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Ein Karussell mit chaotischen Möglichkeiten 

Von U. Backhaus und H. J. Schlichting 

 
1 Was ist Chaos? 
Der Erfolg der klassischen Physik liegt vor allem 
darin begründet, daß sie die zukünftige Entwicklung 
eines Systems, dessen Anfangsbedingungen und 
Dynamik (Bewegungsgleichung) bekannt sind, vor-
aussagen kann. Dies gilt insbesondere für die Be-
stimmung zukünftiger Planetenbewegungen, Mond-
finsternisse und ähnlicher Phänomene. Möchte man 
jedoch das Verhalten von Gasmolekülen oder von 
turbulenten Flüssigkeitsströmen vorhersagen, so 
kommt man über Wahrscheinlichkeitsaussagen 
nicht hinaus, obwohl auch dort die physikalischen 
Gesetze gelten. Bis vor nicht allzu langer Zeit war 
man überzeugt, daß unser unvollständiges Wissen 
über derart komplexe Systeme die Ursache dafür sei 
und eine immer genauere Voraussagbarkeit mit Hil-
fe wachsender Datenmengen und mit Computern 
möglich sei. Diese Überzeugung wurde inzwischen 
stark erschüttert. Man hat nämlich entdeckt, daß 
selbst einfache deterministische Systeme sich zufäl-
lig verhalten können. Diese Zufälligkeit ist in einer 
Weise fundamental, daß sie auch durch noch so um-
fangreiche Informationen nicht beseitigt werden 
kann. Man spricht daher von chaotischem Verhalten 
oder kurz von Chaos. 

Wie kommt es dazu, daß manche Systeme sich or-
dentlich oder regulär, andere aber chaotisch oder 
unvorhersehbar verhalten? Lange Zeit herrschte die 
Meinung vor [1], chaotisches Verhalten sei vor al-
lem durch die Komplexität des Systems bedingt. 
Selbst als Lorenz im Jahre 1963 ein dreidimensio-
nales Modellsystem mit chaotischem Verhalten vor-
stellte [2], um meteorologische Erscheinungen zu 
erklären, dauerte es noch fast ein Jahrzehnt, bis sich 
auch in der physikalischen Fachwelt die Einsicht 
durchzusetzen begann: Auch einfache Systeme kön-
nen sich chaotisch verhalten. Jetzt erinnerte man 
sich wieder an eine längst vergessene Arbeit von 
Poincaré, der bereits 1892 beim Studium des 3-
Körperproblems entdeckte, daß selbst die so stabil 
erscheinende Himmelsmechanik Probleme herauf-
beschwört, die wir heute als chaotisch bezeichnen 
würden [3]. Er gab auch schon den Hinweis auf eine 
mögliche Erklärung: „Eine kleine Ursache, die un-
serer Aufmerksamkeit entgeht, ruft eine beträchtli-
che Wirkung hervor, die wir nicht übersehen kön-
nen" [4]. Man denke etwa an die labile Gleichge-

wichtslage eines auf dem Kopf stehenden Pendels. 
Kleinste Einflüsse, die wir nicht im Griff haben, 
können zu völlig verschiedenen Wirkungen führen, 
nämlich das Pendel nach links oder rechts kippen zu 
lassen. Während ein einfaches Pendel jedoch nur 
eine derart sensible Stelle besitzt, ist ein chaotisches 

System an jedem Punkt seiner Bewegung so sensi-
bel: Jeder noch so kleine Einfluß verändert das Sys-
tem in unvorhersehbarer Weise. 

Das kann man sich im Anschluß an Sexl an einer 
Art Billiardspiel klarmachen [5]. Man verlangt, daß 
der Ball in Abb. 1 nacheinander die festgehaltenen 
Bälle 1, 2... n treffen soll. Eine kleine Rechnung 
zeigt dann, daß bei Vernachlässigung der Reibung 
bereits die 9te Reflexion indeterministisch ist, wenn 
man nur die prinzipiell vorhandene Unschärfe auf-
grund des Planckschen Wirkungsquantums zugrun-
delegt. Wegen der gekrümmten Oberfläche der zu-
sammenstoßenden Kugeln wächst nämlich die Un-
schärfe exponentiell an und läßt den Reflexions-
winkel nach dem 9ten Stoß beliebig groß werden. 

Nichtchaotische Systeme unterscheiden sich so ge-
sehen nur dadurch von chaotischen, daß ein prinzi-
piell vorhandener Fehler langsamer wächst und 
daher innerhalb menschlicher Beobachtungszeiten 
nicht virulent wird. Oder aber die Dämpfung des 
Systems ist so groß, daß die Veränderungen bereits 
zum Erliegen gekommen sind, bevor ein größerer 
Fehler bemerkt werden kann. 

