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Ein Karussell mit chaotischen Méglichkeiten

Von U. Backhaus und H. J. Schlichting

1 Was ist Chaos?

Der Erfolg der klassischen Physik liegt vor allem
darin begriindet, daB sie die zukiinftige Entwicklung
eines Systems, dessen Anfangsbedingungen und
Dynamik (Bewegungsgleichung) bekannt sind, vor-
aussagen kann. Dies gilt insbesondere fiir die Be-
stimmung zukiinftiger Planetenbewegungen, Mond-
finsternisse und dhnlicher Phdnomene. Mdchte man
jedoch das Verhalten von Gasmolekiilen oder von
turbulenten Fliissigkeitsstromen vorhersagen, so
kommt man iber Wahrscheinlichkeitsaussagen
nicht hinaus, obwohl auch dort die physikalischen
Gesetze gelten. Bis vor nicht allzu langer Zeit war
man iiberzeugt, dal unser unvollstindiges Wissen
iiber derart komplexe Systeme die Ursache dafiir sei
und eine immer genauere Voraussagbarkeit mit Hil-
fe wachsender Datenmengen und mit Computern
moglich sei. Diese Uberzeugung wurde inzwischen
stark erschiittert. Man hat ndmlich entdeckt, daf3
selbst einfache deterministische Systeme sich zufal-
lig verhalten konnen. Diese Zufdlligkeit ist in einer
Weise fundamental, daf} sie auch durch noch so um-
fangreiche Informationen nicht beseitigt werden
kann. Man spricht daher von chaotischem Verhalten
oder kurz von Chaos.

Wie kommt es dazu, daB3 manche Systeme sich or-
dentlich oder regulédr, andere aber chaotisch oder
unvorhersehbar verhalten? Lange Zeit herrschte die
Meinung vor [1], chaotisches Verhalten sei vor al-
lem durch die Komplexitdt des Systems bedingt.
Selbst als Lorenz im Jahre 1963 ein dreidimensio-
nales Modellsystem mit chaotischem Verhalten vor-
stellte [2], um meteorologische Erscheinungen zu
erklaren, dauerte es noch fast ein Jahrzehnt, bis sich
auch in der physikalischen Fachwelt die Einsicht
durchzusetzen begann: Auch einfache Systeme kon-
nen sich chaotisch verhalten. Jetzt erinnerte man
sich wieder an eine ldngst vergessene Arbeit von
Poincaré, der bereits 1892 beim Studium des 3-
Korperproblems entdeckte, daf3 selbst die so stabil
erscheinende Himmelsmechanik Probleme herauf-
beschwort, die wir heute als chaotisch bezeichnen
wiirden [3]. Er gab auch schon den Hinweis auf eine
mogliche Erklarung: ,, Eine kleine Ursache, die un-
serer Aufmerksamkeit entgeht, ruft eine betrdchtli-
che Wirkung hervor, die wir nicht tibersehen kon-
nen" [4]. Man denke etwa an die labile Gleichge-

wichtslage eines auf dem Kopf stehenden Pendels.
Kleinste Einfliisse, die wir nicht im Griff haben,
konnen zu vollig verschiedenen Wirkungen fiihren,
niamlich das Pendel nach links oder rechts kippen zu
lassen. Wihrend ein einfaches Pendel jedoch nur
eine derart sensible Stelle besitzt, ist ein chaotisches
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Abb. 1 Ein "Billardspiel" (aus [5])

System an jedem Punkt seiner Bewegung so sensi-
bel: Jeder noch so kileine Einfluf} verdndert das Sys-
tem in unvorhersehbarer Weise.

Das kann man sich im Anschluf3 an Sex!/ an einer
Art Billiardspiel klarmachen [5]. Man verlangt, daf3
der Ball in Abb. 1 nacheinander die festgehaltenen
Bille 1, 2... n treffen soll. Eine kleine Rechnung
zeigt dann, dafl bei Vernachlidssigung der Reibung
bereits die 9te Reflexion indeterministisch ist, wenn
man nur die prinzipiell vorhandene Unschirfe auf-
grund des Planckschen Wirkungsquantums zugrun-
delegt. Wegen der gekriimmten Oberfliche der zu-
sammenstoflenden Kugeln wichst nimlich die Un-
schiarfe exponentiell an und 148t den Reflexions-
winkel nach dem 9ten Stof3 beliebig gro3 werden.

