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Prof. Dr. H. JOACHIM SCHLICHTING und Dr. VOLKHARD NORDMEIER, Westf. Wilhelms-Universität, Institut für Didaktik 
der Physik, Wilhelm-Klemm-Straße 10, 48149 Münster 

Thermodynamik und Strukturbil-
dung am Beispiel der Entstehung 
eines Flussnetzwerkes
Herrn Prof. Dr. Helmut Schmidt, Köln, zum 60. Geburtstag gewidmet

Mit allgemeinen thermodynamischen Argumenten wird
versucht, eine Antwort auf die Frage zu geben, warum
Flussnetzwerke (wie sie z. B. bei der natürlichen Ent-
wässerung von Flächen entstehen) jene typischen ver-
ästelten, fraktalen Muster ausbilden. Ausschlaggebend
für derartige Strukturbildungsprozesse ist, dass die En-
ergiedissipationsrate des fließenden Wassers minimal
wird. Diese Aussage wird in einem einfachen Algorith-
mus zur Simulation von Flussnetzwerken umgesetzt.

1 Einführung

Der derzeitige Physikunterricht befasst sich zum über-
wiegenden Teil mit Inhalten, Methoden und Denkwei-
sen der klassischen Physik. Die Physik des 20.
Jahrhunderts findet vergleichsweise wenig Beachtung.
Damit läuft der Physikunterricht Gefahr, unzeitgemäß
und seinem Bildungsauftrag nicht mehr gerecht zu
werden. Hinzu kommt, dass ein Unterricht, der die Be-
handlung der oft faszinierenden und spektakulären
Erkenntnisse der modernen Physik den Massenmedi-
en und der populärwissenschaftlichen Literatur über-
lässt, seine eigene Zuständigkeit aufgibt und bei den
Lernenden allenfalls als Sachwalter der Geschichte der
Physik angesehen wird.
Ein wesentliches Argument, das insbesondere seitens
der Lehrenden gegen eine weitere Öffnung des Phy-
sikunterrichts für die moderne Physik hervorgebracht
wird, beruht auf der Unanschaulichkeit, dem Mangel
an schuladäquaten Experimenten und der Theoriela-
stigkeit der Inhalte. Ganz abgesehen davon, dass diese
Einschätzung möglicherweise aus einer überkomme-
nen Perspektive des Physikunterrichts erfolgt, die den
veränderten Bedingungen in einer sich rasant ändern-
den Welt nicht mehr angemessen ist, wird übersehen,
dass sich die moderne Physik oft in ziemlich handfe-
sten technologischen Errungenschaften manifestiert,
die einen unmittelbaren Bezug zum Alltagsleben der
Menschen haben. Man denke beispielsweise an die
Computer- und Kommunikationstechnologien. 
Hinzu kommt, dass die moderne Physik sich nicht nur
in neuen Gegenstandsbereichen (wie z. B. die Welt der
Quanten) manifestiert, sondern oft auch durch neue
Blicke auf die alten Gegenstände umschrieben werden
kann. Die nichtlineare Physik und die Nichtgleichge-

wichtsthermodynamik etwa befassen sich vielfach mit
demselben Gegenstandsbereich der klassischen Phy-
sik, richten das Interesse aber auf andere Fragestellun-
gen. Indem die Bedeutung der Selbstorganisation von
Systemen, der Strukturbildung und Evolution auch
aus der Perspektive der Physik erkannt worden ist,
können sich die physikalischen Untersuchungen nicht
länger auf lineare Zusammenhänge und thermodyna-
mische Gleichgewichtszustände beschränken. Das
Verhalten nichtlinearer Systeme außerhalb des ther-
modynamischen Gleichgewichts rücken in den Blick-
punkt der aktuellen Forschung. 
Auch unter diesen neuen Fragestellungen bleibt die
Physik an grundlegenden Gesetzmäßigkeiten interes-
siert und macht ihre Untersuchungsgegenstände so ein-
fach wie möglich, aber – so muss man mit EINSTEIN
hinzufügen – nicht einfacher. Um ein bekanntes Bei-
spiel zu nennen: Der Meteorologe EDWARD LORENZ ver-
einfachte sein Gleichungssystem zur Beschreibung des
Wetters so stark, dass es unter keinen Umständen zur
tatsächlichen Wettervorhersage tauglich ist. Es bleibt
aber trotz der extremen Einfachheit plausibel. LORENZ'
künstlicher Wetterbericht ähnelt stark dem natürlichen.
Dadurch gelingt die Einsicht, dass der Beruf des Meteo-
rologen in der extrem vereinfachten künstlichen Welt
nicht einfacher ist als in der Wirklichkeit: Das Wetter
spielt hier wie dort verrückt und entzieht sich jeglicher
längerfristigen Vorhersage. Wesentlicher als die Be-
rücksichtigung möglichst vieler Parameter ist die Be-
rücksichtigung der Nichtlinearität der Dynamik. 
In dem Bemühen, auch unter nichtlinearen Bedingun-
gen und außerhalb des thermodynamischen Gleichge-
wichts möglichst einfache Systeme zu untersuchen,
befasst sich die aktuelle Forschung beispielsweise mit
dem Verhalten von Sand und anderen Granulaten.
Diese Substanzen sind zwar in der Schlichtheit der
Wechselwirkung ihrer Teilchen kaum zu unterbieten,
zeigen aber in mehrfacher Hinsicht ein überraschend
komplexes Verhalten (vgl. z. B. [1]).

