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Papierhubschrauber
Von Hans Joachim Schlichting und Bernd Rodewald

Rotierende Papierflieger als Unter-
richtsgegenstand
Papierflieger sind  zum Leidwesen vieler Lehrer
bei den Schülern sehr beliebt. Man wird daher si-
cherlich auf deren Interesse stoßen, wenn man Pa-
pierflieger zum Gegenstand des Unterrichts
macht.

Besonders reizvoll erscheint uns insbesondere der
Papierhubschrauber; den wir hier betrachten wol-
len. Es handelt sich um einen Flieger, der einfach
losgelassen wird und - sich um die eigene Achse
drehend - langsam zu Boden geht. Er ähnelt damit
den Flugsamen mancher Pflanzen (z. B. den
Ahornsamen; [1], [2]).

Gemeinsam ist diesen Flugobjekten nicht nur der
faszinierende Mechanismus, durch den die Rotati-
on ,,angeworfen" und gesteuert wird, sondern
auch die bemerkenswerte Stabilität und Präzision,
mit der der „Flug" abläuft.

Das führt zu einer Reihe physikalisch interessanter
Fragen:

• Warum fällt das jeweilige Objekt nicht wie ein
Stein?

• Wieso schaukelt sich die Rotation nicht ad infi-
nitum auf?

• Welche Mechanismen regulieren den stationären
Flugzustand?

• Wie lassen sich die Zustandsparameter des sta-
tionären Flugs beeinflussen?

Wir werden diese Fragen an dieser Stelle für den
Papierhubschrauber (P.H.) beantworten, welcher
trotz seiner vielseitigen physikalischen Aspekte
unseres Wissens bisher noch nicht in der didakti-
schen Literatur diskutiert wurde. Die Antworten
werden in ihrer qualitativen Form im Grenzfall
sehr schmaler Flügel auf den Ahornsamen über-
tragbar sein.

Der P. H. ist leicht und billig herstellbar und da-
mit für Schülerversuche hervorragend geeignet. Er
ist problemlos variierbar und auf definierte Weise
manipulierbar. Dieses betrifft vor allem sein Ge-
wicht, die Flügellänge, die Flügelbreite, die Flü-
gelrichtung, die Form etc.

Die Konstruktion des P.H. ist einfach und z. B. in
[3] beschrieben. Abb. 1 liefert einen Konstrukti-
onsplan:

Aus den beiden Hälften des oberen Papierstreifens
werden durch Knicken nach vorn und nach hinten
die Flügel; aus dem unteren Teil entsteht durch
Umlegen der Seitenteile zur Mitte und (evtl.
mehrmaliges) Umfalten des dabei entstehenden
Fußendes der Rumpf. Die Abmessungen der Teile
sind relativ weit variierbar und für das Flugver-
halten unkritisch.

Die Fallbewegung des Papierhub-
schraubers
Der P.H. läßt sich durch drei Zustandsparameter
kennzeichnen: durch die Sinkgeschwindigkeit vs,
die  Drehfrequenz ω und den Winkel α, welcher
die Richtung der Flügel relativ zur Lotrechten an-
gibt. Wir werden zur Bestimmung der Phänomene
im folgenden ein mit dem P.H. bewegtes Bezugs-
system benutzen und zunächst  den  Sinkvorgang
genauer betrachten.

Fällt der P.H. im Labor mit einer Sinkgeschwin-
digkeit vom Betrage vs, so wird im mitbewegten
Bezugssystem ein Luftstrom nach oben registriert,
dessen Geschwindigkeit ebenfalls die Größe vs

hat. Dieser Luftstrom behält i. w. seine Richtung
bei, wird allerdings durch die Wechselwirkung
mit dein Flieger schließlich anf die Geschwindig-
keit ve abgebremst. Auf die Luft wirkt also eine
Kraft, welche als reactio eine nach oben gerichtete
Kraft auf den P.H. zur Folge hat. Vom Laborsy-
stem aus betrachtet wirkt sie der Gewichtskraft
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GF
!

 des Fliegers entgegen. Im Verlauf der Fallbe-

wegung wird sie schließlich so groß, daß 
GF
!

 voll-

ständig kompensiert wird: Dann fällt der P.H.
kräftefrei und demzufolge mit konstanter Sinkge-
schwindigkeit.

Die Abbremsung der anströmenden Luft erfolgt i.
w. durch die Flügel des P.H., also innerhalb eines
größeren Raumbereichs. Man kann jedoch den
Wind und seine Wirkungen auf die Flügel in je-
weils einem Punkt, dem sog. Druckpunkt, angrei-
fend denken. (Die Konstruktion dieses Punktes ist
der Konstruktion des Schwerpunktes ähnlich; si-
che z. B. [4].)

