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Intention 
One reason of the great success of classical physics 
is the ability to predict the evolution of a system 
from which the dynamics (equation of motion) and 
the initial values are known. But this ability falls 
with chaotic systems. Because of the exponential 
Increase of small errors in the initial conditions of a 
chaotic system every prediction of Its behaviour be-
comes Impossible in shortest time. 

For a long time physicists thought that the chaotic 
behaviour of a system is due to its complexity. But 
recently, one found that very simple systems may 
become chaotic, too. As important as this realisation 
is the manner of the transition from order to chaos. 
This transition follows some general patterns: the 
system announces the breakdown of the determinis-
tic behaviour. Of course, the knowledge of these 
patterns is of great practical Interest. 

The rotating pendulum presented here allows to 
study the transitions between regular and chaotic 
motions by means of computational simulations. 
Thereby, complete Feigenbaum scenarios and other 
transitions may be obtained. The numerical resuits 
are described in more detail in [1]. 

Description of the  
system 
The system simulated by us is a linear pendulum 
whose bob is supported not by a string, which could 
become slack, but by a light rigid rod pivoted to a 
support rotating with an angular velocity ω at a dis-
tance r around a vertical axis (you may imagine the 
gondola of a round-about.). Its plane of oscillation 
is spanned by the vertical axis and the “gallows”. 

In the withrotating system of coordinates there are 
two forces acting on the gondola along its path: the 
tangent components of the gravitational and the cen-
trifugal force. Therefore, the equation of motion 
reads  

 ( )2sin sin cosl g r lδ δ ω δ δ= − + +!!  
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By muitiplying with δ and integrating once one gets 
the effective potential U (. 2): 

Fig. 1: Effective potential for four different values of Ω2. 
The pictures of this paper are obtained with Ω2 = 2.5. 

 
Fig. 2: The rotating pendulum: coordinates and derivation 
of the equation of motion 
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To be more realistic. we take Into account the fric-
tion In the support. In order to get stationary oscilla-
tions we therefore have to Introduce an additional 
driving force. The equation of motion thus reads: 

( )2 2 2

0 0sin sin cos sin af tδ ρδ ω δ ω α δ ω= − − + Ω + +!! !

There are three interesting limiting cases which may 
be studied: 

- f = 0: free oscillations of the pendulum,  

- Ω = 0: normal pendulum,  

- α = 0: rotating pendulum without gallows. 

Method of calculation 
For Integration the equation of motion is trans-
formed into a system of three differential equations 
of first order: 
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which is solved by the Runge-Kutta method of 
fourth order (see appendix). In most of the cases 
considered a step width of 50 steps/period turned 
out to be sufficient. The program is written in PAS-
CAL for a ATARI 1040 personal computer. The 
pictures of this paper are obtained with the follow-
ing parameters:  

1 1 2 1

0 a1 ,  1 ,   = 0, 2.5,   = 0.85 .s s sω ω α ρ− − −= = Ω =  

The attractor concept 
For the description of dissipative systems the con-
cept of attractors is fundamental. An attractor is a 
figure in phase space attracting the behaviour of a 
system with Increasing time. Aithough defined in 
the abstract phase space it allows to describe und to 
devellop chaotic behaviour by means of geometric 
methods. 

For instance, without driving force the rotating pen-
dulum will come to rest at the equilibrium angle ir-
respective of the initial conditions. In phase space 
the trajectory will contract to a point. That’s why 

this point is called a point attractor (fig. 3). A peri-
odic driving force causes a steady oscillation of the 
pendulum; the trajectory In phase space will be-

come a closed loop: now, the attractor is a limit cy-
cle (fig. 4). 

The pendulum possesses different coexistent limit 
cycles: starting with different initial conditions often 
leads to different final behaviour, sometimes (as in 
fig. 4) but not always according to the two “valleys” 
of the potential. The set of initial conditions evolv-
ing to a certain attractor is called the catchment re-
gion or the basin of attraction of that attractor. For 
Instance, our "Julia" at the top of this paper shows 
the catchment region of a point attractor coexisting 
with a chaotic attractor (see below) obtained with a 
system very similar to that of this paper (see at the 
end of this paper). 

In 1963 Lorenz 12) found an additional final behav-
iour: the chaotic attractor also called a strange at-
tractor. Its strangeness is due to the global stability 
and the local instability of its structure: Because of 
the exponential Increase of errors different initial 
conditions may cause a totally different behaviour 
on the microscopic level but the phase trajectories 
fill the same region In phase space. 