Die Beschränkung auf solche nichtchaotischen Sys-
teme hat es erlaubt, so lange die Fiktion vom De-
terminismus in der Physik aufrechtzuerhalten, ob-
wohl sie in der Realität kaum vorkommen. Trotz-
dem beruht unser physikalisches Verständnis von 
der Natur weitgehend auf ihnen. Die daraus resultie-

 
Abb. 1 Ein "Billardspiel" (aus [5]) 
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renden Defizite der physikalischen Weltbeschrei-
bung machen sich aber allenthalben bemerkbar. 

Chaotische Systeme sind demnach solche Systeme, 
in denen wegen des exponentiellen Anwachsen des 
Fehlers bereits innerhalb kürzester Zeiträume jede 
Voraussage bedeutungslos wird. Vor diesem Hin-
tergrund erscheint die von Poincaré in Frage gestell-
te Stabilität unseres Planetensystems in einem, an-
deren Licht. Max Born schlägt in diesem Zusam-
menhang vor, die Zeitskalen in der Astronomie und 
in der Atomphysik zu vergleichen: „Das Alter der 
Welt wird auf einige 109 Jahre, d. h. Perioden des 
Erdumlaufs, geschätzt. Die Zahl der Perioden im 
Grundzustande des Wasserstoffatoms aber ist von 
der Größenordnung 1016 pro Sekunde. Gemessen in 
den jeweilig natürlichen Einheiten der Zeit, ist also 
die Sachlage gerade umgekehrt wie die naive Mei-
nung: Die Sternenwelt ist kurzlebig, die Atomwelt 
äußerst langlebig. Ist es nicht gewagt, aus Erfah-
rungen in der kurzlebigen Welt Schlüsse zu ziehen, 
die auch für die langlebige gelten sollen?" [61 E-
benso umwälzend wie die Erkenntnis, daß determi-
nistische Systeme chaotisch werden können, ist die 
Art und Weise eines solchen Übergangs. Es zeigt 
sich nämlich, das der Weg ins Chaos sehr regelmä-
ßig sein kann. Das System kündigt gewissermaßen 
den bevorstehenden Zusammenbruch deterministi-
schen Verhaltens an. Es versteht sich von selbst, 
daß dies von außerordentlichem praktischen Inte-
resse ist: Beispielsweise interessiert man sich in der 
Medizin dafür, inwieweit sich lebensbedrohende 
chaotische Herzrhythmen im EKG in einem erkenn-
baren, also regelmäßigen Muster ankündigen [7]. 
Mit einem solchen regelmäßigen Weg ins Chaos 
wollen wir uns im folgenden befassen: Unser Cha-
ospendel durchläuft nämlich eine Sequenz von Fre-
quenzverdopplungen, die schließlich im Chaos en-
det. Dieses sog. Feigenbaumszenario beobachtet 
man auch in ganz anderen Systemen, so daß man 
daraus wie auch aus anderen ähnlich regelmäßigen 
Szenarien den weitreichenden Schluß ziehen darf: 
Das Chaos ist in vielen Fällen in universeller Weise 
organisiert. Ordnung und Chaos scheinen stärker 
ineinander verwoben zu sein, als man es dem übli-
chen Verständnis nach anzunehmen geneigt ist. 
Damit wird - was bislang für ausgeschlossen gehal-
ten wurde - das Chaos wenigstens in einem einge-
schränkten Sinne der physikalischen Untersuchung 
zugänglich. 

2 Behandlung des Chaos im Unterricht 
Unter obiger Perspektive kann das unvorhersagbare, 
chaotische Geschehen als das Normale angesehen 
werden, durch das das Vorhersagbare, Geordnete 
als vorübergehende Erscheinung hervor und 
schließlich auch wieder zum Verschwinden ge-

bracht wird. Der die Ordnung bedrohende Aspekt 
des Chaos bedingt das Interesse, herauszufinden, 

- wie sich Chaos ankündigt, bzw. wie weit ein phy-
sikalisches System vom Chaos entfernt ist und 

- wie weit Chaos mit physikalischen Mitteln erfaß-
bar ist. 