Nichtchaotische Systeme unterscheiden sich so ge-
sehen nur dadurch von chaotischen, daf3 ein prinzi-
piell vorhandener Fehler langsamer wdichst und
daher innerhalb menschlicher Beobachtungszeiten
nicht virulent wird. Oder aber die Ddmpfung des
Systems ist so grofs, dafs die Verdnderungen bereits
zum Erliegen gekommen sind, bevor ein grofierer
Fehler bemerkt werden kann.

Die Beschriankung auf solche nichtchaotischen Sys-
teme hat es erlaubt, so lange die Fiktion vom De-
terminismus in der Physik aufrechtzuerhalten, ob-
wohl sie in der Realitdt kaum vorkommen. Trotz-
dem beruht unser physikalisches Verstindnis von
der Natur weitgehend auf ihnen. Die daraus resultie-



renden Defizite der physikalischen Weltbeschrei-
bung machen sich aber allenthalben bemerkbar.

Chaotische Systeme sind demnach solche Systeme,
in denen wegen des exponentiellen Anwachsen des
Fehlers bereits innerhalb kiirzester Zeitrdume jede
Voraussage bedeutungslos wird. Vor diesem Hin-
tergrund erscheint die von Poincaré in Frage gestell-
te Stabilitdt unseres Planetensystems in einem, an-
deren Licht. Max Born schldgt in diesem Zusam-
menhang vor, die Zeitskalen in der Astronomie und
in der Atomphysik zu vergleichen: ,,Das Alter der
Welt wird auf einige 10° Jahre, d. h. Perioden des
Erdumlaufs, geschdtzt. Die Zahl der Perioden im
Grundzustande des Wasserstoffatoms aber ist von
der Grofenordnung 10" pro Sekunde. Gemessen in
den jeweilig natiirlichen Einheiten der Zeit, ist also
die Sachlage gerade umgekehrt wie die naive Mei-
nung: Die Sternenwelt ist kurzlebig, die Atomwelt
duferst langlebig. Ist es nicht gewagt, aus Erfah-
rungen in der kurzlebigen Welt Schliisse zu ziehen,
die auch fiir die langlebige gelten sollen?" [61 E-
benso umwilzend wie die Erkenntnis, dal3 determi-
nistische Systeme chaotisch werden konnen, ist die
Art und Weise eines solchen Ubergangs. Es zeigt
sich ndmlich, das der Weg ins Chaos sehr regelmai-
Big sein kann. Das System kiindigt gewissermalien
den bevorstehenden Zusammenbruch deterministi-
schen Verhaltens an. Es versteht sich von selbst,
daB3 dies von aufBerordentlichem praktischen Inte-
resse ist: Beispielsweise interessiert man sich in der
Medizin dafiir, inwieweit sich lebensbedrohende
chaotische Herzrhythmen im EKG in einem erkenn-
baren, also regelmiBigen Muster ankiindigen [7].
Mit einem solchen regelmifBigen Weg ins Chaos
wollen wir uns im folgenden befassen: Unser Cha-
ospendel durchlduft ndmlich eine Sequenz von Fre-
quenzverdopplungen, die schlieflich im Chaos en-
det. Dieses sog. Feigenbaumszenario beobachtet
man auch in ganz anderen Systemen, so dal man
daraus wie auch aus anderen dhnlich regelméifigen
Szenarien den weitreichenden Schluf3 ziehen darf:
Das Chaos ist in vielen Fdllen in universeller Weise
organisiert. Ordnung und Chaos scheinen stérker
ineinander verwoben zu sein, als man es dem tibli-
chen Verstindnis nach anzunehmen geneigt ist.
Damit wird - was bislang fiir ausgeschlossen gehal-
ten wurde - das Chaos wenigstens in einem einge-
schrinkten Sinne der physikalischen Untersuchung
zuganglich.

2 Behandlung des Chaos im Unterricht

Unter obiger Perspektive kann das unvorhersagbare,
chaotische Geschehen als das Normale angesehen
werden, durch das das Vorhersagbare, Geordnete
als voriibergehende Erscheinung hervor und
schlieBlich auch wieder zum Verschwinden ge-

bracht wird. Der die Ordnung bedrohende Aspekt
des Chaos bedingt das Interesse, herauszufinden,

- wie sich Chaos ankiindigt, bzw. wie weit ein phy-
sikalisches System vom Chaos entfernt ist und

- wie weit Chaos mit physikalischen Mitteln erfafs-
bar ist.

