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Hands-on physics with paper clips 
 

Christian Ucke and Joachim Schlichting 
 

Paper clips are omnipresent. Amazing hands-on physics experiments can be 
done with them. Paper clips are obtainable practically everywhere and can be 

handled easily. 
 

 
The invention of the paper clip is attributed to the Norwegian Johan 
Vaaler. He patented it in 1899 in Germany since Norway had no 
Patent Office. In 1999, a stamp appeared to conmemorate this great 
invention (figure 1). Vaaler did not market his invention. That 
happened a short time later in the United States, where a former 
USA-patent is even referred to. In the meantime, a variety of different 
forms of paper clips exists. Billions are used annually.  
 
Tops from paper clips  
 
How can you make a top out of a paper-clip? Takao Sakai from Japan 
has described some interesting possibilities [1]. To actually build the 
top, turn the wire paper-clip in a circle around an axis so that the top’s 
center of gravity is in the axis (figure 2). For this, the angle ß between 
the spokes must be about 53°. Calculation of this angle is a nice task 
for first year physics students (see info-box 1). The construction, 
observation and understanding of the top itself is an entertaining exer-
cise for children and scientists. For the real construction, it is better to 
use paper clips with a soft wire. They can even be distorted without 
tongs. It is not important to realize the exact angle and the circle-
form. It is only essential that the center of gravity lie in the axis. 
Many additional top forms can be realized [2].  
 
The construction of a tippe-top from a paper clip is unusually simple 
(figure 3). Kamishina has published such a construction [3]. As you 
can see from the figure, the center of gravity of the top doesn't 
coincide with the center of the major circle. That is characteristic for 
the construction of the classical tippe-top, that normally consists of a 
part of a sphere with a stem. Starting the spin of this tippe-top is 
somewhat arduous since it must be touched at the circle-edge outside 
and therefore does not achieve high revolution speed. The effect 
however, is clearly visible. It works somewhat better if you push the 
opposite sides of the top with your forefingers (each side into the 
opposite direction). But that needs practice.  
 
Unfortunately, there is no simple explanation for the behavior of the ti
formulated in a few sentences. For almost a hundred years, physicists ha
applicable description in various publications. Only few descriptive as
from the complex mathematical expressions. As an exercise for advan
the tippe-top is discussed by Kuypers [4].  
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Fig. 1: The paper clip 
was invented in Nor-
way in 1899. 
Fig. 2 : A top bent from a 
paper clip 
 
 
Fig. 3 : A tippe-top made 
from one big paper clip 
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Chains with paper clips  

 

Fig. 4 : Catenary curve  with 16 
paper clips 

 
Which shape does the curve of a chain or a flexible cable or 
rope suspended from its two ends take? Galileo Galilei himself 
asked himself this question– and answered it incorrectly. He 
thougth it was a parabola. The correct curve wasn’t derived until 
the end of the 17th century, by the brothers Jacob and Johann 
Bernoulli as well as by Gottfried Wilhelm Leibniz. It is the so-
called catenary curve, which is the cosine hyperbolicus function 
(cosh), that can also be expressed as sum of two exponential 
functions. The derivation of the catenary curve can be found in 
many mathematical textbooks as well as books about mechanics 
and thus is not shown here. 
 
The catenary curve can be constructed well with an adequate 
number of paper clips. The more paper clips used, the better the 
approximation to the ideal curve. With fewer paper clips, the 
length and the connection between the paper clips play a role. In 
figure 4 the ideal catenary curve and a parabola of the same 
length are sketched over a chain with 16 paper clips. You can 
clearly recognize that the red catenary curve corresponds with 
the paper clip-chain, but the blue parabola doesn’t. The 
difference between a catenary curve and a parabola is especially 
distinctive with a relatively strong sag as in figure 4.  
 
If heavy weights hang on each link of a chain, as for example 
with suspension bridges, the curve really changes from a 
catenary curve to a parabola (see info box 2). This case can also 
be constructed with paper clips. In figure 5 the same chain of 
paper clips as in figure 4 is weighted with heavy pieces built 
from long chains of paper clips with a total mass at least twenty 
times larger than the mass of one paper clip (~ 0,37g). The 
number of the paper clips (the size of the mass) must have a 
certain relationship to the slope of the relevant section of the 
parabola curve:  the closer to the ends of the chain, the smaller 
the weight (for example of the section of roadway on a bridge) 
which the link carries. 
 