Auf den ersten Blick erscheint es hoffnungslos, 
chaotische Erscheinungen in der Schule zu behan-
deln. Es zeigt sich jedoch, daß ein kompliziertes 
Systemverhalten wie Chaos nicht notwendig an 
komplexe Systeme gebunden ist (siehe oben), son-
dern als Konsequenz nichtlinearer Wechselwirkun-
gen einfacher Systeme auftreten kann. Auf diese 
Weise lassen sich die wesentlichen Merkmale chao-
tischen Verhaltens an einfachen mechanischen Mo-
dellsystemen erarbeiten und auf einem angemesse-
nen Niveau beschreiben. Das Pohlsche Rad und ge-
koppelte Pendel sind beliebte Beispiele für eine 
Einführung ins Chaos (siehe z. B. [8]). 

Eine ähnliche Möglichkeit der Komplexitätsreduk-
tion ohne wesentliche Einbußen besteht übrigens 
auch für die in Vielteilchensystemen auftretenden 
Phasenübergänge. Sie lassen sich ebenfalls anhand 
einfacher nichtlinearer mechanischer Systeme dis-
kutieren und für den Physikunterricht fruchtbar ma-
chen (siehe z. B. [9]). Daß darüber hinaus der Ü-
bergang von Ordnung zu Chaos seinerseits eine A-
nalogie zu Phasenübergängen zeigt, weist auf eine 
erst im Umrissen gesehene Universalität hin [10]. 

3 Das Chaoskarussell 
Wir untersuchen im folgenden ein System, das im 
wesentlichen aus einem ebenen Pendel besteht, des-
sen Aufhängepunkt im Abstand r mit der Winkelge-
schwindigkeit w um eine senkrechte Achse rotiert 
(Abb. 2). 

Man kann es sich als das Modell der Gondel eines 
Kettenkarussells vorstellen. Allerdings ist die Be-
wegung des Pendels durch Fixierung der Achse in 
der Aufhängung auf die Ebene beschränkt, die 
durch Rotationsachse und Ausleger aufgespannt 
wird. Im mitrotierenden Bezugssystem wirken längs 
der Bahn zwei Kräfte auf den Pendelkörper (Abb. 
3): die Tangentialkomponenten der Schwerkraft F, 
und der Zentrifugalkraft F, Daraus ergibt sich leicht 
die Bewegungsgleichung: 

 ( )2sin sin cosl g r lδ δ ω δ δ= − + +!!  

( )2 2 2
0 0sin sin  mit ,

g r
l l

δ ω δ ω α δ ω α= − + + = =!!

Dieser entnimmt man durch die Multiplikation mit δ 
und einmalige Integration einen Ausdruck für ein 
sog. effektives Potential U. 
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und eine Bestimmungsgleichung für den Gleichge-
wichtswinkel δ0: 

( )2
0 0 0sin sin cosδ α δ δ= Ω +  

Die Gleichgewichtslage zeigt eine phasenüber-

gangsartige Abhängigkeit von den Parametern α 

und Ω2, die wir an anderer Stelle [11] beschrieben 
haben. Um die Anzahl der freien Parameter klein zu 
halten, beschränken wir uns hier auf den Fall der 
Aufhängung in der Rotationsachse (α = 0), der sich 
auch leicht experimentell realisieren läßt (z. B. mit 
einem Metallbaukasten). 

In diesem Fall liegt die Gleichgewichtslage bei δ0 = 
00, solange die Winkelgeschwindigkeit klein ist. 
Erst ab einer Grenze (Ω2 = 1) wächst sie schnell zu 
größeren Werten an. Dieses Verhalten zeigt sich 
deutlich in der Verformung des Potentials U (Abb. 
4), das für Ω2 ≤ 1 nur ein Minimum bei δ = 00 hat, 
aus dem dann zwei symmetrisch liegende Minima 
herauswachsen. Wird das Pendel also bei genügend 
schneller Umdrehung des „Karussells“ (Ω2 > 1) 
einmal angestoßen, so schwingt es unsymmetrisch 
um eine dieser Gleichgewichtslagen herum, bzw. 
bei genügender Anfangsauslenkung um beide. 

Um realistischer zu sein, berücksichtigen wir die 
Reibung in der Aufhängung des Pendels. Um trotz 

dem stationäre Schwingungen erwarten zu können, 
muß dann zusätzlich ein Antrieb eingebaut werden, 
den wir der Einfachheit halber als harmonisch an-
setzen. Damit nimmt die zu untersuchende Bewe-
gungsgleichung folgende Gestalt an: 

2 2 2
0 0sin sin cos sin af tδ ρδ ω δ ω δ δ ω= − − + Ω +!! !

Wir integrieren diese explizit zeitabhängige Bewe-
gungsgleichung, indem wir sie in ein System dreier 
Differentialgleichungen erster Ordnung umformen:  

2 2 2

0 0

:

: sin

:

sin cos sin

a a

x yx

y y y x

z t z

x x f z

δ

δ ρ ω

ω ω

ω

==

= ⇒ = − −

= =

+ Ω +

 
 
  

!