Haben die Flügel die Länge l, so habe der jeweili-

ge Druckpunkt (D.P.) den Abstand pll =~
(0 ≤ p

≤ 1) zur Rumpfoberkante des P.H. (Abb. 2). Sein
Abstand zur senkrechten Mittelachse des P.H.
(zum Punkt D) sei d. d hängt über r = l

~ ⋅sinα vom
Winkel α ab, welcher die Richtung des jeweiligen
Flügels angibt. r ist dabei der Radius eines Krei-
ses in Höhe der Druckpunkte, an dem die Flügel
tangential anliegen.
Genauer entnimmt man der Abb. 2 für d Bezie-
hung

γcos

r
d = (1)

wobei γ durch

r

b
tg

2/=γ (2)

mit b als Flügelbreite festgelegt ist. Mit der Ab
kürzung

αsin~ ==
l

r
q (3)

läßt sich Gl.(2) auch in der Form

qpl

b
tg

⋅
=

2
γ (4)

angeben. Grundsätzlich ist dabei die Größe von p
bzw. l

~
 (d. h. die Lage des Druckpunktes) vom

jeweils herrschenden Strömungsfeld abhängig.
Hier sei jedoch idealerweise angenommen, daß
die Lagevariationen des Druckpunktes hinrei-
chend klein, zumindest jedoch vernachlässigbar
sind gegenüber allen anderen auftretenden Para-
metervariationen, so daß p bzw. l

~
 näherungswei-

se als konstant angesehen werden kann. v
!

 be-
zeichnet die Geschwindigkeit der den P.H. durch-
strömenden Luft in der Höhe der Flügeldruck-
punkte. Ein plausibler Ansatz für die Größe von
v
!

 ist dann das arithmetische Mittel aus vs und ve.
(Dieses ist in der Windmühlentheorie üblich; si-
che z. B. [5]):

( )es vvv +=
2

1

( )
s

e

v

v
kmitkv =+= 1

2

1
(5)

Es ist bei Ahornsamen empirisch bestätigt, daß
das Geschwindigkeitsverhältnis k (0 ≤ k ≤ 1) nä-
herungsweise als Konstante angesehen werden
kann, so daß also v ~ vs [6]. Wir setzen diese Zu-
sammenhänge auch für den P.H. als gültig voraus.
Die extremalen Werte 0 und 1 für k sind aller-
dings relativ irreal: k = l bedeutet keine Ge-
schwindigkeitsänderung der Luft und damit kei-
nerlei abbremsende Kraft auf den P.H.; k = 0 be-
deutet, daß sich die Luft hinter den Flügeln des
P.H. staut und damit nichts mehr nachströmen
kann, so daß die Einströmgeschwindigkeit eben-
falls zu 0 wird. Der reale Wert wird - je nach
Bauweise des Flugobjekts - irgendwo zwischen
den beiden Grenzfällen liegen.

In Abb. 2 ist der Vektor v
!

 eine zum Flügel pa-

rallele ||v
!

und eine zum Flügel senkrechte Kom-

ponente ⊥v
!

,zerlegt. Für die folgenden Überle-

gungen ist vor allem ⊥v
!

 bedeutsam. Nach Gl. (5)

gilt:

q
k

vvv s ⋅+⋅=⋅=⊥ 2

1
sinα!

(6)

Abb. 2: Geometrie des Papierhubschraubers und die
auftretenden Windgeschwindigkeiten (s. Text);
a) perspektivische Darstellung, b) Darstellung der
Verhältnisse am Flügel aus der Vogelperspektive
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Die Rotation des Papierhubschrau-
bers
Das Einsetzen der Rotation

Man kann sich fragen, warum sich der P.H. nicht
wie ein Stein verhält, d. h. nach anfänglicher Be-
schleunigung schließ]ich mit konstanter Ge-
schwindigkeit vs zu Boden fällt, ohne dabei zu ro-
tieren (ω = 0).

Zwar gelingt es mitunter, den P.H. ohne Rotation
fallen ~ lassen, wenn dafür Sorge getragen wird,
daß die Flügel vertikal ausgerichtet sind (α = 0).
In diesem Fall strömt die Luft parallel an den Flü-

geln vorbei ( ⊥v
!

 = 0), und es tritt folglich keine

Wechselwirkung auf, die eine Rotation hervorru-
fen könnte. (Dabei vernachlässigen wir den durch
den Parallelstrom am Flügelende induzierten Wi-
derstand.)