In this case the agreement with the parabola (blue) can be 
recognized clearly. By the relatively heavy weight suspended at 
the lowest link of the chain, the curve is pulled further 
downward than the catenary curve.  
 
With physics simulation programs like Interactive Physics [5] or 
XYZet [6] you can also illustrate the situations described very 
nicely. In figure 6, you can see the simulation of a catenary 
curve with 16 unweighted links (thick, red line), a 'suspension 
bridge' equipped with corresponding weights, (thick, blue pa-
rabola), and an ideal parabola (thin, green line), all overlaid on 
one another. With a real suspension bridge, the vertical sus-
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Fig. 5 : Parabola with 16 
paper clips and weights.  
An ideal parabola (blue) is
sketched  over it. The entire 
length of the hanging paper 
clip weights isn’t shown here.
 
Fig. 6 : Simulation of a cate-
nary curve  and a parabola
using ‘Interactive Physics’ 
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pender cables are equidistant from one another (this can also be simulated with the program). 
In figure 6, however, the points on the main suspension cable where the vertical suspender 
cables are fastened are equidistant from one another. 
 
In the WEB you can find many links under the term ‘catenary curve’, and also historical re-
marks and derivations. Furthermore, there are very descriptive applets that clarify the differ-
ence between the catenary curve and the parabola.  
 
 
 
 
Info-box 1 (the Sakai top)  
 

 
 

Fig. 7: A view of the paperclip top 
from above 

In figure 7 the top is pictured from above. If the angle 
between the spokes is too large or too small, the total 
center of gravity will not be located in the middle of the 
circle. For calculation of the correct angle you can limit 
yourself to the calculation of the center of gravity of 
both spokes and the opposite small arc with the length 
s. The other (red) parts of the arc are symmetrical to the 
center of the circle and therefore don’t need to be taken 
into consideration. It is helpful to introduce the half 
spoke angle α. 
 

 In figure 8 the spokes and arc are shown by heavy 
lines. The center of the circle becomes the origin of the 
coordinate system. The distance between the center of 
gravity of the arc and the origin is x1. Because of the 
symmetry to the x-axis, if s is the length of the arc, the 
center of gravity can be calculated with the line integral 
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Fig. 8: For calculation of the center of 
gravity only the spokes and the arc op-
posite these are taken into considera-
tion. 

 
If ρ is the density of the wire per unit length and A the 
cross sectional area, then the mass of the arc is m1 = 
s⋅ρ⋅Α. With respect to the origin the arc has a torque 
 

        M1 = m1⋅x1 = 2⋅r2⋅sinα⋅ρ⋅A. 

The center of gravity of the spokes is at x2 = r/2⋅cosα, 
the mass is m2 = 2⋅r⋅ρ⋅Α. The torque generated by the 
spokes with respect to the origin is 

        M2 = m2⋅x2 = r2 cosα⋅ρ⋅A. 

When the expressions for the two torques are equated, 
the result is tanα = 0.5, i.e. α = 26.565°. The angle be-
tween the spokes is then ß = 2α = 53.13°. 
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Info-box 2 (suspension bridge parabola)  
 
Strongly simplified and idealized, the form of the 
curve of the main cable of a suspension bridge can 
be derived in the following way:  
Three forces, whose vectorial addition must com-
pensate itself exactly (figure 9), act in a point P of 
the main cable of a suspension bridge. First, the 
force G of a part of the street with the length x acts 
vertically downward. Secondly, a horizontal force 
S is exerted by the tension of the cable. This force 
is constant over the whole cable. Thirdly, a force F 
acts in the direction of the tangent to the cable. 
This tangential force corresponds exactly to the slope at point P.  

S
x

S
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Let’s take µ as the weight per unit of length of the roadway suspended at the cable. The coor-
dinate origin 0 is located at the root-point of the curve. The weight G acting at the point P is 
then exactly G = µ·x. If we mark the height of the cable with y at the point x, then the slope at 
this point is 
 

 
 
 

 

Through integration from this equation we get  
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Since the origin 0 of the curve is located at the root-point, the integration constant is C = 0 .  
Consequently, the form of the curve is a parabola.  
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Additional material can be downloaded from: 
Video of a paper clip tippe-top: http://www.wiley-vch.de/berlin/journals/phiuz/05-01/stehaufkreisel.mpg
Catenary curves with simulation programs: http://www.wiley-vch.de/berlin/journals/phiuz/05-01/kettenlinie.zip  
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Fig. 9: A parabola emerges as a curve form for 
the main cable of a suspension bridge.  
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