! !

!

 

Wir lösen dieses System mit dem Runge-Kutta-
Verfahren 4. Ordnung. Dabei hat sich in den meis-

 
Abb. 2 Das „Chaoskarussell“ a Prinzipskizze, b Experi-
mentelle Realisation zur Untersuchung der Gleichgewichts-
lage: mit dem kleinen Motor kann während der Drehung 
die Länge des Auslegers variiert werden. 

 

Abb. 3 Zur Ableitung der Bewegungsgleichung 
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ten Fällen eine Integrationsschrittweite von 50 
Schritt pro Anregungsperiode als ausreichend er-
wiesen. 

Die in den weiteren Abschnitten beschriebenen Er-
gebnisse haben wir mit folgenden mehr oder weni-
ger zufällig ausgewählten Parametern erhalten: 

 1 1
0 1 ,  1as sω ω− −= = . 

Die Behandlung des Problems wurde auf einem 
ATARI 520 ST+ in Pascal programmiert. Die Dia-
gramme wurden als Hardcopies des Bildschirms er-
halten. 

4 Das Konzept des Attraktors 
Im Mittelpunkt der folgenden Überlegungen steht 

das oben beschriebene Chaoskarussell. Es handelt 
sich thermodynamisch gesehen um ein einfaches 
dissipatives System (siehe unten). Die dem System 
per Antrieb zugeführte Energie wird im zeitlichen 
Mittel als Wärme wieder an die Umgebung abgege-
ben. Zwar ist chaotisches ebenso wie reguläres Ver-
halten nicht an dissipative Systeme gebunden. Diese 
sind aber insofern von besonderer Bedeutung, als 
alle realen Systeme als dissipativ anzusehen sind. 

Für dissipative Systeme ist das Konzept des Attrak-
tors fundamental. Der Attraktor ist anschaulich ge-
sprochen etwas, das das Systemverhalten im Laufe 
der Zeit zustrebt, bzw. das Systemverhalten "an-
zieht" Es ist zwar im abstrakten Orts-
Geschwindigkeitsraum (Phasenraum) definiert, er-
laubt aber letztlich, Chaos mit Hilfe geometrischer 

Beziehungen zu beschreiben und zu untersuchen 
[12].  

Lenkt man beispielsweise bei unserem Chaoskarus-
sell eine Gondel aus, so kommt sie nach einer ge-
wissen Zeit wieder in ihrer jeweiligen Gleichge-
wichtslage zur Ruhe. Die Bahn im Phasenraum 
zieht sich auf einen Punkt zusammen (Abb. 5). Die-
ser Fixpunkt ist der Attraktor. Hält man die Gondel 
durch einen (z. B. harmonischen) Antrieb in 
Schwingung, so beobachtet man ein anderes Grenz-
verhalten. Die Phasenraumbahn läuft nach einer 
gewissen Einschwingzeit in sich selbst zurück. Der 

Attraktor ist nunmehr ein sogenannter Grenzzyklus 
(Abb. 6 rechts). (Ein Grenzzyklus ist übrigens cha-
rakteristisch für das reguläre Endverhalten sich 
selbst organisierender dissipativer Systeme [131). 

 
Abb. 4  Das effektive Potential des „armlosen“ Pendels 
(α = 0) als Funktion des Auslenkungswinkels δ für ver-
schiedene Winkelgeschwindigkeiten 

 
Abb. 5 Punktattraktor: Ohne Antrieb kommt das Pendel 
bei der Gleichgewichtslage zur Ruhe: Die Bahnkurve im 
Phasenraum wird vom Punkt (δ = 66.4° / <δ - 0) "ange-
zogen 4  

 
Abb. 6 Grenzzyklus: Solange die Anregungsamplitude f 
nicht zu groß ist (f < 0.745), schwingt das Pendel nach 
kurzer Einschwingzeit mit konstanter Amplitude unsym-
metrisch um eine der beiden Gleichgewichtslagen: Das 
Systemverhalten wird von einem der beiden Grenzzyklen 
angezogen 
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Das Karussell besitzt noch weitere Grenzzyklen. 
Geht man nämlich von anderen Anfangsbedingun-
gen aus, so gelangt man gegebenenfalls zu einem 
ganz anderen Grenzzyklus (Abb. 6 links). Die An-
fangsbedingungen (Punktmengen im Phasenraum), 
die sich zu einem bestimmten Attraktor entwickeln, 
nennt man den Einzugsbereich oder das Bassin des 
Attraktors. 