Allerdings ist dieser Zustand (vs = konst., ω = 0, α
= 0) nicht stabil. Bereits kleinste Abweichungen
von α = 0, die durch stets vorhandene Störungen
bedingt sein können, führen zu einer Wechselwir-

kung mit der Luft ( ⊥v
!

 > 0). Als Folge davon tritt

eine Kraft am Flügel auf, welche nicht - wie man
naiverweise vielleicht erwartet - die Flügel zu-
sammendrückt, sondern ganz im Gegenteil eine
Rotation anfacht und als eine Folge davon die
Flügel noch weiter öffnet.

Um zu verstehen, wie ein Drehmoment am P.H.
entstehen kann, betrachten wir die Vorgänge an-
hand von Abb. 3 etwas genauer.

Die mit der Geschwindigkeit ⊥v
!

 die Flügel an-

strömende Luft bewirkt im Druckpunkt des einen
Flügels eine Luftkraft 

LF
!

 und am anderen Flügel

die betragsmäßig gleiche Kraft '

L
F
!

. Die Richtung

von, ist insofern durch die Richtung von ⊥v
!

 be-

stimmt, als diese Kraft in einer Ebene liegt, wel-
che senkrecht zum Flügel steht und durch den
Druckpunkt geht. (Diese Ebene ist in Abb. 3a) mit
E bezeichnet.)

Im einfachsten Fall einer symmetrischen Umströ-

mung der Flügel stehen 
LF
!

 und '

L
F
!

 darüber hin-

aus sogar zunächst senkrecht zum Flügel, so daß
sich in der Aufsicht das Bild der Abb. 3b ergibt.

Dabei sind mit 
HLF ;

!
 und '

,HLF
!

 die Horizontal-

komponenten der Luftkräfte 
LF
!

 und '

L
F
!

 zu se-

hen. Der eingezeichnete Kreis mit Radius r wurde
bereits weiter oben (vgl. Abb. 2) eingeführt.

Man entnimmt der Abb. 3b, daß an den Flügeln
des P.H. ein Kräftepaar vorhanden ist, welches ein

Drehmoment um den Drehpunkt D bewirkt. Die-
ses entsteht unabhängig von der Größe von α und
kommt offensichtlich dadurch zustande, daß die
Flügel nicht achsensymmetrisch, sondern punkt-
syrnmetrisch zueinander liegen.

Für das Drehmoment M ergibt sich

βsin, ⋅⋅= HLFdM  (7)

Dabei ist 
HLF ;

!
⋅sinβ die für das Moment wirksame

Kraftkornponente. Sie steht senkrecht auf dem

Richtungsvektor d
!

, welcher vom Drehpunkt zum
Druckpunkt weist und die Länge d hat. (In Abb. 3

ist der  Winkel β zwischen d
!

 und 
HLF ;

!
 genauso

groß wie γ, da 
LF
!

 

hier senkrecht auf dem Flügel

steht und 
HLF ;

!
 damit in eine zum Flügelquer-

schnitt senkrechte Richtung weist.) Solange die

Vektoren d
!

 und 
HLF ;

!
 nicht übereinander liegen,

ist diese Kraftkomponente von Null verschieden
und führt darnit zur Anfachung einer Rotation (in
Abb. 3b) entgegen dem Uhrzeigersinn). Da dar-
über hinaus als Folge auch α wächst, entfernt sich
der P.H. immer mehr vom stationären Zustand (vs

= konst., ω = 0, α = 0). Dieser ist also instabil.

Die Begrenzung der Drehfrequenz

Abb. 3: Luftkräfte an den Flügeln kurz vor Einsetzen
der Rotation
a)Seitenansicht, b) Aufsicht
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Da eine solche Aufschaukelung sich nicht endlos
fortsetzen kann, sondern erfahrungsgemäß in ei-
nem stationären Endzustand mündet, stellt sich die
Frage nach den begrenzenden Effekten.

Mit zunehmender Rotationsfrequenz weicht - vom
P.H. ausgesehen - die ,,Windrichtung" immer

mehr von der durch ⊥v
!

 gegebenen Richtung ab

(Abb. 4). Bezeichnet man die Geschwindigkeit

dieses „Windes" mit wv
!

, so setzt sie sich nämlich

aus zwei Anteilen zusammen: aus der bereits er-

klärten Geschwindigkeit ⊥v
!

 

und einer horizonta-

len, parallel zum Flügelquerschnitt orientierten

Geschwindigkeit hv
!

