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Die kreiselnde Biiroklammer
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Biiroklammern sind allgegenwirtig. Sie tau-
gen aber nicht nur dazu, Ordnung im Papier-
stapel zu schaffen, sondern lassen sich auch
fiir verbliiffende physikalische Experimente
einsetzen. So geben sie einfache Kreisel ab
und veranschaulichen die Formen von Ketten
und Hdngebriicken.

em Norweger Johan Vaaler wird die Erfindung der

Biiroklammer zugeschrieben. Doch patentieren lief3
er sie 1899 in Deutschland, weil es in Norwegen kein Pa-
tentamt gab. 1999 erschien eine Briefmarke zum Gedicht-
nis dieser epochalen Erfindung. Vaaler vermarktete seine
Erfindung nicht. Das geschah kurze Zeit spiter in den Ver-
einigten Staaten. Dort beruft man sich auf ein noch frithe-
res USA-Patent. Mittlerweile gibt es eine Vielzahl unter-
schiedlicher Formen von Biiroklammern, Milliarden wer-
den jihrlich verbraucht.

Kreisel aus Biroklammern

Wie kann man aus einer Biiroklammer in einem Stiick in
moglichst einfacher Weise einen Kreisel herstellen? Takao
Sakai aus Japan hat einige interessante Moglichkeiten be-
schrieben [1]. Man biege den Draht der Buroklammer auf
einem Kreis um eine Achse, so dass der Schwerpunkt des
Kreisels in der Kreiselachse liegt, die wiederum aus zwei
Halbachsen besteht (Abbildung 1). Dazu muss der Winkel
B zwischen den Speichen gerade eine Groe von 53,13°
haben. Diesen Winkel zu berechnen ist eine schone Aufgabe
fiir Physikstudenten im ersten Jahr ihres Studiums (siche
,Der Schwerpunkt des Kreisels“, S. 34).

INTERNET
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Abb. 1 Ein Kreisel, der sich aus einer
Biiroklammer biegen ldsst.

Bei der Realisation bediene man sich einer Biiroklammer
aus moglichst weichem Draht. Diese lidsst sich sogar ohne
Zange verformen. Auf die genaue Einhaltung des Winkels
und der Kreisform kommt es nicht an. Wesentlich ist nur,
dass der Schwerpunkt in der Achse liegt. Ubrigens lassen
sich noch viele weitere Kreiselformen realisieren [2].

Ungewohnlich einfach ist die Konstruktion eines Steh-
aufkreisels aus einer Biiroklammer (Abbildung 2), die wir
nur bei Yoshio Kamishina gesehen haben [3]. Wie aus der
Abbildung ersichtlich, fillt der Schwerpunkt des Kreisels
nicht mit dem Mittelpunkt des duBeren Kreises zusammen.
Das ist ein charakteristisches Konstruktionsmerkmal des
klassischen Stehauf- oder Wendekreisels, der normalerwei-
se aus einem Kugelteil mit Stift besteht. Das Andrehen die-
ses Stehaufkreisels ist etwas mithsam, da man ihn auRen am
Kreisrand anfassen muss und deswegen keine sehr hohe
Drehzahl erreicht. Der Effekt ist jedoch deutlich sichtbar.
Etwas besser geht es, wenn man mit den Zeigefingern (je-
weils in entgegengesetzte Richtung) gegen die gegeniiber-
liegenden Seiten des Kreisels stof3t. Aber das muss man
etwas uben. (Ein kurzes Video finden Sie auf www.
phiuz.de unter ,Zusatzmaterialien zum Heft.)

Fiir das Verhalten des Stehaufkreisels gibt es leider kei-
ne einfache Erklirung, die sich mit wenigen Sitzen formu-
lieren ldsst. Seit fast hundert Jahren bemiihen sich Physiker
in diversen Veroffentlichungen um eine zutreffende Be-
schreibung. Dabei lassen sich nur wenige anschauliche
Aspekte aus den oft komplexen mathematischen Aus-
driicken herausholen. Als anspruchsvolle Ubungsaufgabe
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Abb. 2 Ein Stehaufkreisel aus einer
groBeren Biiroklammer.

Phys. Unserer Zeit | 33



DER SCHWERPUNKT DES KREISELS

Den optimalen Winkel zwischen den
Speichen des Kreisels ermittelt man
wie folgt. Wird der Winkel zwischen
den Speichen zu groR oder zu klein,
liegt der Gesamtschwerpunkt neben
dem Kreismittelpunkt. Zur Ermittlung
des korrekten Winkels kann man sich
auf die Berechnung des Schwerpunkts
der beiden Speichen und des gegen-
tiberliegenden, kleinen Kreisbogens
der Ldnge s beschranken. Die anderen
Teile des Kreisbogens (rot markiert)
sind symmetrisch zum Kreismittel-
punkt und brauchen deshalb nicht
beriicksichtigt zu werden. Es ist fiir
die Berechnung giinstig, den halben
Speichenwinkel o einzufiihren.