2 Dissipative Strukturen mit 
fraktalen Grenzen

Für die Schulphysik besonders interessant sind Nicht-
gleichgewichtsstrukturen, die sich mithilfe der Dissi-
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Gleichgewicht heraus entwickeln. Wenn man bei-
spielsweise Sand oder andere Granulate in geeigneter
Weise schüttelt, können dynamische Muster entstehen
und aufrechterhalten werden, die ihren stationären
Nichtgleichgewichtszustand durch nichtlineare Me-
chanismen gegen äußere Störungen zu stabilisieren
vermögen [1]. 
Strukturen fallen durch eine charakteristische äußere
Form auf. Die Form kann als visueller Ausdruck der
inneren Dynamik angesehen werden, mit der sich das
System aus der nivellierenden Umgebung ausgrenzt.
In vielen Fällen bilden sich Grenzen zwischen System
und Umgebung, die in einem sehr konkreten Sinne op-
timal sind [2]. Dazu zählen die erst vor einigen Jahr-
zehnten entdeckten Fraktale. Diese Fraktale spielen in
der belebten und unbelebten Natur eine wichtige Rolle
(siehe z. B. [3, 4]). Als Beispiel einer Struktur mit
fraktalen Grenzen, die sich unter gegebenen Bedin-
gungen aus dem thermodynamischen Gleichgewicht
heraus entwickelt und einem optimalen Zustand zu-
strebt, betrachten wir im Folgenden die Entstehung
des Netzwerkes eines Flusses.

3 Fraktale Flussnetzwerke

Wenn nach einem Regenguss oder bei Ebbe im Watt
Wasser zur tiefsten Stelle fließt, entstehen fraktal ver-
zweigte hierarchisch geordnete Systeme, die in ihrer
Form an Adern, Bäume, Wurzelwerk oder Netzwerke
von Flüssen erinnern (Abb. 1 und 2). Die Ähnlichkeit
in der Struktur lässt auf eine globale Ähnlichkeit der
Funktion schließen. Wie kommt es zur Ausbildung
derartiger Muster? 
Angesichts der Komplexität der fein verästelten Netz-
werke erscheint eine Antwort auf diese Frage – zumal
mit Mitteln der Schulphysik – zunächst aussichtslos.
Mit Hilfe einfacher thermodynamischer Argumente
lässt sich die Entstehung und Aufrechterhaltung sol-
cher Strukturen zumindest global plausibel machen,
ohne dass die Kenntnis von individuellen Mechanis-
men, wie im vorliegenden Fall etwa hydrodynamische
und geologische Besonderheiten erforderlich ist. 
Dazu betrachten wir als System eine ebene Fläche, die
an einer bestimmten Stelle (z. B. an einer Ecke oder in
der Mitte) einen Abfluss besitzt und gleichmäßig mit
Wasser beregnet wird. Erfahrungsgemäß tendiert das
Wasser dazu, zur tiefsten Stelle zu fließen, um das Sys-
tem ins thermodynamische Gleichgewicht zu bringen.
Im stationären Zustand verlässt die Fläche pro Zeitein-
heit genauso viel Wasser wie ihr zuströmt. Mit dem
Wasser strömt auch Energie durch das System. Die im
System vorhandene Wasser- und Energiemenge bleibt
im stationären Gleichgewicht konstant. Die einzige zu
beobachtende Veränderung ist die Dissipation der
Energie durch Reibung mit dem Untergrund: Als
hochwertige potenzielle Energie wird sie vom System
aufgenommen und als Wärme bei Umgebungstempe-
ratur an die Umgebung abgegeben. Die Größe des dis-
sipierten Energiestroms, der das System durchsetzt, ist
ein Maß dafür, wie weit das System vom thermodyna-
mischen Gleichgewicht entfernt ist. 