. Sie kommt durch die Rota-

tion zustande.

Somit gilt: vh = ω⋅r (8)

vh vergrößert sich also mit ω, und da ⊥v
!

 mit vs

wächst folgt hieraus zunächst einmal, daß die

Luftkraft 
LF
!

 

(analog '

L
F
!

) zu Beginn des Falls

betragsmäßig wächst.

Neben dem Betrag ändert sich jedoch auch die
Richtung von 

LF
!

.

Wir erläutern dieses für die Phase des Falls, wo
die Sinkgeschwindigkeit des P.H. bereits in der
Nähe des stationären Wertes liegt. Dann vergrö-
ßert sich v⊥  kaum noch, während vh bei nichtver-
schwindendem Drehmoment M immer größer
wird.

Abb. 4 veranschaulicht die Auswirkungen auf die
Luftkraft 

LF
!

 in der oben definierten Ebene e

(analog für '

L
F
!

 am anderen Flügel). Die Situation

unterscheidet sich von dem in Abb. 3 dargestellten
Fall, in dem sich 

LF
!

 nur als Widerstand bemerk-

bar macht, da 
LF
!

 dort in Richtung des wirksamen

„Windes" zeigt, in die per Definition auch die so-
genannte Widerstandskraft , 

WF
!

 weist.

In Abb. 4 dagegen steht wegen vh ≠ 0 der wirksa-
me „Wind" nicht mehr senkrecht auf dem Flügel,
weshalb sich an ihm auch eine Kraft senkrecht zur
Windrichtung, die sogenannte Auftriebskraft 

AF
!

,

bemerkbar macht. Dementsprechend ist hier 
LF
!

 ≠

WF
!

; viel mehr gilt:

LF
!

 = 
AF
!

 + 
WF
!

(9)

Abb. 4 verdeutlicht den Effekt einer zunehmend
größer werdenden horizontalen Geschwindig-
keitskomponente infolge einer sich aufschauenden
Drehfrequenz: Geht man davon aus, daß das Ver-
hältnis von Auftriebs und Widerstandskraft

W

A

W

A

c

c

F

F ==δ  (10)

näherungsweise als konstant angesehen werden
kann) so wird bei zunehmender Horizontalkom-
ponente des „Windes" mit 

WF
!

 auch 
LF
!

 immer

stärker nach links „gekippt" (cA = Auftriebsbei-
wert; cW = Widerstandsbeiwert; siehe z. B. [4]).
Fällt schließlich der „Wind" hinreichend flach auf
den Flügel ein, so kommt 

LF
!

 über dem weiter

oben definierten Vektor d
!

 zu liegen (Abb. 4b).
Dann ist die Horizontalkomponente 

HLF ,

!
 von 

LF
!

Abb. 4: Abhängigkeit der Richtung 
LF
!

 von der  horizontalen Geschwindigkeit vh und damit von ω. Geht

man von Abb. a) zu Abb. b) über, so wird vh , größer und dementsprechend 
LF
!

 stärker nach links zum

Vektor d
!

 „gekippt“. In Abb. b) liegt 
LF
!

 über d
!

.
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antiparallel zu d
!

 gerichtet, was β = 0 und demzu-
folge M = 0 bedeutet. Daher wird ω nicht beliebig
groß, sondern kann nur solange wachsen, bis die-
ses verschwindende Drehmoment ωsich eingestellt
hat.

Die Stellung der Flügel
Wir haben bereits angedeutet, daß eine vertikale
Ausrichtung der Flügel nicht stabil ist. In der Tat
beobachtet man, daß α merklich schnell anwächst
und in der Regel Werte um 80° erreicht.

Wieso öffnen sich also die Flügel, so daß α = 0
eine instabile Flugstruktur darstellt? Der Grund

liegt im Auftreten einer Zentrifugalkraft 
ZF
!

 mit

FZ = mFl⋅d‘⋅ω2 (11)

welche im Schwerpunkt des Flügels angreift, so-
bald die Rotation eingesetzt hat (mFl ist die Masse
eines Flügels; d' bezeichnet nach Abb. 5 den Ab-
stand des Flügelschwerpunktes von der Drehach-
se). Die Kraft 

ZF
!

 versucht, den Flügel um die

Knicklinie am Rumpf nach unten zu drehen, wäh-
rend die Luftkraft 

LF
!

 den Flügel aufzurichten

versucht. Genauer ergibt sich das folgende Bild:

Entscheidend für das im Uhrzeigersinn drehende
Moment ist die senkrecht auf dem Flügel stehende

Komponente 
ZF
!~

 

cosα der Zentrifugalkraft, und

entscheidend für das entgegengesetzt drehende
Moment ist die senkrecht auf dem Flügel stehende

Komponente ⊥,LF
!

 der Luftkraft 
LF
!

