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Der pickende Specht —
Ein Spielzeug, Das Reibung Konstruktiv nutzt

B. Rodewald und H. J. Schlichting

1. Modellierung des Systems

Der pickende Specht ist ein im Handel erhétliches
Spielzeug. Bei diesem ist eine as Specht geformte
Masse m Uber eine Feder (Fe) an einer kleinen Hil-
se (H) befestigt, welche Uber eine senkrecht stehen-
de Stange gefihrt wird (Abb. 1). Gibt man dem
Specht einen kleinen Schubs, so schlagt er durch
Verformung der Feder mit seinem Schnabel an die
Stange und setzt diese pickende Bewegung — bel
gleichzeitigem Herabgleiten der Hilse an der Stan-
ge —mit auffallend grofRer Regel mafdigkeit fort.
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Abb. 1: Der pickende Specht.

Ein grob qualitatives Versténdnis des Systems 103t
sich aus der Analyse der Bewegung relativ leicht
gewinnen (BERGE 1982, S. 93): die Schwingung
des Spechts bewirkt unterschiedliche Orientierun-
gen von H, so dal3 infolge dieser Bewegung ein
standiger Wechsel zwischen Gleiten (Position 1)
und Haften (Position 2) von H an der Stange er-
folgt. Das System bewegt sich damit im Laufe der
Zeit herab, so dal’ potentielle Energie verfligbar und
Uber die Bewegungen von Hilse und Feder dem
Schwinger zugefiihrt wird. Diese Energie wird be-
nétigt, um die auftretenden Reibungsverluste auszu-
gleichen.

Eine derartig grobe Modellierung 183t allerdings
noch einige Fragen offen:

Wie kann der Specht selbsttétig seine Energiezufuhr
regeln?

- Wieso ist seine Bewegung so gleichméafig?

- Was bestimmt die Schwelle, unterhalb der die
Bewegung des Spechts auf jeden Fall abklingt?

Eine Beantwortung dieser Fragen erfordert eine ge-
nauere Analyse. Dazu werde ein mit H mitbewegtes
Koordinatensystem eingefuhrt (Abb. 1), in dem x =
0 die waagerechte Position der Feder und damit
senkrechte Lage der Hilse markiert. X, gibt die
Gleichgewichtslage des Spechtes an und ist durch
dessen Gewicht, durch das die Hilse verkantet
wird, wohl definiert (Haftreibung). Wir nehmen an,
dai3 das Gleiten in einem zu x = 0 symmetrischen
Bereich X [& xy erfolgt. (Dabei unterstellen wir,
dal3 die Massen von Feder und Hulse vernachlés-
sigbar sind.) Die durch die Krimmung von Fe auf-
tretende Bewegungskomponente von m senkrecht
zur x-Richtung braucht hier nicht betrachtet zu wer-
den, da sie von untergeordneter Bedeutung ist.

2. Die auf das System wirkenden Kréfte

Geht man von einer Geschwindigkeit proportiona-
len Ddmpfung des Systems ,, Specht” aus (Propor-
tionalitéts-konstante: k), so folgt (mit D as Richt-
grofRe der Feder) die Bewegungsgleichung:
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Fgrist eine auf m wirkende Kraft, welche durch den
Reibungsmechanismus an H entsteht und Uber Fe
auf m Ubertragen wird. lhre GrofRe héangt von der
Schwingerposition x ab und ist durch die Bewe-
gungsenergie gegeben, die die Hilse beim Ab-
bremsen pro Wegelement verliert, wahrend m sich
bei x befindet. Speziell ist also
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insbesondere ist damit Fg(xo,0) = 0

Die Gewichtskraft Fg = m/g 14t sich durch Uber-
gang zur Relativkoordinate q = x-Xg heraustrans-

formieren (DX0 = FG):
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Um fir Fgr einen sinnvollen Ansatz zu finden, sei
ndherungsweise angenommen, dal3 das Gleiten der
Hulse fir \x\< x,, durch den freien Fall approxi-

miert werden kann. Dann ist auch hier Fr = 0, s0
dai3 nicht verschwindende Kréfte nur momentan in
den Schwingerlagen x = + xy auftreten kdnnen. Zur
Charakterisierung dieser Kréfte sei die Abwaértsbe-



wegung des Schwingers, g > 0, ndher betrachtet.
Diese Bewegung verursacht eine Drehung der Hillse
im Uhrzeigersinn (vgl. Abb. 1), welche durch das
Verkanten und das damit einsetzende Haften durch
Reibung abrupt (idealerweise!) abgebremst wird.
Dieser nach oben gerichteten, der Drehung entge-
gengesetzten Bremskraft im Laborsystem entspricht
eine gleich grofle und entgegengesetzt gerichtete
Kraft Fr im mitbewegten System (,, Trégheitskraft”),
so dal3 also

FREL(H, q$0§>0-

Da die Abbremsung nahezu instantan erfolgt, geht
in die Groéfe Fy die gesamte kinetische Energie ein,
welche die Hilse vor dem Verkanten hatte. Diese
setzt sich (Laborsystem!) aus zwei Anteilen zusam-
men: Der eine rihrt von der bereits angesproche-
nen, abwarts gerichteten Schwingerbewegung des
Spechts her, und der andere ergibt sich aus der ver-
fligbar gewordenen potentiellen Energie — und das
heif3t: aus der Zeit, welche die Hilse vor dem Ab-
bremsen zum Fallen zur Verfligung hatte. Da diese
Zeit wiederum vom Schwinger selbst, genauer: von
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Abb. 3: Falzeiten At;, At,, Aty der Hillse, bevor der
Schwinger mit der Geschwindigkeit g < O den Ort xy
erreicht: Abhangigkeit von der Amplitude A (At, gehort
zur Geschwindigkeit).

seiner Amplitude A abhangt (s. Abb. 2). liegt hier
ein nichtlineares System mit Rickkopplung vor: Fgr
bestimmt A, A bestimmt wiederum Fg.