 

 
Fig. 3: Without driving force the behaviour of the pen-
dulum In attracted by a point attractor 

F
Fig. 4: : Limit cycle: Periodic driving force causes differ-
ent steady oscillations depending on the Initial condi-
tions) 
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Period doubling 
With small values for the amplitude f of the driving 
force the pendulum reaches a simple limit cycle 

(fig. 5 a). However, increasing f above 0.7445 two 
alternating amplitudes of oscillation are observed In 
the (δ, t)-diagram (fig. 5 b). In phase space two 
driving cycles are needed for the trajectory to be 

 

 

 

 

 
Fig. 5: Transition from order to chaos with increasing driving amplitude. a) f = 0.72, b) f = 0.752, c) f = 0.775, d) f = 
0.782, e) f = 0.809. Each motion in demonstrated by the (δ,t)- diagram, the phase projection ( ),δ δ!  and the correspond-
ing fourier spectrum. 
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closed. In the fourier spectrum an additional peak 
appears at one half of the driving frequency. Further 
Increase of the driving amplitude causes further pe-
riod doublings (fig. 5 c, d) until at about f = 0.78 the 
regular motion breaks down: the chaotic attractor 
occurs for the first time (fig. 5 e). 

Feigenbaum scenario 
To get an overview over all period doublings the 
displacement angles are stroboscopically registered 
synchronously with the driving force (sin z = 0) and 
plotted against the driving amplitude after the tran-
sients have settled to the final behaviour. The Fei-
genbaum diagram constructed in this way (fig. 6) is 
of great importance not one for the System pre-
sented here. As Feigenbaum [3] showed it is typical 

of the ordered way into chaos of a large class of 
systems. 

The method of reducing the dimensionality of the 
phase space by strobocopic registration of the sys-
tem coordinates was Introduced by Poincaré [4]. 
Therefore, it is called an Poincaré " section of the 
phase space. Fig. 7 shows a Poincaré section of a 
chaotic attractor. 

Until now, we restricted our interest to oscillations 
with small amplitudes around one of the equilibrium 
angles and oscillation minimas near the maximum 
of the potential at δ = 00. Therefore, the behaviour 
of the pendulum described so far represents only a 
small part of all its possibilities. Further increasing 
of the driving force causes the oscillation to 
“splash” over into the other valley of the potential at 
about f = 0.81 (fig. 8). In the following parameter 
interval (0.8 < f < 1.7) an alternating sequence of 
chaotic and regular behaviour is obtained in which 
different kinds of transitions (besides period dou-
bling e.g. intermittency [5]) may be observed. 

Experimental realisation 
The rotating pendulum allows to study transitions 
between order and chaos which are of 

Importance for a large class of systems. However, It 
has the disadvantage to be difficult to realize ex-
perimentally. That’s why we recently investigated 
the behaviour of another kind of rotating pendulum 
in more detail [6]: a wheel rotating around its axis 
and bound elastically to an equilibrium position 
(“Pohlsches Rad”). By means of an additional mass 
excentrically fixed to the wheel the restoring force 
becomes nonlinear and the potential takes on a form 
very similar to that shown In fig. 2. The results ob-
tained by simulation of that system are very similar 

 
Fig. 6: Transition from order to chaos an Feigenbaum diagram: 
100 values of the displacement angle δ at the times defined by 
sin z = 0 are plotted for 550 values of f after the decay of tran-
sients (after 50 driving periods). The framed picture shows a 
magnification of the f-Interval [O.79400, 0.79461] (200 values 
of δ after 200 driving periods). 

Fig. 7: Poincaré section of a chaotic attractor obtained at f 
= 1.35 

 
Fig. 8: The behaviour of the pendulum In a wide parame-
ter range. The region of fig. 7 in framed. 
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to those presented in this paper. Moreover, the nu-
merical results can be verified experimentally for 
some important parameter intervalls [7]. 

APPENDIX: Listing of the Integration Pro-
cedure (PASCAL) and program options 

The procedure listed below demonstrates how to 
calculate the following state (x, y, z, t) of the pendu-
lum from a given one by integrating the equation of 
motion by means of the Runge-Kutta method of 
fourth order. 