. (Bem.: In

Abb. 3a) ist die spezielle Situation 
LF
!

 = ⊥,LF
!

dargestellt.)

α vergrößert sich dann, wenn

lFF F

~

2

1
cos

~
, ⋅>⋅⋅ ⊥α . (12)

Diese Ungleichung ist aber gerade für kleine
Winkel α gut erfüllt. Denn im Grenzfall α → ∞
strebt die rechte Seite von (12) wegen ⊥,LF

!
~v2

⊥

und v⊥  ~

 

sinα mit sin2α gegen Null, während die

linke Seite wegen 
ZF

~
 = FZ⋅cosε,

αε sin~
'

'
cos

d

r=  und FZ nach Gl.(11) nur mit

sinα gegen Null strebt, wenn das Vorhandensein
einer Drehung einmal vorausgesetzt wird (ω ≠ 0).
Der Zustand α = 0 ist also instabil, die Flügel
weiten sich auf.

Ähnlich wie bei der Diskussion der Drehfrequenz
hat auch das Wachstum von α seine Grenze Sie ist
dann erreicht, wenn in (12) das Gleichheitszei-
chen steht. Dieses ist bei hinreichend großem a
der Fall, da die rechte Seite von (12) mit wach-
sendem a durch die damit verbundene Vergröße-
rung von v⊥  wächst, während die linke Seite we-
gen des cos-Faktors immer kleiner wird. Hieraus
folgt insbesondere, daß α niemals 90° werden
kann.

Die Stabilität des stationären Zu-
stands
Die Ausführungen in den vorangegangenen Ab-
schnitten liefern eine physikalische Begründung
dafür warum der P.H. schließlich einen stationä-
ren Zustand mit wohldefinierten Werten der Zu-
standsparameter vS, ω und α erreicht.

Die Beobachtung zeigt, daß dieser Zustand auch
stabil ist, daß kleine zufällige Störungen des Sy-
stems also wieder abgebaut werden. Auch diese
Tatsache läßt sich jetzt verstehen:

•Stabilität der Sinkgeschwindigkeit: Der stationä-
ren Wert ergibt sich aus dem Gleichgewicht  von
Gewichtskraft und gesamter, am P.H. wirksamer
Luftkraft 

gesLF ,

!
= 

LF
!

 + 
LF ′
!

 welche nach oben ge-

richtet ist und mit vS monoton wächst. Liegt vS zu-
fällig unter dem stationärem Wert, so überwiegt
die Gewichtskraft der Kraft 

gesLF ,

!
 der P.H. wird

beschleunigt und vS erreicht wieder den stationä-
ren Wert. Ist umgekehrt vS größer als der stationä-
re Wert, so überwiegt die Luftkraft 

gesLF ,

!
 der Ge-

wichtskraft, der P. R. wird abgebremst und vS er-

Abb. 5: Kräfte am Flügel, welche den Winkel α beein-
flussen (D.P. = Druckpunkt, S. P. Flügelschwerpunkt):

a)Aufsicht, b) Seitenansicht.
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reicht ebenfalls wieder den Wert im stationären
Zustand.

•Stabilität der Drehfrequenz: Das Anwachsen
kleiner Drehfrequenzen wurde bereits diskutiert.
Zu beschreiben bleiben Drehfrequenzen oberhalb
des stationären Wertes. Für diese ist die Luftkraft
im Sinne von Abb. 4) über den Vektor d

!
 nach

links „hinausgekippt“ so daß ein Drehmoment
entsteht, was der Rotation entgegenwirkt und
demzufolge wieder ω reduziert.

•Stabilität des Richtungswinkels: Der stationäre
Wert ergibt sich aus dem Gleichgewicht der
Drehmomente aus Ungleichung (12). Seine Stabi-
lität wurde bereits im vorherigen Abschnitt be-
gründet.

Abhängigkeit des stationären Zu-
stands von Systemparametern

Aussagen über die Abhängigkeit des stationären
Zustands von typischen Parametern des P.H. las-
sen sich erst nach einer quantitativen Formulie-
rung der oben diskutierten drei Stationaritätsbe-
dingungen machen, da diese simultan erfüllt sein
müssen. Für die hiermit zusammenhängenden
Überlegungen verweisen wir auf den Anhang und
geben an dieser Stelle nur die Ergebnisse an:

•Die Stationarität der Sinkgeschwindigkeit vS be-
deutet, daß die Gleichung (A. l0) erfüllt sein muß:

SG vqlaF ⋅⋅= 22ρ .  (13)

Dabei ist FG die Gewichtskraft des P.H., a eine
Konstante ρ die Luftdichte, l die Flügellänge und
q = sinα.

