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Der pickende Specht –

Ein Spielzeug, Das Reibung Konstruktiv nutzt

B. Rodewald und H. J. Schlichting

1. Modellierung des Systems

Der pickende Specht ist ein im Handel erhältliches
Spielzeug. Bei diesem ist eine als Specht geformte
Masse m über eine Feder (Fe) an einer kleinen Hül-
se (H) befestigt, welche über eine senkrecht stehen-
de Stange geführt wird (Abb. 1). Gibt man dem
Specht einen kleinen Schubs, so schlägt er durch
Verformung der Feder mit seinem Schnabel an die
Stange und setzt diese pickende Bewegung – bei
gleichzeitigem Herabgleiten der Hülse an der Stan-
ge – mit auffallend großer Regelmäßigkeit fort.

Ein grob qualitatives Verständnis des Systems läßt
sich aus der Analyse der Bewegung relativ leicht
gewinnen (BERGE 1982, S. 93): die Schwingung
des Spechts bewirkt unterschiedliche Orientierun-
gen von H, so daß infolge dieser Bewegung ein
ständiger Wechsel zwischen Gleiten (Position 1)
und Haften (Position 2) von H an der Stange er-
folgt. Das System bewegt sich damit im Laufe der
Zeit herab, so daß potentielle Energie verfügbar und
über die Bewegungen von Hülse und Feder dem
Schwinger zugeführt wird. Diese Energie wird be-
nötigt, um die auftretenden Reibungsverluste auszu-
gleichen.

Eine derartig grobe Modellierung läßt allerdings
noch einige Fragen offen:

Wie kann der Specht selbsttätig seine Energiezufuhr
regeln?

- Wieso ist seine Bewegung so gleichmäßig?

- Was bestimmt  die Schwelle, unterhalb der die
Bewegung des Spechts auf jeden Fall abklingt?

Eine Beantwortung dieser Fragen erfordert eine ge-
nauere Analyse. Dazu werde ein mit H mitbewegtes
Koordinatensystem eingeführt (Abb. 1), in dem x =
0 die waagerechte Position der Feder und damit
senkrechte Lage der Hülse markiert. x0 gibt die
Gleichgewichtslage des Spechtes an und ist durch
dessen Gewicht, durch das die Hülse verkantet
wird, wohl definiert (Haftreibung). Wir nehmen an,
daß das Gleiten in einem zu x = 0 symmetrischen
Bereich  x  < xH erfolgt. (Dabei unterstellen wir,
daß die Massen von Feder und Hülse vernachläs-
sigbar sind.) Die durch die Krümmung von Fe auf-
tretende Bewegungskomponente von m senkrecht
zur x-Richtung braucht hier nicht betrachtet zu wer-
den, da sie von untergeordneter Bedeutung ist.

2. Die auf das System wirkenden Kräfte
Geht man von einer Geschwindigkeit proportiona-
len Dämpfung des Systems „Specht” aus (Propor-
tionalitäts-konstante: k), so folgt (mit D als Richt-
größe der Feder) die Bewegungsgleichung:
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FR ist eine auf m wirkende Kraft, welche durch den
Reibungsmechanismus an H entsteht und über Fe
auf m übertragen wird. Ihre Größe hängt von der
Schwingerposition x ab und ist durch die Bewe-
gungsenergie gegeben, die  die Hülse beim Ab-
bremsen pro Wegelement verliert, während m sich
bei x befindet. Speziell ist also
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insbesondere ist damit FR (x0,0) = 0.

Die Gewichtskraft FG = m⋅g läßt sich durch Über-
gang zur Relativkoordinate q = x-x0 heraustrans-
formieren ( )GFDx =0 :
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Um für FR einen sinnvollen Ansatz zu finden, sei
näherungsweise angenommen, daß das Gleiten der
Hülse für 

Hxx <  durch den freien Fall approxi-

miert werden kann. Dann ist auch hier FR = 0, so
daß nicht verschwindende Kräfte nur momentan in
den Schwingerlagen x = ± xH auftreten können. Zur
Charakterisierung dieser Kräfte sei die Abwärtsbe-

Abb. 1: Der pickende Specht.
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wegung des Schwingers, q > 0, näher betrachtet.
Diese Bewegung verursacht eine Drehung der Hülse
im Uhrzeigersinn (vgl. Abb. 1), welche durch das
Verkanten und das damit einsetzende Haften durch
Reibung abrupt (idealerweise!) abgebremst wird.
Dieser nach oben gerichteten, der Drehung entge-
gengesetzten Bremskraft im Laborsystem entspricht
eine gleich große und entgegengesetzt gerichtete
Kraft FR im mitbewegten System („Trägheitskraft”),
so daß also
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Da die Abbremsung nahezu instantan erfolgt, geht
in die Größe FR die gesamte kinetische Energie ein,
welche die Hülse vor dem Verkanten hatte. Diese
setzt sich (Laborsystem!) aus zwei Anteilen zusam-
men: Der eine rührt von der bereits angesproche-
nen, abwärts gerichteten Schwingerbewegung des
Spechts her, und der andere ergibt sich aus der ver-
fügbar gewordenen potentiellen Energie – und das
heißt: aus der Zeit, welche die Hülse vor dem Ab-
bremsen zum Fallen zur Verfügung hatte. Da diese
Zeit wiederum vom Schwinger selbst, genauer: von

seiner Amplitude  A abhängt (s. Abb. 2). liegt hier
ein nichtlineares System mit Rückkopplung vor: FR

bestimmt A, A bestimmt wiederum FR.