Auf den ersten Blick erscheint es hoffnungslos,
chaotische Erscheinungen in der Schule zu behan-
deln. Es zeigt sich jedoch, daB3 ein kompliziertes
Systemverhalten wie Chaos nicht notwendig an
komplexe Systeme gebunden ist (siche oben), son-
dern als Konsequenz nichtlinearer Wechselwirkun-
gen einfacher Systeme auftreten kann. Auf diese
Weise lassen sich die wesentlichen Merkmale chao-
tischen Verhaltens an einfachen mechanischen Mo-
dellsystemen erarbeiten und auf einem angemesse-
nen Niveau beschreiben. Das Pohlsche Rad und ge-
koppelte Pendel sind beliebte Beispiele fiir eine
Einfiihrung ins Chaos (siehe z. B. [8]).

Eine dhnliche Moglichkeit der Komplexitéitsreduk-
tion ohne wesentliche Einbuflen besteht iibrigens
auch fiir die in Vielteilchensystemen auftretenden
Phaseniibergidnge. Sie lassen sich ebenfalls anhand
einfacher nichtlinearer mechanischer Systeme dis-
kutieren und fiir den Physikunterricht fruchtbar ma-
chen (siche z. B. [9]). DaB dariiber hinaus der U-
bergang von Ordnung zu Chaos seinerseits eine A4-
nalogie zu Phaseniibergdngen zeigt, weist auf eine
erst im Umrissen gesehene Universalitét hin [10].

3 Das Chaoskarussell

Wir untersuchen im folgenden ein System, das im
wesentlichen aus einem ebenen Pendel besteht, des-
sen Aufhéngepunkt im Abstand » mit der Winkelge-
schwindigkeit w um eine senkrechte Achse rotiert
(Abb. 2).

Man kann es sich als das Modell der Gondel eines
Kettenkarussells vorstellen. Allerdings ist die Be-
wegung des Pendels durch Fixierung der Achse in
der Aufhingung auf die Ebene beschrinkt, die
durch Rotationsachse und Ausleger aufgespannt
wird. Im mitrotierenden Bezugssystem wirken langs
der Bahn zwei Krifte auf den Pendelkérper (Abb.
3): die Tangentialkomponenten der Schwerkraft F,
und der Zentrifugalkraft F, Daraus ergibt sich leicht
die Bewegungsgleichung:

16 = —gsin & + & (r +Isin d)cos &

8 = - sin 6+ & ((a+sin 6) mit ¢ =%, a=

Dieser entnimmt man durch die Multiplikation mit &
und einmalige Integration einen Ausdruck fiir ein
sog. effektives Potential U.
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und eine Bestimmungsgleichung fiir den Gleichge-
wichtswinkel &y:

sind, = Q* (a +sing, )cos §,

Die Gleichgewichtslage zeigt eine phaseniiber-

YD
-

Abb. 2 Das ,,Chaoskarussell“ a Prinzipskizze, b Experi-
mentelle Realisation zur Untersuchung der Gleichgewichts-
lage: mit dem kleinen Motor kann wihrend der Drehung
die Lange des Auslegers variiert werden.

gangsartige Abhéngigkeit von den Parametern o

und Q die wir an anderer Stelle [11] beschrieben
haben. Um die Anzahl der freien Parameter klein zu
halten, beschrianken wir uns hier auf den Fall der
Authiangung in der Rotationsachse (a = 0), der sich
auch leicht experimentell realisieren 146t (z. B. mit
einem Metallbaukasten).

In diesem Fall liegt die Gleichgewichtslage bei &, =
0°, solange die Winkelgeschwindigkeit klein ist.
Erst ab einer Grenze (Q* = 1) wichst sie schnell zu
grofleren Werten an. Dieses Verhalten zeigt sich
deutlich in der Verformung des Potentials U (Abb.
4), das fir Q* < 1 nur ein Minimum bei & = 0° hat,
aus dem dann zwei symmetrisch liegende Minima
herauswachsen. Wird das Pendel also bei geniigend
schneller Umdrehung des ,.Karussells (Q? > 1)
einmal angestoBen, so schwingt es unsymmetrisch
um eine dieser Gleichgewichtslagen herum, bzw.
bei geniigender Anfangsauslenkung um beide.