•Die Stationarität der Drehfrequenz ω wird durch
die Gleichung (A. 15)

)(~ 222 qfalvS ⋅⋅=ω (14)

ausgedrückt. Hierbei ist a~  eine Konstante und
f(q) nach Gleichung (A.16) eine von q = sinα ab-
hängige Funktion mit der Flügellänge l als Para-
meter und nach Ungleichung (A. 17) oberhalb ei-
nes kleinsten q-Wertes qmin definiert.

•Die Stationarität des Richtungswinkels α
schließlich wird durch die Gleichung (A. 20)

lm

F
pqq

Fl

G

⋅
⋅=− 21 222ω (15)

zum Ausdruck gebracht (p ist eine Konstante und
mFl die Masse eines Flügels).

Um im folgenden exemplarisch den Einfluß von
Gewichtskraft und Flügellänge auf den stationären
Zustand des P.H. diskutieren zu können, setzen
wir Gl. (14) in GI. (13) ein und erhalten

)(~ 2242 qfqlaaFG ωρ⋅= .  (16)

Benutzt man diesen Ausdruck für die Gleichung
(15), so folgt

Flm

l
apa

qf
q

5
22 ~2

)(

1
1

ρ⋅=⋅− (17)

Abb. 6 zeigt den qualitativen Verlauf der Funktion
von der linken Seite von Gl.(17) im physikalisch
bedeutsamen Parameterbereich q ≥ qmin.

Unter Einbeziehung dieses Graphen können wir
jetzt die folgenden Aussagen aus den gewonnenen
Gleichungen ableiten.

a)Einfluß der Gewichtskraft (bei 1 = konst.):

•q und damit α hängt nicht von der Gewichtskraft
FG des P.H. ab (GI. (17)).

Dieses hat als weitere Konsequenzen:

•Je größer FG wird, desto größer wird auch vS

(Gl.(13)).

•Je größer FG

 

wird, desto größer wird auch ω
(Gl.(16)).

b)Einfluß der Flügellänge (bei FG = konst.):

•Je größer l wird, desto größer wird

)(

1
1 2

qf
q ⋅−  (Gl.(17)) und desto kleiner also q

und damit α (s. Abb. 6). Allerdings ist diese Ver-
ringerung nur sehr klein.

•Je größer 1 wird, desto kleiner wird ω (Gl.(15)).

•Je größer 1 wird, desto kleiner wird vS (G1.
(13)).

Abb. 6: Graph der Funktion q → 
)(

1
1 2

qf
q ⋅−
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Diese Aussagen lassen sich sämtlich durch einfa-
che direkte Beobachtungen bestätigen. Diese Be-
obachtung läßt sich noch verfeinern, wenn man
ein Stroboskop zur Verfügung hat und vom statio-
närer Flug des jeweiligen P.H. stroboskopische
Aufnahmen macht.

Abb. 7 zeigt exemplarisch eine solche Aufnahme,
aus der sich bei Kenntnis der Blitzfrequenz vS und
ω unmittelbar ergeben. ω läßt sich am Stroboskop
ablesen, wenn man dieses so einstellt, daß der P.
H nach genau 1 Umdrehung wieder beleuchtet

wird; und vS ergibt sich aus der ablesbaren
Fallstrecke auf dem Foto, wenn man die Abmes-
sungen des P.H. zur Umrechnung des Maßstabs
benutzt, und der Blitzfrequenz. Der Winkel α läßt
sich direkt auf dem Foto ausmessen.

Abb. 8 zeigt den registrierten Einfluß von FG auf

vS und auf ω. Nach GI. (13) sollte

GS Fv ~

und nach Gl.(16) sollte

GF~ω

sein.

Die Messungen kommen diesen Wurzelbeziehun-
gen relativ nahe. Auf eine genauere Analyse sei
hier jedoch verzichtet.

Abb. 9 zeigt den gemessenen Einfluß von 1 auf vS

und ω.Für nahezu konstantes q und q nahe 1 wie
man es auch beobachtet, ergibt sich theoretisch
aus (13) die Proportionalität

l
vS

1
~

und aus (15) folgt

l
vS

1
~ .