In der rechten Abbildung sind
Speichen und Kreisbogen herausgeho-
ben. Der Kreismittelpunkt sei der
Nullpunkt des Koordinatensystems.
Der Abstand des Schwerpunkts des
Kreisbogens vom Nullpunkt betrage
Xi. Ist sdie Ldnge des Kreisbogens,
berechnet sich wegen der Symmetrie

zur x-Achse der Schwerpunkt mit dem
Linienintegral
_ Ixds

X
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o
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Sind p die Dichte des Drahtmaterials
und A der Querschnitt des Drahtes,
dann ist die Masse des Kreisbogens
m, = s:p-A. Beziiglich des Nullpunktes
erzeugt der Kreisbogen ein Moment

My = my-xq = 2-r?-sino:p-A.

Der Schwerpunkt der Speichen liegt
bei x; = r/2-cos e, die Masse betrdgt
my = 2-r-p-A. Das von den Speichen
erzeugte Moment beziiglich des
Nullpunktes ist

Ms = my-Xp = r>-coso:p-A.

Aus dem Gleichsetzen beider Momen-
te ergibt sich tano = 0,5, das heilst
o= 26,565°. Der Winkel zwischen den
Speichen ist dann =2 =53,13°.

Der Biiroklammerkreisel
in der Aufsicht.
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Zur Berechnung des Schwerpunktes
werden nur noch die Speichen und
der gegeniiberliegende Kreisbogen
betrachtet.
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<<< Abb. 3 Kettenlinie
mit 16 Biiroklammern.

<< Abb. 4 Parabel mit
16 Biiroklammern und
Gewichten. Eine ideale
Parabel (blau) wurde
dariiber gelegt.

<Abb. 5 Simulation von
Kettenlinie und Parabel
mit Interactive Physics.

fir fortgeschrittene Physikstudierende ist der Stehaufkrei-
sel in [4] abgehandelt.

Ketten aus Biiroklammern
Welche Kurvenform nimmt eine Kette (ein flexibles Kabel
oder ein Seil) an, wenn man sie an beiden Enden aufhingt?
Diese Frage stellte sich schon Galileo Galilei - und beant-
wortete sie falsch, indem er auf eine Parabel tippte. Erst ge-
gen Ende des 17. Jahrhunderts leiteten die Briider Jacob
und Johann Bernoulli sowie Gottfried Wilhelm Leibniz die
richtige Form ab. Es handelt sich um die Funktion cosinus
hyperbolicus (cosh), die auch als Summe zweier Exponen-
tialfunktionen ausgedriickt werden kann. Die Ableitung der
Kettenlinie findet sich in vielen Lehrbiichern der Mathe-
matik oder Mechanik und wird deshalb hier nicht wieder-
gegeben.

Mit einigen Biiroklammern lisst sich die Kettenlinie gut
realisieren. Bei wenigen Buroklammern spielt die Linge und
die Verbindung zwischen den Klammern noch eine Rolle.
Je mehr man verwendet, umso besser ist die Anniherung
an die ideale Kurve. In Abbildung 3 sind die ideale Ketten-
linie und eine Parabel gleicher Linge iiber eine Kette mit
16 Buroklammern gelegt. Deutlich erkennbar stimmt die
rote Kettenlinie mit der Biiroklammerkette iberein, die
blaue Parabel hingegen nicht. Der Unterschied zwischen
Kettenlinie und Parabel ist besonders markant bei einem re-
lativ starken Durchhang wie in Abbildung 4.

Hingt an jedem Glied einer Kette ein im Verhiltnis zur
Masse eines Kettenglieds sehr grofle Masse, wie es bei-
spielsweise bei Hingebriicken der Fall ist, verindert sich
die Kettenlinie tatsichlich in eine Parabel (siehe ,Die Han-
gebriickenparabel®). Auch das ldsst sich mit Biiroklammern
realisieren. In Abbildung 4 ist dieselbe Kette aus Biiro-
klammern wie in Abbildung 3 mit Massestiicken versehen,
wozu sich Bluroklammern ebenfalls gut eignen. Es wurden
geniigend lange Ketten von Biiroklammen genommen, de-
ren Masse um mindestens den Faktor 20 grofRer war als die
Masse einer Biroklammer in der Kette von 0,37 g. Die Zahl
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der Buroklammern (also die Grofde der Masse) muss in ei-
nem bestimmten Verhiltnis zur Steigung des betreffenden
Abschnitts der Kettenlinie stehen. Je niher ein Kettenglied
am Aufhingepunkt liegt, umso weniger darunter hingendes
Gewicht (beispielsweise von der Strafle) muss es tragen.

