmoglichkeiten des Systems, indem man alle méglichen Trajektorien im Zustands-
raum auf einmal betrachtet, so ergibt sich rein geometrisch- anschaulich ein kompaktes Gebilde von charakteri-
stischer Struktur. Ein solcher chaotischer Attraktor kann daher als das topologische Aquivalent des Gesamt-
verhaltens des Systems angesehen werden. Er bringt zum Ausdruck, daf3 trotz der lokalen Unvorhersagbarkeit
das Systemverhalten global vorhersagbar ist. Néhere Informationen tber die Verhaltensweise des an sich chao-
tischen Systems ergeben sich aus der Analyse dieses Attraktors.

Das haben wir weiter oben am Beispiel eines chaotischen Drehpendels (Pohlsches Rad) dargestellt.. Der At-
traktor dieses angetriebenen Pendels offenbart sich als wollknduelartiges Gebilde von héchster Komplexitét.
Die Komplexitét 1813t sich dadurch reduzieren, dal® man das Systemverhalten "stroboskopiert”, d.h. im Rhyth-
mus des periodischen Antriebs nur zu einem bestimmten Phasenwert der Anregung betrachtet. Vergleicht man
solche stroboskopierten Schnitte (Poincare - Schnitte) des Attraktors fir verschiedene Werte der Anregungs-
phase, so offenbaren die Verénderungen zeitlich aufeinanderfolgender Attraktoren den flr die Entstehung von
"Chaos" typischen Mischmechanismus, durch den die Trajektorien wie beim Ruihren von Farben durcheinan-
dergewirbelt werden.

Durch das Mischen werden Trajektorien der unterschiedlichsten Startpunkte im Rhythmus des Antriebs anein-
andergefaltet. Wegen der Eindeutigkeit der Losung der zugrundeliegenden Differentialgleichung kommt es da-
bei zu keiner Verschmelzung sondern zur Ausbildung einer infinitesimal feinen Blétterteigstruktur: Unendlich
viele Schichten werden in einem endlichen Volumen zusammengeprefdt. Damit stellt sich uns der chaotische
Attraktor as ein hybrides Objekt zwischen Fléche und Linie dar, also als Fraktal. Die Selbstdhnlichkeit bzw.
Skaleninvarianz offenbart sich darin, dal? jede AusschnittsvergrofRerung des chaotischen Attraktors dieselbe
Struktur aufwelst.

Die fraktale Dimension des Attraktors ist Ubrigens eine der wichtigsten GrofRen zur quantitativen Charakteri-
sierung des Chaos in einem dynamischen System. Es scheint so, as lieferte die Mathematik der Fraktale Gber-
haupt erst die adaquate " Sprache" zur Beschreibung chaotischer Systeme.

Die Bedeutung der fraktalen Geometrie zeigt sich auch beim Ubergang eines komplexen Systems vom regul&-
ren zum chaotischen Verhalten. Wie in Abbildung 18 zu erkennen ist, geht im vorliegenden System die regul &
re Schwingung mit konstanter Amplitude bei kontinuierlicher Variation eines fur das System wesentlichen
Kontrollparameters (hier: die Dampfung des Pendels) zunéchst in eine Schwingung mit zwei verschiedenen
Amplituden Uber. Bald darauf spalten diese ihrerseits in zwei verschiedene Amplituden auf, die dann erneut
aufspalten usw. in immer kirzer werden Absténden bis sich schlieflich unendlich viele Amplituden einstellen
und ein sog. chaotisches Band bilden. Die chaotischen Bénder werden immer wieder von Fenstern geordneten
Verhaltens unterbrochen. Die in den Fenstern vorhandenen reguléren Linien entwickeln sich aber ihrerseits
Uber ein Bifurkationsdiagramm ins Chaos, das wieder regulére Fenster aufweist usw. Durch Ausschnittsvergré-
[ferungen kann man demonstrieren, wie sich dieselbe Struktur kaskadenartig wiederholt(kleine Bilder in Abb.
18). Hier manifestiert sich erneut die fir Fraktal e typische Selbstdhnlichkeit. Der nach einem seiner Entdecker,
Mitchel Feigenbaum, so genannte Feigenbaum zeigt auch rein &ul3erlich die fir viele Fraktale typische Baum-
struktur, obwohl esim vorliegenden Fall nicht um eine Darstellung réumlicher sondern zeitlicher Verhaltens-
weisen geht.
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Nichtlinearitdt und Rekursion