Damit liegt auch hier ein Ansatzpunkt vor, die
Güte des zugrunde gelegten theoretischen Modells
für das Realobjekt zu überprüfen.

Der P.H. als Nichtgleichgewichts-
struktur

Der P.H. kann thermodynamisch als ein energie-
durchflossenes System angesehen werden, wel-
ches im stationären Zustand hochwertige potenti-
elle Energie in minderwertige Wärme umwandelt
(zum Wert von Energie s. [7]). Diese fortlaufende

Abb. 7: Stroboskopische Aufnahme des rotierend zu
Boden fallenden Papierbubschraubers

Abb. 8: Gemessener Einfluß der Geschwindigkeit FG auf a) die Sinkgeschwindigkeit vS. b) die Rotationsfrequenz ω
(Flügellänge l=9,3 cm)

Abb. 11: Luftkräfte in der von v⊥  und vh aufgespannten
Ebene für den Fall einer stationären Drehfrequenz.
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Energiedissipation ist quasi der ,,Motor" für die
Aufrechterhaltung der räumlichen (durch α defi-
nierten) und zeitlich periodischen (durch ω defi-
nierten) Struktur im stationären Zustand. Sie ist
auch entscheidend an der Stabilisation der raum-
zeitlichen Struktur des P.H. beteiligt, welche
durch einen Selbstregulationsmechanismus zu-
stande kommt. Diese Selbstregulation wird durch
Rückkopplungen realisiert. So wirkt sich z.B. die
Größe von α auf die Größe der am Flügel angrei-
fenden Drehmomente aus, welche wiederum die
Größe von α bestimmen: Während das mit der
Luftkraft gekoppelte Moment mit zunehmendem
Winkel α wächst, fällt mit wachsendem α das
zentrifugale Moment (s. Abschnitt 4). Dieses un-
terschiedliche Wachstum der Momente ist Aus-
druck der Nichtlinearität des Systems und not-
wendige Voraussetzung für die Exi stenz eines
endlichen stationären Wertes für den Richtungs-
winkel.

Der P.H. besitzt damit Eigenschaften, wie sie auch
an anderen einfachen mechanischen Systemen be-
obachtet werden können (s. [8], [9], [lt)]) und
welche typisch sind für die sog. dissipativen
Strukturen im Sinne Prigogine's.

Der P.H. kann u. E. als ein anschauliches Beispiel
zur Einführung der Systembeschreibung dienen,
welche bei der Erfassung der hiermit angespro-
chenen thermodynamischen Strukturen fernab
vom Gleichgewicht erforderlich ist. Der Vorteil
dieses Spielzeuges ist es, daß sein Verhalten ohne
thermodynamische Kenntnisse beschrieben wer-
den kann. Es war die Absicht der vorangegange-
nen Abschnitte eine solche Beschreibung sowohl
auf Qualitativen als auch auf quantitativen Niveau
vorzustellen.

Anhang: Quantitative Formulie-
rung der Stationaritätshedingungen

Um diese Bedingungen formulieren zu können,
benötigt man die expliziten Ausdrücke für be-
stimmte Komponenten der Luftkraft 

LF
!

. Da wir

uns an dieser Stelle auf den stationären Zustand
beziehen, ist dieses jedoch relativ einfach.

Ausgangspunkt der Überlegungen ist die Tatsa-
che, daß im stationären Zustand die Identität FL,ges

= FG gilt. was für die Luftkraft 
LF
!

 am einzelnen

Flügel bedeutet, daß ihre vertikale Komponente

vLF ,

!
 (s. Abb. 10) die halbe Gewichtskraft kom-

pensieren muß:

Abb. 9: Gemessener Einfluß der Flügellänge l auf a) die Sinkgeschwindigkeit vS. b) die Rotationsfrequenz ω. (Gewichts-
kraft FG = 2,5⋅10-2 N)

Abb. 10: Luftkraftkomponenten am Flügel im stationären
Zustand (D.P. = Druckpunkt; L = rechter Winkel).
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GvL FF
2

1
, = (A.1)

Hieraus lassen sich mit Hilfe der angegebenen
Winkel die übrigen relevanten Kraftkomponenten
berechnen.