Analoge Überlegungen lassen sich für q < 0 und die
Stelle x = -xH machen. Der Unterschied besteht
darin, daß
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ist, da der Energieanteil von H aufgrund der Bewe-
gung des Spechts für diesen Fall geringer ist. Der
Schwinger ist bei der Aufwärtsbewegung in –xH

dichter am Umkehrpunkt q = 0 als bei der Abwärts-
bewegung in +xH .

Damit ergibt sich die Kraft FR gemäß Abb. 3.

Sie läßt mit Hilfe der beim Verkanten in ±xH über-
tragenen Energien E± auch formal ausdrücken:

FR =   E+ ⋅δ (x-xH) für q > 0

         -E- ⋅δ(x+xH) für q < 0  .

Dieser Ansatz drückt aus, daß dem Schwinger pro
Periode die Anregungsenergie

 Ea = E+ + E- = ∫  FR (x,x) dx 1 Periode

zugeführt wird. Der Schwinger führt also für x ≠ ±

xH freie gedämpfte Schwingungen aus und bekommt
bei xH (bzw. - xH) einen Anstoß, erleidet also einen
Geschwindigkeitssprung. Aber: Warum führt dieses
nicht zu einer unregelmäßige Bewegung?

3. Energetik des Systems
Eine Antwort hierauf liefert die Energetik des Sy-
stems, die entscheidend durch die Anregungsener-
gie Ea geprägt ist, welche dem Schwinger pro Peri-
ode zugeführt wird. Diese Energie Ea ist – dieses
geht aus dem oberen bereits dargestellten Selbstre-
gulationsmechanismus hervor – stark amplituden-
abhängig. Der qualitative Verlauf von Ea(A) läßt
sich mit Hilfe von Abb. 2 leicht ermitteln (siehe
Abb. 4): Jeder Anstoß des Spechts mit der Amplitu-
de A < x0-xH reicht nicht aus, die Hülse zu lösen,
und ermöglicht damit keine weitere Energiezufuhr.

Für A > x0-xH fängt die Hülse an zu gleiten, das Sy-
stem nimmt Energie auf, welche bei A ≅  x0+xH ihren
maximal möglichen Wert erreicht (vgl. Abb. 2;
Amplitude A2) und für A > x0+xH wieder geringer
wird. Da Ea nicht negativ sein kann, geht der Graph
von Ea dabei von einem konvexen in einen konka-
ven Verlauf über.

Abb. 2: Antriebskraft FR des Schwingers

Abb. 3:  Fallzeiten ∆t1, ∆t2, ∆t3 der Hülse, bevor der
Schwinger mit der Geschwindigkeit q < 0 den Ort xH

erreicht: Abhängigkeit von der Amplitude A (∆t4 gehört
zur Geschwindigkeit).
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Da q∼  A und A sich über eine Periode kaum ändert,
ist auch q∼  A. Damit ergibt sich näherungsweise für
die dissipierte Energie pro Periode:

 Ed ∼  A² (weil  ∫  Fd ⋅ qdt und Fd = k ⋅ q   1.Periode),

so daß der Schwinger für A < Ac stets eine ge-
dämpfte Schwingung vollführt und sich in den sta-
bilen Grenzpunkt der Ruhelage entwickelt. Für A >
Ac dagegen entnimmt der Schwinger mehr Energie
aus dem Reservoir (der potentiellen Energie), als er
durch Reibung dissipieren kann: Die Schwingung
schaukelt sich von selbst bis zu einer Amplitude Ast

auf und erreicht dort einen stationären Zustand, bei
dem zugeführte und abgeführte Energie gleich sind.
Der Zustand ist ein sogenannter Grenzzyklus, da die
Bewegung des Spechts im Phasenraum durch eine
geschlossene Kurve (Abb. 5) repräsentiert wird.

Dieses regelmäßige Bewegungsmuster ist dadurch
stabilisiert, daß das System „Specht“ offen ist und

seine raumzeitliche Struktur durch ständige Ent-
wertung der aufgenommenen Energie aufrechter-
hält. Reibung wirkt konstruktiv i. S. des Aufbaus

und der Erhaltung einer Struktur: sie dämpft kleine
Störungen der Ruhelage, sie dämpft Amplituden-
fluktuationen A > Ast am Grenzzyklus und ist kon-
stitutiver Bestandteil eines Mechanismusses, der für
Amplituden A mit Ac< A < Ast für den Aufbau des
stationären Bewegungsmusters sorgt. Ac ist dabei
die kritische Größe, bei der das System den Struk-
turübergang „Ruhelage → Grenzzyklus“ vollzieht.
(Derartige Strukturänderungen findet man auch in
anderen Bereichen der Mechanik. (RODEWALD
1983)).

Zur experimentellen Überprüfung obiger Überle-
gungen haben wir das Spielzeug unter Verwendung

einfachen Stativmaterials in vergrößertem Maßstab
nachgebaut, und mit Hilfe eines Infra-
rot/Ultraschall-Gerätes der Fa. Conatex (CO 5002)
wurde das Weg-Zeit-Diagramm des Schwingers
aufgezeichnet (Abb. 6), welches die stabile, regel-
mäßige Struktur des Bewegungsablaufes bestätigt.
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Abb. 4: Anregungsenergie Ea und Dämpfungsenergie Ed
am Schwinger. (Die Pfeile kennzeichnen die Systeme-
volution.

Abb. 5: Grenzzyklus des Schwingers

Abb. 6: Weg- Zeit- Diagramm im Laborsystem