Analoge Uberlegungen lassen sich firr g < 0 und die
Stelle x = -x4 machen. Der Unterschied besteht

darin, da3
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ist, da der Energieanteil von H aufgrund der Bewe-
gung des Spechts fir diesen Fall geringer ist. Der
Schwinger ist bei der Aufwartsbewegung in —xy
dichter am Umkehrpunkt q = 0 als bei der Abwarts-
bewegungin +x .

Damit ergibt sich die Kraft Fr gemal3 Abb. 3.

Sie 1a’t mit Hilfe der beim Verkanten in +xy Uber-
tragenen Energien E.. auch formal ausdriicken:

Fr= E: B(x-xy)furq>0
-E. [(x+xy) furg< O .

Dieser Ansatz driickt aus, dafd dem Schwinger pro

Periode die Anregungsenergie
E.= E. + E = f FR(x,X) dx 1 Periode

zugefuihrt wird. Der Schwinger fuhrt also fir x # +

B4
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Abb. 2: Antriebskraft Fr des Schwingers

xy freie gedampfte Schwingungen aus und bekommt
bei xy (bzw. - x4) einen Anstol3, erleidet also einen
Geschwindigkeitssprung. Aber: Warum fihrt dieses
nicht zu einer unregelmékige Bewegung?

3. Energetik des Systems

Eine Antwort hierauf liefert die Energetik des Sy-
stems, die entscheidend durch die Anregungsener-
gie E, geprégt ist, welche dem Schwinger pro Peri-
ode zugefuhrt wird. Diese Energie E, ist — dieses
geht aus dem oberen bereits dargestellten Selbstre-
gulationsmechanismus hervor — stark amplituden-
abhéngig. Der qualitative Verlauf von E,(A) l&’t
sich mit Hilfe von Abb. 2 leicht ermitteln (siehe
Abb. 4): Jeder Anstol3 des Spechts mit der Amplitu-
de A < Xxg-xy reicht nicht aus, die Hilse zu lésen,
und ermdglicht damit keine weitere Energiezufuhr.

Fur A > xo-xy fangt die Hllse an zu gleiten, das Sy-
stem nimmt Energie auf, welche bei A [Jxg+Xx4 ihren
maximal mdglichen Wert erreicht (vgl. Abb. 2;
Amplitude Ay) und fir A > Xg+xy wieder geringer
wird. Da E, nicht negativ sein kann, geht der Graph
von E, dabei von einem konvexen in einen konka-
ven Verlauf Uber.
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Abb. 4: Anregungsenergie Ea und Démpfungsenergie Ed
am Schwinger. (Die Pfeile kennzeichnen die Systeme-
volution.

DaglJA und A sich Uber eine Periode kaum andert,
ist auch qJA. Damit ergibt sich ndherungsweise fur
die dissipierte Energie pro Periode:

Eq OA2 (weil [ Fq [gdtund Fy= k¢ 1.Periode),

so dal3 der Schwinger fir A < A, stets eine ge-
dampfte Schwingung vollfihrt und sich in den sta-
bilen Grenzpunkt der Ruhelage entwickelt. Fir A >
A. dagegen entnimmt der Schwinger mehr Energie
aus dem Reservoir (der potentiellen Energie), as er
durch Reibung dissipieren kann: Die Schwingung
schaukelt sich von selbst bis zu einer Amplitude Ay
auf und erreicht dort einen gtationdren Zustand, bei
dem zugefiihrte und abgefihrte Energie gleich sind.
Der Zustand ist ein sogenannter Grenzzyklus, dadie
Bewegung des Spechts im Phasenraum durch eine
geschlossene Kurve (Abb. 5) reprasentiert wird.

Dieses regelmaiBige Bewegungsmuster ist dadurch
stabilisiert, dad das System ,, Specht* offen ist und
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Abb. 5: Grenzzyklus des Schwingers

seine raumzeitliche Struktur durch stdndige Ent-
wertung der aufgenommenen Energie aufrechter-
halt. Reibung wirkt konstruktiv i. S. des Aufbaus

und der Erhaltung einer Struktur: sie dampft kleine
Stérungen der Ruhelage, sie dampft Amplituden-
fluktuationen A > Ay am Grenzzyklus und ist kon-
stitutiver Bestandteil eines Mechanismusses, der fur
Amplituden A mit A< A < Aq fir den Aufbau des
stationdren Bewegungsmusters sorgt. A, ist dabei
die kritische Grof3e, bei der das System den Struk-
turlbergang ,Ruhelage — Grenzzyklus' vollzieht.
(Derartige Strukturédnderungen findet man auch in
anderen Bereichen der Mechanik. (RODEWALD
1983)).

Zur experimentellen Uberpriifung obiger Uberle-
gungen haben wir das Spielzeug unter Verwendung
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Abb. 6: Weg- Zeit- Diagramm im Laborsystem

einfachen Stativmaterials in vergroRertem Mal3stab
nachgebaut, und mit Hilfe enes Infra
rot/Ultraschall-Gerétes der Fa. Conatex (CO 5002)
wurde das Weg-Zeit-Diagramm des Schwingers
aufgezeichnet (Abb. 6), welches die stabile, regel-
maldige Struktur des Bewegungsablaufes bestétigt.
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