Neben Punkt- und Grenzzykel- gibt es bei mehrdi-
mensionalen Systemen den Torus-Attraktor, bei 
dem sich die Bahnkurve um einen Torus herumwin-
det. Er kommt durch eine Überlagerung mehrerer 
unabhängiger Schwingungen zustande. 

Bis zur Entdeckung des ersten chaotischen Attrak-
tors durch Lorenz im Jahre 1963 [21 war der Torus 
in höherdimensionalen Räumen das Kompliziertes-
te, das man kannte. Der chaotische Attraktor reflek-
tiert das chaotische Systemverhalten auf geometri-
scher Ebene: Dem exponentiellen Anwachsen von 
Unschärfen entspricht eine exponentiell wachsende 
Auseinanderentwicklung ursprünglich benachbarter 
Bahnen. Dieser Attraktor wird auch seltsamer 

Attraktor genannt. Seine Seltsamkeit kommt darin 
zum Ausdruck, daß er global eine stabile, lokal a-
ber eine instabile Struktur besitzt. Betrachtet man 
beispielsweise für einen gegebenen Satz von An-
fangsbedingungen im chaotischen Bereich, die in 
einem Parameter geringfügig voneinander abwei-
chen die zugehörigen (chaotischen) Attraktoren, so 
sind sie in der äußeren Form kaum zu unterscheiden 
(Abb. 7a u. b). Betrachtet man jedoch die Vergrö-
ßerung eines lokalen Ausschnitts, so stellt man ei-
nen großen Unterschied in den Bildern fest (Abb. 
7c u. d). Das bedeutet, daß sich die von nahezu 
gleichen Anfangsbedingungen ausgehenden (sozu-
sagen benachbarten) Bahnkurven bald beliebig weit 
voneinander entfernt haben und völlig verschiedene 
Spuren ziehen. Das Seltsame des chaotischen 
Attraktors rührt schließlich auch noch daher, daß er 
zwar wie ein Grenzzyklus das "stationäre" Endver-
halten des Systems charakterisiert, dabei jedoch die 
Bahnkurve niemals in sich selbst zurückläuft. 

 

 

 

Abb. 7 Chaotischer Attraktor: Übersteigt die Anregungsamplitude f einen gewissen Grenzwert (f ≈ 0.783), dann antwortet das 
Pendel mit ständig wechselnden Amplituden. Für geringfügig unterschiedliche Anfangszustände (a. und c. δ0 = 0°, b. und d. 
δ0 = 1°) ist das Grenzverhalten im Großen identisch (a. und b.). Die Details sind jedoch völlig verschieden (c. und d. zeigen 
den Bereich 90° ≤ δ ≤ 100°). Die Bilder zeigen die Reaktion des Pendels auf die ersten 300 Anregungsperioden. 
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5 Simulationen 
Im folgenden soll anhand einiger typischer Darstel-
lungen für ausgewählte Parameterbereiche das 
chaotische Systemverhalten und vor allem der Ü-
bergang vom regulären zum chaotischen Verhalten 
demonstriert werden. Die Zahl der Parameter bietet 
dazu eine Vielzahl von Möglichkeiten. Wir mußten 
daher eine Auswahl treffen. Dazu bot sich die An-
regungsamplitude f als in der Praxis am leichtesten 
zu variierende Größe an. Um zu zeigen, daß auch 

aufgrund der Variation anderer Parameter Übergän-
ge vom regulären zum chaotischen Verhalten indu-
ziert werden können, haben wir darüber hinaus den 
Dämpfungsparameter ρ variiert. Alle anderen Pa-
rameterwerte wurden festgehalten. 

Abb. 8 Empfindlichkeit des Pendels im chaotischen Bereich gegen winzige Störungen: Ein kleiner Unterschied in den An-
fangsbedingungen (a. und c. δ0 = 0°, b. und d. δ0 = 0.01°) macht sich in den ersten 10 Perioden (a. und b.) nicht bemerkbar, 
führt aber bereits nach 40 Perioden (c. und d.) zu völlig verschiedenem Systemverhalten 

 
Abb. . 9 Übergang des Pendels ins Chaos bei wachsender Anregungsamplitude f, dargestellt als a Ort-Zeit-Diagramm, b 
Phasendiagramm und c Fourierspektrum (Deren Unvollkommenheit ist auf die Einfachheit der Rechenroutine und auf die 
kleine Anzahl der "Meßwerte" (100 Perioden) zurückzuführen) f = 0,7 
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5.1 Einschwingverhalten 
Wie man es von erzwungenen Schwingungen kennt, 
muß eine gewisse Einschwingzeit abgewartet wer-
den, um zum stationären Endverhalten des Systems 
zu gelangen. Da das Einschwingverhalten La. irre-
gulär ist, kann es vom chaotischen Endverhalten nur 
schwer unterschieden werden. Deshalb muß im letz-
teren Fall hinreichend lange gewartet werden, um 
sicher sein zu können, daß das System nicht doch 
noch regulär wird. 