Nach dem zweiten Hauptsatz der Thermodynamik
tendiert jedes sich selbst überlassene System dazu, ins
thermodynamische Gleichgewicht überzugehen. Da-
bei wird die Dissipationsrate zunehmend kleiner, bis
sie ganz verschwindet und das System das thermody-
namische Gleichgewicht erreicht hat. Ein offenes, von
Materie und Energie durchströmtes System wie die
beregnete Fläche kann das thermodynamische Gleich-
gewicht aber nicht erreichen: In dem Maße, wie es sich
ihm durch den Abfluss von Wasser und der damit ver-
bundenen Dissipation von Energie nähert, entfernt es
sich von ihm durch Zufluss von Wasser und mechani-
scher Energie. Die Tendenz, das Gleichgewicht zu er-
reichen, führt in dieser Situation jedoch dazu, dass das
System dem Gleichgewicht so nahe – wie unter den ge-
gebenen Bedingungen möglich – kommt. Das ist der
Fall, wenn die Dissipationsrate der Energie einem Mi-
nimum zustrebt. ILYA PRIGOGINE konnte diese plausi-
ble Erklärung wissenschaftlich untermauern, indem er
zeigte, dass ein System (wie etwa die beregnete Ebene)
einem stationären Fließgleichgewicht zustrebt, in dem
die Energiedissipationsrate minimal ist (Prinzip von
der minimalen Entropieproduktionsrate) [5]. 
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Abb. 1. Beispiel eines Real-Flussnetzwerkes: der Amazonas
und seine Zuflüsse

Abb. 2. Entwässerungsnetzwerk, wie es typischerweise bei
Ebbe im Watt entsteht
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4 Flussnetzwerke als ›optimale‹ 
Fließgleichgewichte 

Umgekehrt lässt sich dieses Minimalprinzip benutzen,
um die Struktur zu ermitteln, die eine beregnete Ebene
ausbilden wird, wenn es sich auf das stationäre Fließ-
gleichgewicht zu entwickelt (vgl. [6–7]). Dazu erschaffen
wir uns zunächst mithilfe eines Computerprogramms
ein zufälliges Flussnetzwerk, wie es sich vielleicht zu Be-
ginn ausbildet, wenn die ersten Tropfen gefallen sind
und sich zu kleinsten Flussabschnitten zu vereinigen be-
ginnen. Dann verfolgen wir, wie unter der Bedingung ei-
ner minimalen Energiedissipationsrate das Netzwerk
sich auf eine Struktur hin entwickelt, die erstaunliche
Ähnlichkeit mit realen natürlichen Flussnetzwerken auf-
weist. (vgl. Abb. 6 und 7).

4.1 Abschätzung der Dissipationsrate

Die dem Netzwerk durch die Berieselung zugeführte
potenzielle Energie wird während des Abfließens in ki-
netische Energie umgewandelt und diese zum Teil (z. B.
in Form von Reibung mit dem ›Flussbett‹) als Wärme an
die Umgebung abgegeben. Im stationären Zustand
wird die gesamte zugeführte Energie dissipiert.
Wir setzen der Einfachheit halber die Energiedissipati-
on  als proportional zur potenziellen Energie Epot  an: 

Ediss ~ Epot ~ m · h.

Es sei mi die gesamte durch ein Kanalsegment i abflie-
ßende Wassermenge, li die entsprechende Länge des be-
trachteten Teilstückes und si sein Gefälle, dann folgt:
hi ~ si · li. Betrachtet man nun die Energiedissipation
Ediss,i  in einem Teilkanal i des Netzwerkes, so ergibt sich 

Ediss,i ~ mi · si · li.

Zur Abschätzung der Energiedissipationsrate benötigt
man den Durchfluss bzw. die Durchflussrate, also die
pro Zeiteinheit durch das Netzwerk bzw. seine Teilka-
näle durchgeflossene Wassermenge. Der Fluss Qi
durch den Kanal i berechnet sich zu:

.

Für die Energiedissipationsrate Pdiss,i = Ediss,i / t auf ei-
nem der Segmente gilt dann:

Pdiss,i ~ Qi · si · li.

Dieser Zusammenhang lässt sich noch etwas vereinfa-
chen, da empirisch gezeigt werden konnte (vgl. [6–7]),
dass zwischen dem Durchfluss und der Steigung eines
Kanalsegmentes eine einfache Beziehung besteht:

si ~ Qi
a, mit a » –0,5.

Somit gilt:
Pdiss,i ~ Qi

0,5 · li.