The following variables must be declared glob-
ally: 

- f, 

- rho ( )ρ=  

- omega0 ( )2

0 ,ω=  

- omega ( )2 ,ω=  

- omegaA ( ),aω=  

- alpha ( )α=  and 

- delta (stepwidth of integration (= period/step 
where period = 2π/omegaA and step = number 
of integration steps per period of the driving 
force)). 

- deltah and deltas (= the second and the sixth 
part of delta). 

PROCEDURE RungeKutta (VAR x, y, z, t : 
REAL); 

 TYPE chg = ARRAY [1. .2] OF REAL; 

 VAR k1, k2, k3, k4 : chg; 

PROCEDURE Change (x, y, z: REAL; VAR k: 
chg); 

VAR Sinus: REAL; 

 

BEGIN (* Change *) 

k [1] : =y; 

Sinus: = sin(x); 

k[2]:= rho*y – omoga0 * Sinus + omega * cos(x) * 
(alpha + Sinus) + f * sin(z); (* equation of motion ) 
END; ( Change *) 

 

BEGIN (* RungeKutta *) 

Change(x, y, z, k1); 

z: = z + omegaA * deltah; 

Change(x+k1[1]*deltah, y+k1[2]*deltah, z, k2); 

Change(x+k2[1]*deltah, y+k2[2]*deltah, z, k3); 

z: = z + omagaA * deltah; 

Change(x+k3[1]*delta, y+k3[2]*delta, z, k4); 

t: = t + delta; 

x: = x + (k1[1] + k2[1] + k2[1] + k3[1] + k3[1] + 
k4[1]) * deltas; 

y: = y + (k1[2] + k2[2] + k2[2] + k3[2] + k3[2] + 
k4[2]) * deltas; 

END; (* RungeKutta *) 

The term sin (z) takes only 2*step+1 different val-
ues. The program may be accelerated by storageing 
these values in an array. 

Our program offers the following options: 

- Plot of the effective potential for different values 
of α and Ω, 

- different presentations of the motion: 

- movielike plotting, 

- diagram plotting the displacement angle 
against time 

- attractor In the three-dimensional phase space 
( ), , ,tδ δ!  

- two-dimensional phase projection ( ), ,δ δ! and 
the possibility to change the presentation dur-
ing the calculation. 

- Before performing the calculation the following 
parameters may be chosen:  

- amplitude of driving force f,  

- length of the gallows α, 

- coefficient of friction ρ,  

- Initial values of displacement δ0 , and velocity 

0δ!  

- stepwidth for integration,  

- number of periods presented at once on the 
screen and  

- number of table the calculated values are to be 
stored in. 

- During the calculation it is possible to change  

- the presentation of the motion,  

- the dimensions of the diagram and  

- the parameters f, α and ρ. 
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- Little additional programs offer further possi-
bilitis:  

- the plot of Poincaré' sections (see fig. 7),  

- later presentation of calculated tables,  

- fourier transformations of calculated tables 
(see fig. 5  

- calculation of Feigenbaum diagrams plotting 
the displacement δ when the phase of the driv-
ing force vanishes against the amplitude of the 
driving force (see fig. 6, 8); during calculation 
all values of δ are stored,  

- later study of Feigenbaum diagrams with adi-
tional acoustic demonstration of the oscilla-
tions for arbitrary values of f. 

Literature 

[1] U. Backhaus, H. J. Schlichting: Ein Karussell 
mit chaotischen Möglichkeiten. Praxis der Na-
turwissenschaften/Physik 36, 14 (1987)  

[2] E. N. Lorenz: Deterministic nonperiodic flow. J. 
Atmos. Sci. 20, 130 (1963) 

[3] M. Feigenbaum: Universal Behaviour In Nonli-
near Systems. Los Alamos Science 1, 4 (1981) 

[4] H. Poincaré: Les méthodes nouvelles de la mé-
chanique cek~ste. Paris: Gauthier-Villars 1892 

[5] J. M. P. Thompson, H. B. Stewart: Nonlinear 
Dynamics and Chaos. Chicester: Wiley 1986 

[6] U. Backhaus, H. J. Schlichting: Auf der Suche 
nach Ordnung im Chaos. Der mathematisch na-
turwissenschaftliche Unterricht 42 (1989) (to be 
published) 

[7] K. Luchner, R. Worg: Chaotische Schwingun-
gen. Praxis der Naturwissenschaften (Physik) 
35, 9 (1986) 