Um realistischer zu sein, berlicksichtigen wir die
Reibung in der Aufhdngung des Pendels. Um trotz

dem stationdre Schwingungen erwarten zu konnen,
muf} dann zusétzlich ein Antrieb eingebaut werden,
den wir der Einfachheit halber als harmonisch an-
setzen. Damit nimmt die zu untersuchende Bewe-
gungsgleichung folgende Gestalt an:

Abb. 3 Zur Ableitung der Bewegungsgleichung

& =-pd —qfsin 5+ ajsin dos J+fsin g
Wir integrieren diese explizit zeitabhidngige Bewe-
gungsgleichung, indem wir sie in ein System dreier
Differentialgleichungen erster Ordnung umformen:
x:=9 H [(F=»

y:=0 [JO[JF= - pr w, sin x + Q:w: sin x cos x + f sin z

z:= wmta % =W

Wir losen dieses System mit dem Runge-Kutta-
Verfahren 4. Ordnung. Dabei hat sich in den meis-



ten Féllen eine Integrationsschrittweite von 50
Schritt pro Anregungsperiode als ausreichend er-
wiesen.

Die in den weiteren Abschnitten beschriebenen Er-
gebnisse haben wir mit folgenden mehr oder weni-
ger zufillig ausgewéhlten Parametern erhalten:

w,=1s", w =1s7".

Die Behandlung des Problems wurde auf einem
ATARI 520 ST+ in Pascal programmiert. Die Dia-
gramme wurden als Hardcopies des Bildschirms er-
halten.

4 Das Konzept des Attraktors
Im Mittelpunkt der folgenden Uberlegungen steht

02=00
0%=10
0%=15
02=25
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Abb. 4 Das effektive Potential des ,,armlosen* Pendels
(a = 0) als Funktion des Auslenkungswinkels & fiir ver-
schiedene Winkelgeschwindigkeiten

das oben beschriebene Chaoskarussell. Es handelt
sich thermodynamisch gesehen um ein einfaches
dissipatives System (siehe unten). Die dem System
per Antrieb zugefiihrte Energie wird im zeitlichen
Mittel als Wérme wieder an die Umgebung abgege-
ben. Zwar ist chaotisches ebenso wie reguldres Ver-
halten nicht an dissipative Systeme gebunden. Diese
sind aber insofern von besonderer Bedeutung, als
alle realen Systeme als dissipativ anzusehen sind.

Fiir dissipative Systeme ist das Konzept des Attrak-
tors fundamental. Der Attraktor ist anschaulich ge-
sprochen etwas, das das Systemverhalten im Laufe
der Zeit zustrebt, bzw. das Systemverhalten "an-
zieht" Es ist zwar 1im abstrakten Orts-
Geschwindigkeitsraum (Phasenraum) definiert, er-
laubt aber letztlich, Chaos mit Hilfe geometrischer

Beziehungen zu beschreiben und zu untersuchen
[12].

Lenkt man beispielsweise bei unserem Chaoskarus-
sell eine Gondel aus, so kommt sie nach einer ge-
wissen Zeit wieder in ihrer jeweiligen Gleichge-
wichtslage zur Ruhe. Die Bahn im Phasenraum
zieht sich auf einen Punkt zusammen (Abb. 5). Die-
ser Fixpunkt ist der Attraktor. Hilt man die Gondel
durch einen (z. B. harmonischen) Antrieb in
Schwingung, so beobachtet man ein anderes Grenz-
verhalten. Die Phasenraumbahn lduft nach einer
gewissen Einschwingzeit in sich selbst zuriick. Der
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Abb. 5 Punktattraktor: Ohne Antrieb kommt das Pendel
bei der Gleichgewichtslage zur Ruhe: Die Bahnkurve im
Phasenraum wird vom Punkt (8 = 66.4° / <d - 0) "ange-
zogen 4

Attraktor ist nunmehr ein sogenannter Grenzzyklus
(Abb. 6 rechts). (Ein Grenzzyklus ist iibrigens cha-
rakteristisch flir das regulidre Endverhalten sich
selbst organisierender dissipativer Systeme [131).

2=2,5000 f=0,7400
a=0,00 0=0,050

Abb. 6 Grenzzyklus: Solange die Anregungsamplitude f
nicht zu grof ist (f < 0.745), schwingt das Pendel nach
kurzer Einschwingzeit mit konstanter Amplitude unsym-
metrisch um eine der beiden Gleichgewichtslagen: Das
Systemverhalten wird von einem der beiden Grenzzyklen
angezogen
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Abb. 7 Chaotischer Attraktor: Ubersteigt die Anregungsamplitude f einen gewissen Grenzwert (f= 0.783), dann antwortet das
Pendel mit standig wechselnden Amplituden. Fiir geringfligig unterschiedliche Anfangszusténde (a. und c. &, = 0°, b. und d.
9y = 1°) ist das Grenzverhalten im Groflen identisch (a. und b.). Die Details sind jedoch vollig verschieden (c. und d. zeigen
den Bereich 90° < 6 < 100°). Die Bilder zeigen die Reaktion des Pendels auf die ersten 300 Anregungsperioden.