5.2 Exponentielles Wachstum von Fehlern 
Während für den regulären Schwingungsbereich ge-
ringfügige Unterschiede in den Anfangsbedingun-
gen das Einschwingverhalten ebenfalls nur gering-
fügig beeinflussen und im stationären Endverhalten 
sogar vollständig aufgehoben sind (die Anfangsbe-

dingungen werden vergessen), schaukeln sie sich im 
chaotischen Bereich sehr schnell so weit auf, daß 
ein völlig andersartiges Verhalten resultiert. Letze-
res entnimmt man der Abb.8. Die Anfangsauslen-
kung unterscheidet sich in beiden Fällen um 1/100 
Grad. Zwar ist in den ersten zehn Schwingungen 
von diesem Unterschied noch nichts zu merken 
(Abb. 8a u. b). Jedoch sind bereits die Schwingun-
gen 40 bis 50 völlig verschieden voneinander (Abb. 
8c u. d). 

5.3 Darstellungsarten 
In den Abb.9 bis 14 wird reguläres und chaotisches 
Endverhalten des Chaospendels auf drei verschie-
dene Weisen dargestellt. Die Vorteile der einen 
Darstellungsart vor der anderen erweisen sich vor 
allem bei der Untersuchung der Übergänge ins 
Chaos (siehe unten), wo es häufig schwierig ist, 

 
Abb. 10 Übergang des Pendels ins Chaos bei wachsender Anregungsamplitude f, dargestellt als a Ort-Zeit-Diagramm, b 
Phasendiagramm und c Fourierspektrum (Deren Unvollkommenheit ist auf die Einfachheit der Rechenroutine und auf die 
kleine Anzahl der "Meßwerte" (100 Perioden) zurückzuführen) f = 0.752 

 
Abb. 12 Übergang des Pendels ins Chaos bei wachsender Anregungsamplitude f, dargestellt als a Ort-Zeit-Diagramm, b 
Phasendiagramm und c Fourierspektrum (Deren Unvollkommenheit ist auf die Einfachheit der Rechenroutine und auf die 
kleine Anzahl der "Meßwerte" (100 Perioden) zurückzuführen) f = 0.782 

 
Abb. 11 Übergang des Pendels ins Chaos bei wachsender Anregungsamplitude f, dargestellt als a Ort-Zeit-Diagramm, b 
Phasendiagramm und c Fourierspektrum (Deren Unvollkommenheit ist auf die Einfachheit der Rechenroutine und auf die 
kleine Anzahl der "Meßwerte" (100 Perioden) zurückzuführen) f - 0.775 
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verbleibende Regelmäßigkeiten zu erkennen. Im 
vorliegenden Fall ist die Sachlage eindeutig: Das 
reguläre Endverhalten, wie es sich insbesondere in 
dem einfachen Grenzzyklus und dem deutlichen 
Peak im Frequenzspektrum manifestiert, beinhaltet 
ein Höchstmaß an Ordnung (Abb. 9b und c). Dem 
chaotischen Attraktor und dem unregelmäßigen 
Frequenzspektrum hingegen ist kaum Ordnung 
mehr anzusehen (Abb. 14b und c). 

5.4 Verdopplungssequenzen 
Bei niedrigen Anregungsamplituden f zeigt das 
Chaoskarussell für die vorliegende Parameterfestle-
gung stets ein reguläres Endverhalten. Vergrößert 
man f über den Wert von 0.7445 hinaus, so beo-
bachtet man, daß sich im Orts-Zeit-Diagramm 
plötzlich zwei verschiedene Amplituden abwech-
seln. Der stationäre Endzustand ist nunmehr durch 
zwei Frequenzen gekennzeichnet. Man spricht von 
Frequenzverdopplung. Das System pendelt 
gewissermaßen zwischen zwei Endzuständen hin 
und her (Abb. 10a). Dem entspricht im Phasenraum 
eine einfache Aufspaltung des Grenzzyklus (Abb. 
10b). Im Frequenzspektrum tritt neben der 
Anregungsfrequenz ωa die halbe 
Anregungsfrequenz auf (Abb. 10c). 

