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Bei der Realisation bediene man sich einer Büroklammer
aus möglichst weichem Draht. Diese lässt sich sogar ohne
Zange verformen. Auf die genaue Einhaltung des Winkels
und der Kreisform kommt es nicht an. Wesentlich ist nur,
dass der Schwerpunkt in der Achse liegt. Übrigens lassen
sich noch viele weitere Kreiselformen realisieren [2].

Ungewöhnlich einfach ist die Konstruktion eines Steh-
aufkreisels aus einer Büroklammer (Abbildung 2), die wir
nur bei Yoshio Kamishina gesehen haben [3]. Wie aus der
Abbildung ersichtlich, fällt der Schwerpunkt des Kreisels
nicht mit dem Mittelpunkt des äußeren Kreises zusammen.
Das ist ein charakteristisches Konstruktionsmerkmal des
klassischen Stehauf- oder Wendekreisels, der normalerwei-
se aus einem Kugelteil mit Stift besteht. Das Andrehen die-
ses Stehaufkreisels ist etwas mühsam,da man ihn außen am
Kreisrand anfassen muss und deswegen keine sehr hohe
Drehzahl erreicht. Der Effekt ist jedoch deutlich sichtbar.
Etwas besser geht es, wenn man mit den Zeigefingern (je-
weils in entgegengesetzte Richtung) gegen die gegenüber-
liegenden Seiten des Kreisels stößt. Aber das muss man 
etwas üben. (Ein kurzes Video finden Sie auf www.
phiuz.de unter „Zusatzmaterialien zum Heft.“) 

Für das Verhalten des Stehaufkreisels gibt es leider kei-
ne einfache Erklärung, die sich mit wenigen Sätzen formu-
lieren lässt. Seit fast hundert Jahren bemühen sich Physiker
in diversen Veröffentlichungen um eine zutreffende Be-
schreibung. Dabei lassen sich nur wenige anschauliche
Aspekte aus den oft komplexen mathematischen Aus-
drücken herausholen. Als anspruchsvolle Übungsaufgabe

Büroklammern sind allgegenwärtig. Sie tau-
gen aber nicht nur dazu, Ordnung im Papier-
stapel zu schaffen, sondern lassen sich auch
für verblüffende physikalische Experimente
einsetzen. So geben sie einfache Kreisel ab
und veranschaulichen die Formen von Ketten
und Hängebrücken.

Dem Norweger Johan Vaaler wird die Erfindung der
Büroklammer zugeschrieben. Doch patentieren ließ

er sie 1899 in Deutschland, weil es in Norwegen kein Pa-
tentamt gab. 1999 erschien eine Briefmarke zum Gedächt-
nis dieser epochalen Erfindung. Vaaler vermarktete seine
Erfindung nicht. Das geschah kurze Zeit später in den Ver-
einigten Staaten. Dort beruft man sich auf ein noch frühe-
res USA-Patent. Mittlerweile gibt es eine Vielzahl unter-
schiedlicher Formen von Büroklammern, Milliarden wer-
den jährlich verbraucht.

Kreisel aus Büroklammern
Wie kann man aus einer Büroklammer in einem Stück in
möglichst einfacher Weise einen Kreisel herstellen? Takao
Sakai aus Japan hat einige interessante Möglichkeiten be-
schrieben [1]. Man biege den Draht der Büroklammer auf
einem Kreis um eine Achse, so dass der Schwerpunkt des
Kreisels in der Kreiselachse liegt, die wiederum aus zwei
Halbachsen besteht (Abbildung 1). Dazu muss der Winkel
β zwischen den Speichen gerade eine Größe von 53,13°
haben. Diesen Winkel zu berechnen ist eine schöne Aufgabe
für Physikstudenten im ersten Jahr ihres Studiums (siehe
„Der Schwerpunkt des Kreisels“, S. 34).
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Abb. 1 Ein Kreisel, der sich aus einer
Büroklammer biegen lässt.

Abb. 2 Ein Stehaufkreisel aus einer
größeren Büroklammer.
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Video eines Kreisels 
www1.physik.tu-muenchen.de/~cucke/ftp/lectures/
sakaigir.htm

Programme
www.interactivephysics.com/
www.ipn.uni-kiel.de/persons/michael/xyzet/
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für fortgeschrittene Physikstudierende ist der Stehaufkrei-
sel in [4] abgehandelt.