Das Karussell besitzt noch weitere Grenzzyklen.
Geht man nédmlich von anderen Anfangsbedingun-
gen aus, so gelangt man gegebenenfalls zu einem
ganz anderen Grenzzyklus (Abb. 6 links). Die An-
fangsbedingungen (Punktmengen im Phasenraum),
die sich zu einem bestimmten Attraktor entwickeln,
nennt man den Einzugsbereich oder das Bassin des
Attraktors.

Neben Punkt- und Grenzzykel- gibt es bei mehrdi-
mensionalen Systemen den Torus-Attraktor, bei
dem sich die Bahnkurve um einen Torus herumwin-
det. Er kommt durch eine Uberlagerung mehrerer
unabhéngiger Schwingungen zustande.

Bis zur Entdeckung des ersten chaotischen Attrak-
tors durch Lorenz im Jahre 1963 [21 war der Torus
in hoherdimensionalen Raumen das Kompliziertes-
te, das man kannte. Der chaotische Attraktor reflek-
tiert das chaotische Systemverhalten auf geometri-
scher Ebene: Dem exponentiellen Anwachsen von
Unschérfen entspricht eine exponentiell wachsende
Auseinanderentwicklung urspriinglich benachbarter
Bahnen. Dieser Attraktor wird auch seltsamer

Attraktor genannt. Seine Seltsamkeit kommt darin
zum Ausdruck, dal er global eine stabile, lokal a-
ber eine instabile Struktur besitzt. Betrachtet man
beispielsweise flir einen gegebenen Satz von An-
fangsbedingungen im chaotischen Bereich, die in
einem Parameter geringfiigig voneinander abwei-
chen die zugehorigen (chaotischen) Attraktoren, so
sind sie in der dufleren Form kaum zu unterscheiden
(Abb. 7a u. b). Betrachtet man jedoch die Vergro-
Berung eines lokalen Ausschnitts, so stellt man ei-
nen groflen Unterschied in den Bildern fest (Abb.
7c¢ u. d). Das bedeutet, dal sich die von nahezu
gleichen Anfangsbedingungen ausgehenden (sozu-
sagen benachbarten) Bahnkurven bald beliebig weit
voneinander entfernt haben und vollig verschiedene
Spuren ziehen. Das Seltsame des chaotischen
Attraktors rihrt schlieSlich auch noch daher, dal3 er
zwar wie ein Grenzzyklus das "stationdre" Endver-
halten des Systems charakterisiert, dabei jedoch die
Bahnkurve niemals in sich selbst zurticklduft.



5 Simulationen

Im folgenden soll anhand einiger typischer Darstel-
lungen fiir ausgewdhlte Parameterbereiche das
chaotische Systemverhalten und vor allem der U-
bergang vom regulidren zum chaotischen Verhalten
demonstriert werden. Die Zahl der Parameter bietet
dazu eine Vielzahl von Moglichkeiten. Wir muf3ten
daher eine Auswahl treffen. Dazu bot sich die An-
regungsamplitude f als in der Praxis am leichtesten
zu variierende Groflie an. Um zu zeigen, dal3 auch

aufgrund der Variation anderer Parameter Ubergin-
ge vom reguldren zum chaotischen Verhalten indu-
ziert werden konnen, haben wir dariiber hinaus den
Dampfungsparameter p variiert. Alle anderen Pa-
rameterwerte wurden festgehalten.
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Abb. 8 Empfindlichkeit des Pendels im chaotischen Bereich gegen winzige Storungen: Ein kleiner Unterschied in den An-
fangsbedingungen (a. und c. 8, = 0°, b. und d. 8, = 0.01°) macht sich in den ersten 10 Perioden (a. und b.) nicht bemerkbar,
fiihrt aber bereits nach 40 Perioden (c. und d.) zu vollig verschiedenem Systemverhalten
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Abb. . 9 Ubergang des Pendels ins Chaos bei wachsender Anregungsamplitude f, dargestellt als a Ort-Zeit-Diagramm, b
Phasendiagramm und ¢ Fourierspektrum (Deren Unvollkommenheit ist auf die Einfachheit der Rechenroutine und auf die
kleine Anzahl der "MeBwerte" (100 Perioden) zuriickzufiihren) f= 0,7
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Abb. 10 Ubergang des Pendels ins Chaos bei wachsender Anregungsamplitude f, dargestellt als a Ort-Zeit-Diagramm, b
Phasendiagramm und ¢ Fourierspektrum (Deren Unvollkommenheit ist auf die Einfachheit der Rechenroutine und auf die
kleine Anzahl der "MeBwerte" (100 Perioden) zuriickzufiihren) f'= 0.752
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Abb. 11 Ubergang des Pendels ins Chaos bei wachsender Anregungsamplitude f, dargestellt als a Ort-Zeit-Diagramm, b
Phasendiagramm und ¢ Fourierspektrum (Deren Unvollkommenheit ist auf die Einfachheit der Rechenroutine und auf die
kleine Anzahl der "MefBwerte" (100 Perioden) zuriickzuftihren) /- 0.775
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Abb. 12 Ubergang des Pendels ins Chaos bei wachsender Anregungsamplitude f, dargestellt als a Ort-Zeit-Diagramm, b
Phasendiagramm und ¢ Fourierspektrum (Deren Unvollkommenheit ist auf die Einfachheit der Rechenroutine und auf die
kleine Anzahl der "MeBwerte" (100 Perioden) zuriickzufiihren) f'= 0.782

