Regular and Chaotic Oscillations of a Rotating Pendulum®
Udo Backhaus, H. Joachim Schlichting

Intention

One reason of the great success of classical physics
is the ability to predict the evolution of a system
from which the dynamics (equation of motion) and
the initial values are known. But this ability falls
with chaotic systems. Because of the exponential
Increase of small errors in the initial conditions of a
chaotic system every prediction of Its behaviour be-
comes Impossible in shortest time.

For a long time physicists thought that the chaotic
behaviour of a system is due to its complexity. But
recently, one found that very simple systems may
become chaotic, too. As important as this realisation
is the manner of the transition from order to chaos.
This transition follows some general patterns: the
system announces the breakdown of the determinis-
tic behaviour. Of course, the knowledge of these
patterns is of great practical Interest.

The rotating pendulum presented here allows to
study the transitions between regular and chaotic
motions by means of computational simulations.
Thereby, complete Feigenbaum scenarios and other
transitions may be obtained. The numerical resuits
are described in more detail in [1].
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Fig. 2: The rotating pendulum: coordinates and derivation
of the equation of motion

Description of the
system

The system simulated by us is a linear pendulum
whose bob is supported not by a string, which could
become slack, but by a light rigid rod pivoted to a
support rotating with an angular velocity wat a dis-
tance r around a vertical axis (you may imagine the
gondola of a round-about.). Its plane of oscillation
is spanned by the vertical axis and the “gallows”.

In the withrotating system of coordinates there are
two forces acting on the gondola along its path: the
tangent components of the gravitational and the cen-
trifugal force. Therefore, the equation of motion
reads

16 = —gsind + o (r +Isin 8)cos &

5 =-wsin 5+ d (a+sin)cos &

with @ =%, a=s

By muitiplying with & and integrating once one gets
the effective potential U (. 2):

e:= 0.6

v T

o= 1,

Fig. 1: Effective potential for four different values of Q2
The pictures of this paper are obtained with Q?=2.5.

! In: G. Marx (Ed.): Chaos in Education II. Vesprem (Hungary) 1987, pp. 312 - 317.
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To be more realistic. we take Into account the fric-
tion In the support. In order to get stationary oscilla-
tions we therefore have to Introduce an additional
driving force. The equation of motion thus reads:

5 =-pd-awsind+Qaf (a+sin)cos 5+ sin
There are three interesting limiting cases which may
be studied:

- f=0: free oscillations of the pendulum,

- Q=0: normal pendulum,

- o = 0: rotating pendulum without gallows.
Method of calculation

For Integration the equation of motion is trans-
formed into a system of three differential equations
of first order:

x:=5H [k=vy
yi=4 Loy=- py w:sianzai(a- sinx)cosxr f sinz

el B

which is solved by the Runge-Kutta method of
fourth order (see appendix). In most of the cases
considered a step width of 50 steps/period turned
out to be sufficient. The program is written in PAS-
CAL for a ATARI 1040 personal computer. The
pictures of this paper are obtained with the follow-
ing parameters:

w,=1s", w =1s", a=0,Q" =25 p=0.85s".

The attractor concept

For the description of dissipative systems the con-
cept of attractors is fundamental. An attractor is a
figure in phase space attracting the behaviour of a
system with Increasing time. Aithough defined in
the abstract phase space it allows to describe und to
devellop chaotic behaviour by means of geometric
methods.

For instance, without driving force the rotating pen-
dulum will come to rest at the equilibrium angle ir-
respective of the initial conditions. In phase space
the trajectory will contract to a point. That’s why

this point is called a point attractor (fig. 3). A peri-
odic driving force causes a steady oscillation of the
pendulum; the trajectory In phase space will be-
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Fig. 3: Without driving force the behaviour of the pen-
dulum In attracted by a point attractor
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Fig. 4: : Limit cycle: Periodic driving force causes differ-
ent steady oscillations depending on the Initial condi-
tions)

come a closed loop: now, the attractor is a limit cy-
cle (fig. 4).

The pendulum possesses different coexistent limit
cycles: starting with different initial conditions often
leads to different final behaviour, sometimes (as in
fig. 4) but not always according to the two “valleys”
of the potential. The set of initial conditions evolv-
ing to a certain attractor is called the catchment re-
gion or the basin of attraction of that attractor. For
Instance, our "Julia" at the top of this paper shows
the catchment region of a point attractor coexisting
with a chaotic attractor (see below) obtained with a
system very similar to that of this paper (see at the
end of this paper).

In 1963 Lorenz 12) found an additional final behav-
iour: the chaotic attractor also called a strange at-
tractor. Its strangeness is due to the global stability
and the local instability of its structure: Because of
the exponential Increase of errors different initial
conditions may cause a totally different behaviour
on the microscopic level but the phase trajectories
fill the same region In phase space.



Period doubling

With small values for the amplitude f of the driving
force the pendulum reaches a simple limit cycle

(fig. 5 a). However, increasing f above 0.7445 two
alternating amplitudes of oscillation are observed In

the (8, t)-diagram (fig. 5 b). In phase space two
driving cycles are needed for the trajectory to be
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Fig. 5: Transition from order to chaos with increasing driving amplitude. a) f = 0.72, b) f = 0.752, ¢) f = 0.775, d) f =
0.782, e) f = 0.809. Each motion in demonstrated by the (,t)- diagram, the phase projection (5, 5) and the correspond-
ing fourier spectrum.




closed. In the fourier spectrum an additional peak
appears at one half of the driving frequency. Further
Increase of the driving amplitude causes further pe-
riod doublings (fig. 5 ¢, d) until at about f = 0.78 the
regular motion breaks down: the chaotic attractor
occurs for the first time (fig. 5 e).