Bei weiterer Vergrößerung von f wachsen die bei-
den Amplituden immer weiter auseinander bis sie 

sich bei f = 0,7718 erneut aufspalten und zu einer 
weiteren Frequenzverdopplung, insgesamt also zu 
einer Frequenzvervierfachung, Anlaß geben (Abb. 
11a). Der zugehörige Attraktor hat dementspre-
chend vier „Umlaufbahnen“ (Abb. 11b) und das 
Frequenzspektrum vier Peaks (Abb. 11c). Die Ver-
dopplung wiederholt sich bei weiterer Vergröße-
rung von f in immer kürzer werdenden Abständen, 
so daß es schwierig wird, sie weiter zu verfolgen. 

Sie endet schließlich im Chaos, dem im Phasenraum 
ein chaotischer Attraktor entspricht (Abb. 14). In 
den Abb. 12 und 13 sind noch die 8- und 16-fache 
Aufspaltung dargestellt. 

Eine Ausschnittsvergrößerung zeigt, daß die Attrak-
toren der vorangegangenen Verdopplungssequenzen 
noch als Überstruktur zu erkennen sind (Abb. 13c). 
Darin deutet sich bereits die sogenannte fraktale 
Struktur [14] des im Grenzfall einer unendlich fort-
gesetzten Verdopplungssequenz entstehenden chao-
tischen Attraktors an: Jede Ausschnittsvergrößerung 
zeigt wieder dieselbe Verdopplungsstruktur (Selbst-
ähnlichkeit). 

5.5 Feigenbaumszenario 

Einen Überblick über die gesamte Verdopplungsse-
quenz erhält man, wenn man die Schwingungsmi-
nima im stationären Endverhalten gegen den vari-
ierten Parameter f aufträgt (Abb. 15). Das so er-

 
Abb. 13 Übergang des Pendels ins Chaos bei wachsender Anregungsamplitude f, dargestellt als a Ort-Zeit-Diagramm, b 
Phasendiagramm und c Fourierspektrum (Deren Unvollkommenheit ist auf die Einfachheit der Rechenroutine und auf die 
kleine Anzahl der „Meßwerte“ (100 Perioden) zurückzuführen) f = 0.7824 (Hier zeigt c. statt des Fourierspektrums eine 
Vergrößerung des Attraktors im Bereich -7° ≤ δ ≤ 0°) 

 
Abb. 14 Übergang des Pendels ins Chaos bei wachsender Anregungsamplitude f, dargestellt als a Ort-Zeit-Diagramm, b 
Phasendiagramm und c Fourierspektrum (Deren Unvollkommenheit ist auf die Einfachheit der Rechenroutine und auf die 
kleine Anzahl der „Meßwerte“ (100 Perioden) zurückzuführen) 
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zeugte sogenannte Feigenbaumdiagramm ist weit 
über das hier betrachtete spezielle System hinaus 
von universeller Bedeutung. Wie Feigenbaum zei-
gen konnte, ist es typisch für den "geordneten" Ü-
bergang ins Chaos bei einer ganzen Klasse unter-
schiedlicher chaotischer Systeme [15]. Ob man nun 
die logistische Gleichung betrachtet, die das Wachs-
tum von Lebewesenpopulationen beschreibt [16], 
oder eine Bewegungsgleichung, die die Dynamik 
eines Prellballs [17], eines chaotischen Schwing-
kreises [18] oder unseres Chaoskarussells beinhal-
tet, immer erhält man für geeignet gewählte 
Parameter den obigen „Feigenbaum“. 

Dabei stimmen die Feigenbäume nicht nur qualitativ 
überein. Die Verhältnisse der Abstände zwischen 

aufeinanderfolgenden Verzweigungspunkten stre-
ben stets dem selben Grenzwert, der universellen 
Konstante 

( )
( )

1

2 1

lim 4,6692...n n

n
n n

λ λ
δ

λ λ
+

→∞
+ +

 −
= = − 

 

zu. Da diese Folge sehr schnell konvergiert, können 
wir bereits aufgrund der von uns ausgemessenen 
Verzweigungen das δ zu 4,23, also mit 9 % Genau-
igkeit bestimmen, indem wir λ durch f ersetzen, 
wobei n die Verzweigungen durchzählt. Auch die 
Verhältnisse der Stärke der Aufspaltungen (in unse-

rem Fall die Differenz zwischen den Amplituden 
bei der jeweils nächsten Aufspaltung) streben einer 
universellen Konstante α = 2,5029... zu, die wir 
durch unsere Ergebnisse ebenfalls bereits aufgrund 
der ersten vier Bifurkationen zu 2.59, also mit 3 % 
Genauigkeit reproduzieren können. Einen gleichen 
Feigenbaum erhalten wir bei Variation der Dämp-
fungskonstante ρ. Allerdings erscheint er umge-
kehrt: Die Verzweigungssequenz tritt mit abneh-
mendem ρ auf. 