5.1 Einschwingverhalten

Wie man es von erzwungenen Schwingungen kennt,
muf} eine gewisse Einschwingzeit abgewartet wer-
den, um zum stationdren Endverhalten des Systems
zu gelangen. Da das Einschwingverhalten La. irre-
gulédr ist, kann es vom chaotischen Endverhalten nur
schwer unterschieden werden. Deshalb muB} im letz-
teren Fall hinreichend lange gewartet werden, um
sicher sein zu konnen, dafl das System nicht doch
noch regulér wird.

5.2 Exponentielles Wachstum von Fehlern

Waihrend fiir den regulédren Schwingungsbereich ge-
ringfiigige Unterschiede in den Anfangsbedingun-
gen das Einschwingverhalten ebenfalls nur gering-
fligig beeinflussen und im stationdren Endverhalten
sogar vollstdndig aufgehoben sind (die Anfangsbe-

dingungen werden vergessen), schaukeln sie sich im
chaotischen Bereich sehr schnell so weit auf, daf}
ein vollig andersartiges Verhalten resultiert. Letze-
res entnimmt man der Abb.8. Die Anfangsauslen-
kung unterscheidet sich in beiden Fillen um 1/100
Grad. Zwar ist in den ersten zehn Schwingungen
von diesem Unterschied noch nichts zu merken
(Abb. 8a u. b). Jedoch sind bereits die Schwingun-
gen 40 bis 50 vollig verschieden voneinander (Abb.
8c u. d).

5.3 Darstellungsarten

In den Abb.9 bis 14 wird reguléres und chaotisches
Endverhalten des Chaospendels auf drei verschie-
dene Weisen dargestellt. Die Vorteile der einen
Darstellungsart vor der anderen erweisen sich vor
allem bei der Untersuchung der Uberginge ins
Chaos (sieche unten), wo es haufig schwierig ist,



verbleibende RegelmafBigkeiten zu erkennen. Im
vorliegenden Fall ist die Sachlage eindeutig: Das
reguldre Endverhalten, wie es sich insbesondere in
dem einfachen Grenzzyklus und dem deutlichen
Peak im Frequenzspektrum manifestiert, beinhaltet
ein Hochstmall an Ordnung (Abb. 9b und c¢). Dem
chaotischen Attraktor und dem unregelméBigen
Frequenzspektrum hingegen ist kaum Ordnung
mehr anzusehen (Abb. 14b und c).

sich bei f = 0,7718 erneut aufspalten und zu einer
weiteren Frequenzverdopplung, insgesamt also zu
einer Frequenzvervierfachung, Anla3 geben (Abb.
11a). Der zugehorige Attraktor hat dementspre-
chend vier ,,Umlaufbahnen” (Abb. 11b) und das
Frequenzspektrum vier Peaks (Abb. 11c¢). Die Ver-
dopplung wiederholt sich bei weiterer Vergrofe-
rung von f in immer kiirzer werdenden Abstinden,
so daB es schwierig wird, sie weiter zu verfolgen.