Feigenbaum scenario

To get an overview over all period doublings the
displacement angles are stroboscopically registered
synchronously with the driving force (sin z = 0) and
plotted against the driving amplitude after the tran-
sients have settled to the final behaviour. The Fei-
genbaum diagram constructed in this way (fig. 6) is
of great importance not one for the System pre-
sented here. As Feigenbaum [3] showed it is typical
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Fig. 6: Transition from order to chaos an Feigenbaum diagram:
100 values of the displacement angle & at the times defined by
sin z = 0 are plotted for 550 values of f after the decay of tran-
sients (after 50 driving periods). The framed picture shows a
magnification of the f-Interval [0.79400, 0.79461] (200 values

of & after 200 driving periods).
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Fig. 7: Poincaré section of a chaotic attractor obtained at f

=1.35

of the ordered way into chaos of a large class of
systems.

The method of reducing the dimensionality of the
phase space by strobocopic registration of the sys-
tem coordinates was Introduced by Poincaré [4].
Therefore, it is called an Poincaré " section of the
phase space. Fig. 7 shows a Poincaré section of a
chaotic attractor.

Until now, we restricted our interest to oscillations
with small amplitudes around one of the equilibrium
angles and oscillation minimas near the maximum
of the potential at & = 0°. Therefore, the behaviour
of the pendulum described so far represents only a
small part of all its possibilities. Further increasing
of the driving force causes the oscillation to
“splash™ over into the other valley of the potential at
about f = 0.81 (fig. 8). In the following parameter
interval (0.8 < f < 1.7) an alternating sequence of
chaotic and regular behaviour is obtained in which
different kinds of transitions (besides period dou-
bling e.g. intermittency [5]) may be observed.
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Fig. 8: The behaviour of the pendulum In a wide parame-
ter range. The region of fig. 7 in framed.

Experimental realisation

The rotating pendulum allows to study transitions
between order and chaos which are of

Importance for a large class of systems. However, It
has the disadvantage to be difficult to realize ex-
perimentally. That’s why we recently investigated
the behaviour of another kind of rotating pendulum
in more detail [6]: a wheel rotating around its axis
and bound elastically to an equilibrium position
(“Pohlsches Rad”). By means of an additional mass
excentrically fixed to the wheel the restoring force
becomes nonlinear and the potential takes on a form
very similar to that shown In fig. 2. The results ob-
tained by simulation of that system are very similar



to those presented in this paper. Moreover, the nu-
merical results can be verified experimentally for
some important parameter intervalls [7].

APPENDIX: Listing of the Integration Pro-
cedure (PASCAL) and program options

The procedure listed below demonstrates how to
calculate the following state (x, v, z, t) of the pendu-
lum from a given one by integrating the equation of
motion by means of the Runge-Kutta method of
fourth order.

The following variables must be declared glob-
ally:

_—
- rho (=p)

- omega0 (=),
- omega (=),

- omegeA (=,),

- alpha (=a) and

- delta (stepwidth of integration (= period/step
where period = 2r7omegaA and step = number
of integration steps per period of the driving
force)).

- deltah and deltas (= the second and the sixth
part of delta).

PROCEDURE RungeKutta (VAR X, vy, z, t :
REAL);

TYPE chg = ARRAY [1..2] OF REAL,;
VAR k1, k2, k3, k4 : chg;

PROCEDURE Change (x, vy, z: REAL; VAR k:
chg);
VAR Sinus: REAL;

BEGIN (* Change *)
k[1]:=y;
Sinus: = sin(x);

k[2]:= rho*y — omoga0 * Sinus + omega * cos(x) *
(alpha + Sinus) + f * sin(z); (* equation of motion )
END; ( Change *)

BEGIN (* RungeKutta *)
Change(x, v, z, k1);

z: =z + omegaA * deltah;

Change(x+k1[1]*deltah, y+k1[2]*deltah, z, k2);
Change(x+k2[1]*deltah, y+k2[2]*deltah, z, k3);
Z: =z + omagaA * deltah;
Change(x+k3[1]*delta, y+k3[2]*delta, z, k4);

t: =t + delta;

x: = x + (k1[1] + k2[1] + k2[1] + k3[1] + k3[1] +
k4[1]) * deltas;

y: =y + (k1[2] + k2[2] + k2[2] + k3[2] + k3[2] +
k4[2]) * deltas;

END; (* RungeKutta *)

The term sin (z) takes only 2*step+1 different val-
ues. The program may be accelerated by storageing
these values in an array.

Our program offers the following options:

- Plot of the effective potential for different values
of o and Q,

different presentations of the motion:
- movielike plotting,

- diagram plotting the displacement angle
against time

- attractor In the three-dimensional phase space
(3,6,1),

- two-dimensional phase projection (6,5),and

the possibility to change the presentation dur-
ing the calculation.

Before performing the calculation the following
parameters may be chosen:

amplitude of driving force f,

- length of the gallows a,

- coefficient of friction p,

- Initial values of displacement &, , and velocity
60

- stepwidth for integration,

- number of periods presented at once on the
screen and

- number of table the calculated values are to be
stored in.

During the calculation it is possible to change

the presentation of the motion,

the dimensions of the diagram and

- the parameters f, a and p.



Little additional programs offer further possi-
bilitis:

the plot of Poincaré' sections (see fig. 7),
- later presentation of calculated tables,

- fourier transformations of calculated tables
(see fig. 5

- calculation of Feigenbaum diagrams plotting
the displacement & when the phase of the driv-
ing force vanishes against the amplitude of the
driving force (see fig. 6, 8); during calculation
all values of o are stored,

- later study of Feigenbaum diagrams with adi-
tional acoustic demonstration of the oscilla-
tions for arbitrary values of f.
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