Mit dem hier beschriebenen chaotischen Verhalten 
haben wir nur einen kleinen Ausschnitt aus der Fül-
le der Möglichkeiten erfaßt. Er entspricht im Bilde 
des Potentials (Abb. 4) der Beschränkung der 
Schwingung auf eine Potentialmulde, wobei die 

Minima der Schwingung in der 
Gegend des relativen Maximums 
bei 00 auftreten, das die beiden 
Mulden voneinander trennt. Bei 
weiterer Vergrößerung des Anre-
gungsparameters f schwappt die 
Schwingung bis in die jeweils 
andere Mulde hinein (Abb. 16). 
In der Folge tritt nach einem brei-
ten chaotischen Band plötzlich in 
einem weiten Bereich ein regulä-
res Übergangsverhalten in Form 
eines 3er Zyklus auf. Diesem 3er 
Zyklus schließen sich weitere 
chaotische und reguläre Bereiche 
an, bis sich schließlich Chaos 
allmählich wieder auf sehr ge-
ordnete Weise über einen inver-
sen Feigenbaum zu einem völlig 
regulären Verhalten zurückentwi-
ckelt. 

Dies entspricht wiederum im Bil-
de des Potentials (Abb. 4) einer 
Schwingung über beide Mulden 
hinweg derart, daß das Pendel 
vom dazwischenliegenden relati-
ven Maximum gleichsam nichts 
mehr "merkt". Gelangt das Pen-

del schließlich bei weiterer Vergrößerung von f in 
den Bereich des Überschlags, dann ist erneut ein 
Übergang zu chaotischem Verhalten zu beobachten. 

5.6 Ordnung im Chaos 
Aber nicht nur der Weg ins Chaos erfolgt auf ge-
ordnete Weise. Das Chaos selbst besitzt darüber 
hinaus eine Struktur wie man Abb. 15 entnimmt. 
Zum einen scheinen sich die Verzweigungsäste im 
chaotischen Bereich fortzusetzen. Dem chaotischen 
Rauschen ist eine entsprechende Überstruktur auf-
geprägt. Zum anderen gibt es im chaotischen Be-
reich Fenster, in denen nur die Fortsetzungen der 
Verzweigungsäste auftreten. Dementsprechend be-

 
Abb. 15 Der Übergang ins Chaos als Feigenbaum-Diagramm: Die Anregungsamplitu-
de wurde von f = 0.74 bis f = 0.808 in etwa 550 Schritten vergrößert. Für jeden Wert 
von f wurden nach 50 Einschwingperioden die Schwingungsminima von 100 weiteren 
Perioden markiert. Für die Ausschnittsvergrößerung im Bereich 0.79400 ≤ f ≤ 0.79461 
wurden jeweils nach 200 Einschwingperioden die Minima von weiteren 200 Perioden 
berechnet. Die Rechenzeit betrug trotz des schnellen Prozessors jeweils mehr als zwei 
Tage 
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obachtet man in diesen Bereichen wieder entspre-
chende Zyklen, wie beispielsweise den im Bereich f 
= 0,7938 auftretenden 5er Zyklus. Jeder der fünf 
Zweige ist übrigens wieder Ausgangspunkt für ei-
nen neuen Feigenbaum, wie die Ausschnittsvergrö-
ßerung in Abb. 15 auf eindrucksvolle Weise zeigt. 
Dieser Tochterfeigenbaum stimmt mit dem Mutter-
feigenbaum bis ins kleinste Detail überein, insbe-
sondere darin, daß er wiederum ein Fenster mit fünf 

Zweigen besitzt, die ihrerseits Ausgangspunkt von 
Enkelfeigenbäumen sind usw. ad infinitum. Diese 
an die Ineinanderschachtelung russischer Puppen 
erinnernde Selbstähnlichkeit bringt die bereits oben 
erwähnte fraktale Struktur der chaotischen Attrakti-
onen auch auf der Ebene der Feigenbaumdarstel-
lung zum Ausdruck [14]. 
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Abb. 16 Obersicht über das Verhalten des Pendels in ei-
nem großen Parameterbereich. Der in Abb. 15 sichtbare 
Ausschnitt ist umrahmt. 
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