Ketten aus Büroklammern
Welche Kurvenform nimmt eine Kette (ein flexibles Kabel
oder ein Seil) an, wenn man sie an beiden Enden aufhängt?
Diese Frage stellte sich schon Galileo Galilei – und beant-
wortete sie falsch, indem er auf eine Parabel tippte. Erst ge-
gen Ende des 17. Jahrhunderts leiteten die Brüder Jacob
und Johann Bernoulli sowie Gottfried Wilhelm Leibniz die
richtige Form ab. Es handelt sich um die Funktion cosinus
hyperbolicus (cosh), die auch als Summe zweier Exponen-
tialfunktionen ausgedrückt werden kann. Die Ableitung der
Kettenlinie findet sich in vielen Lehrbüchern der Mathe-
matik oder Mechanik und wird deshalb hier nicht wieder-
gegeben.

Mit einigen Büroklammern lässt sich die Kettenlinie gut
realisieren. Bei wenigen Büroklammern spielt die Länge und
die Verbindung zwischen den Klammern noch eine Rolle.
Je mehr man verwendet, umso besser ist die Annäherung
an die ideale Kurve. In Abbildung 3 sind die ideale Ketten-
linie und eine Parabel gleicher Länge über eine Kette mit
16 Büroklammern gelegt. Deutlich erkennbar stimmt die
rote Kettenlinie mit der Büroklammerkette überein, die
blaue Parabel hingegen nicht. Der Unterschied zwischen
Kettenlinie und Parabel ist besonders markant bei einem re-
lativ starken Durchhang wie in Abbildung 4.

Hängt an jedem Glied einer Kette ein im Verhältnis zur
Masse eines Kettenglieds sehr große Masse, wie es bei-
spielsweise bei Hängebrücken der Fall ist, verändert sich
die Kettenlinie tatsächlich in eine Parabel (siehe „Die Hän-
gebrückenparabel“). Auch das lässt sich mit Büroklammern
realisieren. In Abbildung 4 ist dieselbe Kette aus Büro-
klammern wie in Abbildung 3 mit Massestücken versehen,
wozu sich Büroklammern ebenfalls gut eignen. Es wurden
genügend lange Ketten von Büroklammen genommen, de-
ren Masse um mindestens den Faktor 20 größer war als die
Masse einer Büroklammer in der Kette von 0,37 g. Die Zahl
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Den optimalen Winkel zwischen den
Speichen des Kreisels ermittelt man
wie folgt. Wird der Winkel zwischen
den Speichen zu groß oder zu klein,
liegt der Gesamtschwerpunkt neben
dem Kreismittelpunkt. Zur Ermittlung
des korrekten Winkels kann man sich
auf die Berechnung des Schwerpunkts
der beiden Speichen und des gegen-
überliegenden, kleinen Kreisbogens
der Länge s beschränken. Die anderen
Teile des Kreisbogens (rot markiert)
sind symmetrisch zum Kreismittel-
punkt und brauchen deshalb nicht
berücksichtigt zu werden. Es ist für 
die Berechnung günstig, den halben
Speichenwinkel α einzuführen.

In der rechten Abbildung sind
Speichen und Kreisbogen herausgeho-
ben. Der Kreismittelpunkt sei der
Nullpunkt des Koordinatensystems.
Der Abstand des Schwerpunkts des
Kreisbogens vom Nullpunkt betrage
x1. Ist s die Länge des Kreisbogens,
berechnet sich wegen der Symmetrie

zur x-Achse der Schwerpunkt mit dem
Linienintegral

Sind ρ die Dichte des Drahtmaterials
und A der Querschnitt des Drahtes,
dann ist die Masse des Kreisbogens 
m1 = s⋅ρ⋅A. Bezüglich des Nullpunktes
erzeugt der Kreisbogen ein Moment 

M1 = m1·x1 = 2·r 2·sinα·ρ·A.

Der Schwerpunkt der Speichen liegt
bei x2 = r/2·cosα, die Masse beträgt 
m2 = 2⋅r·ρ·A. Das von den Speichen
erzeugte Moment bezüglich des
Nullpunktes ist 

M2 = m2⋅x2 = r 2⋅cosα·ρ·A.

Aus dem Gleichsetzen beider Momen-
te ergibt sich tanα = 0,5, das heißt 
α = 26,565°. Der Winkel zwischen den
Speichen ist dann β = 2α = 53,13°.
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Der Büroklammerkreisel 
in der Aufsicht.

Zur Berechnung des Schwerpunktes
werden nur noch die Speichen und
der gegenüberliegende Kreisbogen
betrachtet.

<<< Abb. 3 Kettenlinie 
mit 16 Büroklammern.

<< Abb. 4 Parabel mit 
16 Büroklammern und
Gewichten. Eine ideale
Parabel (blau) wurde
darüber gelegt. 