Buls)
5(°)

70 7540 113,10 15000  t(s)
a)

<)

Abb. 13 Ubergang des Pendels ins Chaos bei wachsender Anregungsamplitude f, dargestellt als a Ort-Zeit-Diagramm, b
Phasendiagramm und ¢ Fourierspektrum (Deren Unvollkommenheit ist auf die Einfachheit der Rechenroutine und auf die
kleine Anzahl der ,MeBwerte” (100 Perioden) zuriickzufiihren) = 0.7824 (Hier zeigt c. statt des Fourierspektrums eine

VergroBerung des Attraktors im Bereich -7° < & £ 0°)
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Abb. 14 Ubergang des Pendels ins Chaos bei wachsender Anregungsamplitude f, dargestellt als a Ort-Zeit-Diagramm, b
Phasendiagramm und ¢ Fourierspektrum (Deren Unvollkommenheit ist auf die Einfachheit der Rechenroutine und auf die

kleine Anzahl der ,,MeBwerte (100 Perioden) zuriickzufiihren)

5.4 Verdopplungssequenzen

Bei niedrigen Anregungsamplituden f zeigt das
Chaoskarussell fiir die vorliegende Parameterfestle-
gung stets ein reguldres Endverhalten. Vergroflert
man f iiber den Wert von 0.7445 hinaus, so beo-
bachtet man, daB sich im Orts-Zeit-Diagramm
plotzlich zwei verschiedene Amplituden abwech-
seln. Der stationdre Endzustand ist nunmehr durch
zwei Frequenzen gekennzeichnet. Man spricht von
Frequenzverdopplung. Das  System  pendelt
gewissermaflen zwischen zwei Endzustdnden hin
und her (Abb. 10a). Dem entspricht im Phasenraum
eine einfache Aufspaltung des Grenzzyklus (Abb.
10b). Im Frequenzspektrum tritt neben der
Anregungsfrequenz w, die halbe
Anregungsfrequenz auf (Abb. 10c).

Bei weiterer Vergroferung von f wachsen die bei-
den Amplituden immer weiter auseinander bis sie

Sie endet schliefllich im Chaos, dem im Phasenraum
ein chaotischer Attraktor entspricht (Abb. 14). In
den Abb. 12 und 13 sind noch die 8- und 16-fache
Aufspaltung dargestellt.

Eine Ausschnittsvergroerung zeigt, da3 die Attrak-
toren der vorangegangenen Verdopplungssequenzen
noch als Uberstruktur zu erkennen sind (Abb. 13c¢).
Darin deutet sich bereits die sogenannte fraktale
Struktur [14] des im Grenzfall einer unendlich fort-
gesetzten Verdopplungssequenz entstehenden chao-
tischen Attraktors an: Jede Ausschnittsvergrof3erung
zeigt wieder dieselbe Verdopplungsstruktur (Selbst-
dhnlichkeit).

5.5 Feigenbaumszenario

Einen Uberblick iiber die gesamte Verdopplungsse-
quenz erhélt man, wenn man die Schwingungsmi-
nima im stationdren Endverhalten gegen den vari-
ierten Parameter f auftrigt (Abb. 15). Das so er-



zeugte sogenannte Feigenbaumdiagramm ist weit
iiber das hier betrachtete spezielle System hinaus
von universeller Bedeutung. Wie Feigenbaum zei-
gen konnte, ist es typisch fiir den "geordneten” U-
bergang ins Chaos bei einer ganzen Klasse unter-
schiedlicher chaotischer Systeme [15]. Ob man nun
die logistische Gleichung betrachtet, die das Wachs-
tum von Lebewesenpopulationen beschreibt [16],
oder eine Bewegungsgleichung, die die Dynamik
eines Prellballs [17], eines chaotischen Schwing-
kreises [18] oder unseres Chaoskarussells beinhal-
tet, immer erhdlt man flir geeignet gewdhlte
Parameter den obigen ,,Feigenbaum®.

Dabei stimmen die Feigenbdume nicht nur qualitativ
iiberein. Die Verhidltnisse der Abstinde zwischen

rem Fall die Differenz zwischen den Amplituden
bei der jeweils nidchsten Aufspaltung) streben einer
universellen Konstante a = 2,5029... zu, die wir
durch unsere Ergebnisse ebenfalls bereits aufgrund
der ersten vier Bifurkationen zu 2.59, also mit 3 %
Genauigkeit reproduzieren konnen. Einen gleichen
Feigenbaum erhalten wir bei Variation der Damp-
fungskonstante p. Allerdings erscheint er umge-
kehrt: Die Verzweigungssequenz tritt mit abneh-
mendem p auf.