Es gibt geistige Rdume, welche diese Welt nicht nur bedeuten,
sondern in eéinem hdheren Sinne diese Welt sind

Gertrud von Le Fort

Fraktale sind durch unendliche Vielfalt unauflésbar ineinander verschachtelter Muster, unvorhersagbarer
réaumlicher und zeitlicher Strukturen, kurzum: durch Komplexitdt gekennzeichnet. Ordnung und Chaos er-
scheinen als komplementére Aspekte einer kreativen Welt des Werdens. Die mit dem Ubergang zur fraktalen
Geometrie verbundene Revolution des physikalischen Denkens ist eng mit der Uberwindung der Herrschaft der
geraden Linie verbunden. Nichtlineare Zusammenhénge kennzeichnen die Tiefenstruktur der Komplexitét.

Linear: einfach und berechenbar

Indem sich die klassische Physik weitgehend auf lineare und reversible Vorgange beschrankt, gelingt esihr, die
Welt auf ein Mal3 zu reduzieren, das eine quantitative, mathematisch einfache Beschreibung ermdglicht. Dabei
wird die Dynamik eines physikalischen Systems typischerweise durch Differentialgleichungen beschrieben und
durch deren Losung explizit gemacht. Die Tatsache, dal3 das Auffinden der Losung bei linearen Differential-
gleichungen sehr einfach ist, dirfte nicht unwesentlich zum Erfolg der klassischen Physik beigetragen haben:
Die allgemeine Lésung ergibt sich einfach aus der Summe zweier spezieller Lésungen. Hierin manifestiert sich
das fur das klassische Naturverstandnis typische Uberlagerungsprinzip, wonach ein komplexer Vorgang aus der
Summe einfacher Vorgange zusammengesetzt werden kann. Daher hat man mit der allgemeinen Losung der
Differentialgleichung die gesamte Entwicklung des Systems auf einmal in der Hand, vorausgesetzt nur, man
kennt dessen gegenwartigen Zustand mit hinreichender Genauigkeit. Uberraschungen sind daher ausgeschlos-
sen: "Die Herrschaft Giber den Augenblick ist die Herrschaft Uber das Leben" (Marie von Ebner- Eschenbach).

Der Erfolg der klassischen Physik zeigt uns, dai3 die Natur sich tatséchlich in vielen Féllen so verhdlt, wiein
den Berechnungen unterstellt wird. Man denke nur an die Voraussagen von Sonnen- und Mondfinsternissen
und an die erfolgreiche Landung von Menschen auf dem Mond.

Nichtlinear: selbstorganisiert und "unberechenbar”

Andererseits gab es schon Lichtenberg zu denken, da3 man zwar die "Durchgdnge der Venus voraussagen
(kann), aber nicht die Witterung und ob heute in Petersburg die Sonne scheinen wird". Erst in unseren Tagen
wird "anerkannt", dal’ es auch prizipiell unberechenbare physikalische Vorgange und Phénomene gibt. Im
Rahmen der nichtlinearen Physik wird der Tatsache Rechnung getragen, daf3 durch die bislang so erfolgreiche
Linearisierung in zahlreichen Fallen nicht nur unwichtige Details, sondern gerade jene Phénomene unterdriickt
werden, deren Versténdnis flr die Bewdltigung einer nicht zuletzt durch die naturwissenschaftlichen Technik
verdnderten Welt unerl&Blich erscheinen. Zu diesen Phénomenen gehdren vor allem die Entstehung und Auf-
rechterhaltung von Strukturen, die meist unter den Begriffen Selbstorganisation und Chaos subsummiert wer-
den. Typische Beispiele sind

- regelméfdig Muster am Wolkenhimmel oder auf dem Milchkaffee,
- das Umkippen eines Okosystems,

- raumlich und zeitlich oszillierende chemische Reaktionen,

- Muster strémender Fllssigkeiten und Gase,

- das Wachstum von biologischen Strukturen.