< Abb. 5 Simulation von
Kettenlinie und Parabel
mit Interactive Physics.
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der Büroklammern (also die Größe der Masse) muss in ei-
nem bestimmten Verhältnis zur Steigung des betreffenden
Abschnitts der Kettenlinie stehen. Je näher ein Kettenglied
am Aufhängepunkt liegt,umso weniger darunter hängendes
Gewicht (beispielsweise von der Straße) muss es tragen.

Zu erkennen ist in diesem Fall die Übereinstimmung
mit der Parabel (blau). Durch die an den unteren Ketten-
gliedern hängenden relativ großen Gewichte wird die Kur-
ve gegenüber der Kettenlinie am unteren Punkt weiter nach
unten gezogen.

Mit Physik-Simulationsprogrammen wie Interactive Phy-
sics oder XYZet (siehe „Internet“, S. 33) lassen sich die be-
schriebenen Sachverhalte ebenfalls sehr schön veran-
schaulichen. Ein Simulationsprogramm,das im Rahmen von
XYZet läuft, finden Sie auf www.phiuz.de unter „Zusatzma-
terialien zum Heft“. In Abbildung 5 sind simulierte 16-glied-
rige Ketten übereinander gelegt: ohne Gewichte (dicke,
rote Kettenlinie), die mit entsprechenden Gewichten ver-
sehene „Hängebrücke“ (dicke,blaue Parabel) und eine idea-
le Parabel (dünne, grüne Linie). Bei einer realen Hänge-
brücke sind allerdings die Abstände der Haltekabel für die
Straße gleich groß. Auch das kann man natürlich mit dem
Programm simulieren. Bei dieser Abbildung sind gerade die
Abstände der Angriffspunkte der Kabel für die Straße auf
dem (Büroklammer-)Tragekabel gleich groß.

Im Internet finden sich unter den Begriffen Kettenlinie,
Katenoide oder catenary viele Hinweise sowohl geschicht-
licher Art als auch zu Ableitungen. Außerdem gibt es sehr
anschauliche Applets, die den Unterschied zwischen der
Kettenlinie und der Parabel verdeutlichen.

Zusammenfassung 
Mit Büroklammern lassen sich einfach und schnell physika-
lische Experimente realisieren. Vorgestellt werden zwei un-
gewöhnliche Kreisel (darunter ein Stehaufkreisel), die sich in
wenigen Minuten biegen lassen. Weiterhin lässt sich mit Büro-
klammern die schon von Leibniz abgeleitete Kettenlinie simu-
lieren. Mit etwas Mehraufwand lässt sich eine „Hängebrücke“
bauen, bei der sich für das Tragkabel eine Parabel als Kur-
venform ergibt. Im Internet sind Programme verfügbar, mit
denen sich Kettenlinie und Hängeparabel simulieren lassen.

Stichworte
Kreisel, Büroklammer, Hängebrücken, Kettenlinie,
Katenoide.
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D I E  H Ä N G E B R Ü C K E N PA R A B E L |
Stark vereinfacht und idealisiert lässt
sich die Form der Kurve von Trage-
kabeln bei Hängebrücken wie folgt
ableiten. In einen Punkt P des Trage-
kabels einer Hängebrücke wirken drei
Kräfte, deren vektorielle Addition sich
gerade aufheben muss (Abbildung).
Als Erstes wirkt die Gewichtskraft G
des Straßenteils der Länge x senkrecht
nach unten. Als Zweites wird durch
die Spannung des Kabels eine hori-
zontale Kraft S ausgeübt. Diese ist
über das ganze Kabel hinweg kon-

stant. Als Drittes wirkt eine Kraft F in
Richtung der Tangente des Kabels.
Diese Tangentialkraft entspricht
gerade der Steigung im Punkt P.

Sei nun µ das Gewicht pro Län-
geneinheit der am Kabel hängenden
Straße. Der Koordinatenursprung 0
liege im Fußpunkt der Kurve. Dann 
ist das am Punkt P angreifende
Gewicht G gerade gleich µx. Bezeich-
nen wir mit y die Höhe des Kabels 
im Punkt x, dann ist die Steigung in
diesem Punkt

Daraus erhalten wir durch Integration

Da der Koordinatenursprung 0 im
Fußpunkt der Kurve liegt, muss die
Integrationskonstante C = 0 sein. Für
die Form der Kurve ergibt sich somit
eine Parabel.
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Bei einer Hängebrücke ergibt sich 
als Kurvenform für das Tragekabel
eine Parabel.
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