Der Abb. 10 entnimmt man für die senkrecht auf
den Flügel stehende, in der Ebene E liegende

Kraft ⊥,LF  die Beziehung (q = sinα):

q

FF
F

G
vl

L
2

1

sin
,

, ==⊥ α
(A.2)

Für die horizontale, senkrecht zum Flügel stehen-

de Kraftkomponente HLF ,

!
 folgt entsprechend:

q

q
FctgFF GvLHL

2

,,

1

2

1 −
=⋅= α

!
. (A.3)

Hieraus ergibt sich FL,|| zu:

γtgFF HLL ⋅= ,||,

~
, (A.4)

was benötigt wird, um γ~  bzw. tgγ~  angeben zu

können:

γγ tgq
F

F
tg

L

L ⋅−==
⊥

2

,

||, 1~ (A.5)

Die Ausdrücke (A. 2), (A. 3) und (A. 5) werden
im folgenden bei den Stationaritätsbedingungen
benutzt.

1. Bedingung: vS = konst.

Hierfür benötigt man einen Ausdruck für die Ge-
samtluftkraft 

gesLF ,

!
der sich durch eine energeti-

sche Betrachtung leicht gewinnen läßt (siehe z. B.
auch [5]) Durch die wirksame Fläche

A = πr2 = πp2l2q2 (A.6)

des P.H. tritt ein Luftstrom, welcher von der Ge-
schwindigkeit v auf v abgebremst wird. Damit
verliert die Luft pro Zeiteinheit die Energie

22

2

1

2

1
eS vmvmW """ −=∆ , (A.7)

wobei pro Zeiteinheit die Masse

vAm ρ="

die durch die Fläche A hindurchtritt (ρ ist die
Dichte der Luft).

Die abbremsende Kraft au den ,,Wind" ist damit
durch W"∆ /v gegeben. Wodurch wegen ,actio
gleich reactio“ auch der Betrag der Luftkraft

gesLF ,

!
 festgelegt ist. Mit Gl.(A. 8) folgt also:

( )22
, 2 eSgesL vvAF −⋅= ρ

(A.9)

Die Stationaritätsforderung

FL,ges = FG

schreibt sich damit unter Benutzung von (A. 6)
und dem Geschwindigkeitsverhältnis k = ve/vS:

222
SG vqlaF ⋅⋅= ρ ,

wobei zur Abkürzung

( )22 1
2

kpa −⋅= π

gesetzt wurde

2. Bedingung: ω = konst.

In der oben beschriebenen Ebene E (s. Abb. 3)
liegen im stationären Zustand geometrische Ver-
hältnisse vor, wie sie durch Abb. 11 wiedergege-
ben werden (vgl. auch Abb. 6). Für das Kräftver-
hältnis 8 nach Gl. (10) gilt dann:

( )
γξ
γξγξδ ~1

~
~

tgtg

tgtg
tg

⋅+
−=−= , (A.12)

wobei tgγ~  durch (A.5) und tgξ wegen Gl. (6)

durch

ST v

l
a

v

r
tg

ωωξ ⋅== ~ (A.13)

gegeben ist.

k

p
a

+
=

1

2~  (A. 14)

wurde hierbei wieder zur Abkürzung eingeführt.
(A 12) läßt sich nach tgξ auflösen und führt mit
den Ausdrücken (4), (A 5) und (A. 13) auf die
Beziehung

)(~ 2222 qfalvS ⋅⋅=ω (A.14)

f(q) steht dabei für den Term

2

2

2

1
2

1
2

)(



















−+⋅

−−
=

q
pl

b
q

q
pl

b
q

qf
δ

δ
(A.16)
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Hier ist wesentlich, daß wegen ω ≥ 0 ,vS ≥ 0 und

2/1)(~ −==⋅ qftg
v

la
S

ξω

nur die Werte von f(q) physikalische Bedeutung
haben, für welche

21
2

q
pl

b
q −−δ  ≥ 0

ist, so daß stets

22

2
2

min

4
1

2

lp

b

pl

b

qq

⋅+

⋅
=≥

δ

δ
(A.17)

sein muß.

Für sehr schmale Flügel (b << 1) geht qmin gegen
Null. Für die für einen P.H. typischen Werte

δ = 20, b/(2pl) = 1/10 ist qmin ≈0,89

also relativ nahe bei 1.

3. Bedingung α = konst.

Für den stationären Wert von α ist

plFF LZ ⋅=⋅⋅ ⊥,2

1
cos

~ α . (A.18)

Der Abb. 5 entnimmt man, daß

'

'~

d

r
FF ZZ ⋅= . (A.19)

Mit dieser Beziehung, mit FZ nach Gl. (11). FL,⊥

nach Gl.(A.2) und r' = 1/2⋅q folgt aus (A. 18) die
Gleichung

lm

F
pqq

Fl

G

⋅
=− 21 222ω . (A. 20)
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