Mit dem hier beschriebenen chaotischen Verhalten
haben wir nur einen kleinen Ausschnitt aus der Fiil-
le der Moglichkeiten erfa8t. Er entspricht im Bilde
des Potentials (Abb. 4) der Beschrinkung der
Schwingung auf eine Potentialmulde, wobei die
Minima der Schwingung in der

8V'ﬂln(o)

Gegend des relativen Maximums
bei 0° auftreten, das die beiden
Mulden voneinander trennt. Bei
weiterer Vergroferung des Anre-
gungsparameters f schwappt die
Schwingung bis in die jeweils
andere Mulde hinein (Abb. 16).
In der Folge tritt nach einem brei-
ten chaotischen Band plétzlich in
einem weiten Bereich ein regula-
res Ubergangsverhalten in Form
eines 3er Zyklus auf. Diesem 3er
Zyklus schlieen sich weitere
chaotische und reguldre Bereiche
an, bis sich schlieflich Chaos
allmdhlich wieder auf sehr ge-
ordnete Weise iiber einen inver-

0.745 ' 0.759 ' 0773

0.787f(rel. Einheiten)| sen Feigenbaum zu einem vollig

reguldren Verhalten zuriickentwi-

Abb. 15 Der Ubergang ins Chaos als Feigenbaum-Diagramm: Die Anregungsamplitu- ckelt.
de wurde von f = 0.74 bis f = 0.808 in etwa 550 Schritten vergrofBert. Fiir jeden Wert

von f'wurden nach 50 Einschwingperioden die Schwingungsminima von 100 weiteren

Dies entspricht wiederum im Bil-

Perioden markiert. Fiir die Ausschnittsvergrofierung im Bereich 0.79400 < f'< 0.79461 de de‘s Potentials (Abb 4) einer
wurden jeweils nach 200 Einschwingperioden die Minima von weiteren 200 Perioden Schwingung liber beide Mulden
berechnet. Die Rechenzeit betrug trotz des schnellen Prozessors jeweils mehr als zwei hinweg derart, da das Pendel

Tage

aufeinanderfolgenden Verzweigungspunkten stre-
ben stets dem selben Grenzwert, der universellen
Konstante

5 = lim 0(Aa-4,) D:4,6692...
e /\n+2 _An+l)|]

zu. Da diese Folge sehr schnell konvergiert, konnen
wir bereits aufgrund der von uns ausgemessenen
Verzweigungen das 0 zu 4,23, also mit 9 % Genau-
igkeit bestimmen, indem wir A durch f ersetzen,
wobei n die Verzweigungen durchzéhlt. Auch die
Verhiéltnisse der Stirke der Aufspaltungen (in unse-

vom dazwischenliegenden relati-
ven Maximum gleichsam nichts
mehr "merkt". Gelangt das Pen-
del schlieBlich bei weiterer VergroBerung von f in
den Bereich des Uberschlags, dann ist erneut ein
Ubergang zu chaotischem Verhalten zu beobachten.

5.6 Ordnung im Chaos

Aber nicht nur der Weg ins Chaos erfolgt auf ge-
ordnete Weise. Das Chaos selbst besitzt dariiber
hinaus eine Struktur wie man Abb. 15 entnimmt.
Zum einen scheinen sich die Verzweigungsdste im
chaotischen Bereich fortzusetzen. Dem chaotischen
Rauschen ist eine entsprechende Uberstruktur auf-
geprigt. Zum anderen gibt es im chaotischen Be-
reich Fenster, in denen nur die Fortsetzungen der
Verzweigungsdste auftreten. Dementsprechend be-



obachtet man in diesen Bereichen wieder entspre-
chende Zyklen, wie beispielsweise den im Bereich
= 0,7938 auftretenden Ser Zyklus. Jeder der finf
Zweige ist librigens wieder Ausgangspunkt fiir ei-
nen neuen Feigenbaum, wie die Ausschnittsvergro-
Berung in Abb. 15 auf eindrucksvolle Weise zeigt.
Dieser Tochterfeigenbaum stimmt mit dem Mutter-
feigenbaum bis ins kleinste Detail {iberein, insbe-
sondere darin, dal} er wiederum ein Fenster mit funf

()

— 604

—120 1

1560 1820
f (rel. Einheiten)

0700 1040 1300

Abb. 16 Obersicht liber das Verhalten des Pendels in ei-
nem groflen Parameterbereich. Der in Abb. 15 sichtbare
Ausschnitt ist umrahmt.

Zweigen besitzt, die ihrerseits Ausgangspunkt von
Enkelfeigenbdumen sind usw. ad infinitum. Diese
an die Ineinanderschachtelung russischer Puppen
erinnernde Selbstdhnlichkeit bringt die bereits oben
erwahnte fraktale Struktur der chaotischen Attrakti-
onen auch auf der Ebene der Feigenbaumdarstel-
lung zum Ausdruck [14].
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