Entscheidend fur die kreative, strukturbildende und strukturverdndernde Potenz nichtlinearer Systeme sind die
dem linearen Ursache - Wirkungsdenken abgehenden Eigenschaften,

- "dal3 kleine Unterschiede in den Anfangsbedingungen grofe Unterschiede in den spéteren Erscheinungen be-
dingen" kénnen (Poincaré 1957) (Sensitive Abhangigkeit von den Anfangsbedingungen) und

- dai3 die das System bestimmenden Grof3en sich gegenseitig zu steuern vermoégen (Riickkopplung).

Dadurch wird es dem nichtlinearen System méglich, stdndig Kontrolle Uber seine internen Verhaltensmdglich-
keiten zu behalten, auf Stérungen flexibel zu reagieren und damit eine dynamische Stabilitét in einer durch
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zuféllige Verénderungen gepragten Welt zu bewahren. Das Systemverhalten ist im einzelnen nicht mehr vor-
hersagbar.

Die die Systemdynamik erfassenden nichtlinearen Differentialgleichungen besitzen zwar auch eindeutige L&-
sungen. Aber im Unterschied zu linearen Systemen ergibt die Summe zweier spezieller Losungen keine neue
L6sung. Das Uberlagerungsprinzip funktioniert nicht mehr. Komplexe Systeme lassen sich daher nicht mehr in
voneinander unabhéangige Teilsysteme zerlegen: Das Ganze ist mehr als die Summe der Teile (Aristoteles).
Statt also wie im linearen Fall, den Systemzustand zu einem gewinschten Zeitpunkt durch Einsetzen der An-
fangsbedingungen in die Lésungsfunktion aus der Menge aller méglichen Lésungen auszusondern, erreicht
man im nichtlinearen Fall sein Ziel in der Regel nur dadurch, daf3 man sich vom Anfangszustand ausgehend
Schritt fUr Schritt von einem Zustand zum néchsten vortastet: Der Zustand eines nichtlinearen Systems hangt
vom unmittelbar vorausgehenden ab.

Nichtlinear: rekursiv

Die dadurch nahegelegte Methode zur Losung der Differentialgleichung ist die Rekursion: Vom gegebenen
Anfangszustand beginnend berechnet man mit Hilfe einer moglichst einfachen Vorschrift néherungsweise den
benachbarten Zustand, den man nunmehr als Ausgangspunkt nimmt zur Berechnung des néch-

sten Zustands mit derselben Vorschrift. Durch gentigend héufige Wiederholung dieser Vorschrift vollzieht man
gewissermalien den durch die Differential gleichungen beschriebenen Prozel3 nach.

Dieses Vorgehen hat zur Konsequenz, dald sich die Lésung nur durch eine im Idealfall unendliche Sequenz von
Punkten, bzw. geometrisch ausgedriickt, durch eine Struktur manifestiert, in der die schlichte Wiederholung
einer einfachen Vorschrift in einem selbstdhnlichen Grundmuster reflektiert wird.

Die Bedeutung der Rekursion ist natiirlich nicht auf die Berechnung von Differentialgleichungen beschrankt.
Sie wurde Uberhaupt erst dadurch anwendbar auf die Differentialgleichung, dafd man diese in diskrete Differen-
zengleichungen zerlegte und auf diese Weise auf einen einfachen Algorithmus reduzierte. So gesehen ist die
rekursive Losung einer Differentialgleichung nur ein spezieller Fall, Strukturen zu generieren. Damit wird der
Zusammenhang deutlich zwischen den rekursiv erzeugten réaumlichen Mustern, wie wir sie im ersten Teil die-
ser Arbeit beschrieben haben, und den "zeitlichen Mustern”, wie sie am Beispiel des chaotischen Drehpendels
demonstriert wurden, deutlich. In beiden Félen wird eine nichtlineare Regel beliebig oft auf ein Grundelement
angewandt und fuhrt zu komplexen Gebilden, die in vielen Féllen Teilbereiche der realen Welt besser zu mo-
dellieren vermogen als die der klassischen Physik zugrundeliegenden statischen, linearen Strukturen der eukli-
dischen Geometrie und linearen Algebra.
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