Zu erkennen ist in diesem Fall die Ubereinstimmung
mit der Parabel (blau). Durch die an den unteren Ketten-
gliedern hingenden relativ groen Gewichte wird die Kur-
ve gegentiber der Kettenlinie am unteren Punkt weiter nach
unten gezogen.

Mit Physik-Simulationsprogrammen wie Interactive Phy-
sics oder XYZet (siehe ,Internet“,S. 33) lassen sich die be-
schriebenen Sachverhalte ebenfalls sehr schén veran-
schaulichen. Ein Simulationsprogramm, das im Rahmen von
XYZet liuft, finden Sie auf www.phiuz.de unter ,Zusatzma-
terialien zum Heft“. In Abbildung 5 sind simulierte 16-glied-
rige Ketten iibereinander gelegt: ohne Gewichte (dicke,
rote Kettenlinie), die mit entsprechenden Gewichten ver-
sehene ,Hingebriicke“ (dicke, blaue Parabel) und eine idea-
le Parabel (dinne, griine Linie). Bei einer realen Hinge-
briicke sind allerdings die Abstinde der Haltekabel fiir die
Strafde gleich grof3. Auch das kann man natiirlich mit dem
Programm simulieren. Bei dieser Abbildung sind gerade die
Abstinde der Angriffspunkte der Kabel fiir die Strae auf
dem (Biroklammer-)Tragekabel gleich grof3.

Im Internet finden sich unter den Begriffen Kettenlinie,
Katenoide oder catenary viele Hinweise sowohl geschicht-
licher Art als auch zu Ableitungen. Auf3erdem gibt es sehr
anschauliche Applets, die den Unterschied zwischen der
Kettenlinie und der Parabel verdeutlichen.

Zusammenfassung
Mit Biiroklammern lassen sich einfach und schnell physika-
lische Experimente realisieren. Vorgestellt werden zwei un-
gewohnliche Kreisel (darunter ein Stehaufkreisel), die sich in
wenigen Minuten biegen lassen. Weiterhin Idsst sich mit Biro-
klammern die schon von Leibniz abgeleitete Kettenlinie simu-
lieren. Mit etwas Mehraufwand ldsst sich eine ,,Hdngebriicke“
bauen, bei der sich fiir das Tragkabel eine Parabel als Kur-
venform ergibt. Im Internet sind Programme verfiigbar, mit
denen sich Kettenlinie und Hdngeparabel simulieren lassen.

Stichworte
Kreisel, Biiroklammer, Hingebriicken, Kettenlinie,
Katenoide.
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DIE HANGEBRUCKENPARABEL

Stark vereinfacht und idealisiert ldsst
sich die Form der Kurve von Trage-
kabeln bei Hangebriicken wie folgt
ableiten. In einen Punkt Pdes Trage-
kabels einer Hangebriicke wirken drei
Krafte, deren vektorielle Addition sich
gerade aufheben muss (Abbildung).
Als Erstes wirkt die Gewichtskraft G
des StraRenteils der Ldnge x senkrecht
nach unten. Als Zweites wird durch
die Spannung des Kabels eine hori-
zontale Kraft S ausgetibt. Diese ist
Uiber das ganze Kabel hinweg kon-

Kette bzw. Kabel Y

\
héngende StraBe

Bei einer Hiingebriicke ergibt sich
als Kurvenform fiir das Tragekabel
eine Parabel.

Die Autoren

stant. Als Drittes wirkt eine Kraft Fin
Richtung der Tangente des Kabels.
Diese Tangentialkraft entspricht
gerade der Steigung im Punkt P.

Sei nun u das Gewicht pro Ldn-
geneinheit der am Kabel hdngenden
StraBe. Der Koordinatenursprung 0
liege im FuBpunkt der Kurve. Dann
ist das am Punkt P angreifende
Gewicht G gerade gleich ux. Bezeich-
nen wir mit y die Hohe des Kabels
im Punkt x, dann ist die Steigung in
diesem Punkt

LG _px
y=s="35-

Daraus erhalten wir durch Integration

(X g K
y_deX—zxz+C

Da der Koordinatenursprung 0 im
FuRpunkt der Kurve liegt, muss die
Integrationskonstante C= 0 sein. Fiir
die Form der Kurve ergibt sich somit
eine Parabel.
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