Werden die einzelnen Dissipationsterme über alle
Teilstücke des Netzwerkes aufsummiert, so berechnet
sich die Gesamt-Energiedissipationsrate Pdiss zu

Diese Gleichung bietet eine einfache Abschätzung der
Dissipationsrate nur aus der Kenntnis der einzelnen
Durchflussmengen und Segmentlängen des unter-
suchten Netzwerkes.

4.2 Minimierung der Dissipationsrate – 
ein einfacher Algorithmus

Eine gegebene (Gitter-)Fläche wird berieselt und das
gesamte Wasser durch Drainagekanäle – den einzel-
nen Segmenten des Flussnetzwerks – bis zu einem Ab-
fluss abgeführt. Der Abfluss liegt entweder auf der
Fläche (z. B. in der Mitte) oder am Rand der Ebene

Qi

mi

t
------∼

Pdiss ~  Pdiss,i
 ~  Qi

0,5 · li.∑ ∑
i=1

n n

i=1
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Abb. 3. Entwässerung eines Netzwerkes über die nächsten
Nachbarn bis hin zum Mittelpunkt

Abb. 4. Links: Mögliche Initialisierung eines 5 x 5-Netzwerkes
(Dissipationsrate ~ 80,63). 
Rechts: Eine Iterationsstufe des Optimierungsprozes-
ses (Dissipationsrate ~ 42,89). Abfluss am rechten un-
teren Rand, zusätzlich eingetragen ist der jeweilige
Durchfluss.

Abb. 5. Mögliche Schwankungsbreite und zeitliche Entwick-
lung der Dissipationsrate während einer Simulation



453

A
us

 B
ild

un
g 

un
d

 W
is

se
ns

ch
af

t(z. B. in einer Ecke) und Wasserverluste durch Ver-
dunsten oder Versickern werden ausgeschlossen. Wei-
terhin wird die Berieselung über die ganze Fläche als
gleichmäßig verteilt und als konstant angesehen. 
Unterteilt man das Gitter in n Flächenabschnitte und
entwässert diese über Kanäle, wobei ihre jeweilige
Fließrichtung einem Gefälle entspricht, so ergeben sich
verschiedene Möglichkeiten, wie diese Kanalsegmente
grundsätzlich angeordnet sein können. Die jeweilige
Kanalverbindung reiche dabei immer nur bis zu einer
seiner nächsten Nachbarflächen und von da aus über
die nachfolgenden Kanäle immer weiter bis hin zum
Abfluss. Im gezeigten Beispiel (Abb. 3) besitzt jedes in-
nere Feld acht nächste Nachbarn (die sog. Moore-Nach-
barn).
Zur Verdeutlichung der o. g. Abschätzungen lässt sich
z. B. die Energiedissipationsrate des Flussnetzwerks
aus Abbildung 3 qualitativ zu einem Zahlenwert (in
dimensionsloser Form) berechnen. Dieser Zahlenwert
wird im Folgenden auch kurz Dissipationsrate ge-
nannt.
Um die Berechnung zu vereinfachen, sind (o.B.d.A.)
– die jeweiligen Flächen und Flächenabschnitte qua-

dratisch,
– die Kantenlängen der Flächenabschnitte auf eine

Einheitslänge von Eins normiert,
– die Wassermengen, die durch Berieselung jedem

Flächenabschnitt pro Zeitschritt zugeführt werden,
auf den Wert Eins normiert. 

Die einzelnen Kanallängen li ergeben sich entweder zu
li = 0, li = 1 oder li = . Der Durchfluss Qi ergibt sich
jeweils aus den Summen der Durchflussmengen und
der Regenmenge des Abschnitts selbst. (siehe Tabelle
1)
Für jedes Kanalsystem lässt sich auf diese Weise die
Dissipationsrate ermitteln und mit der eines andersar-
tig strukturierten Netzwerks vergleichen. Wird nun
ein vorgegebenes System in Teilen variiert, wobei ein-
zelne Kanalsegmente etwas anders verlegt werden, in-
dem sie z. B. über andere nächste Nachbarn entwässert
werden, so entstehen Strukturen mit unterschiedli-
chen Dissipationsraten. Diese Variationen werden
vom Computer so ausgeführt, dass die Veränderun-
gen des Netzwerkes, die zu einer niedrigeren Dissipa-
tionsrate führen, als neues Ausgangsmuster
gespeichert werden. Anhand dieser Optimierungsvor-
schrift entwickelt sich ein Netzwerk in einer Art evolu-
tionärem Prozess in Richtung auf eine optimale
Struktur, die einen Abfluss mit minimaler Energiedis-
sipation erlaubt.
Das oben skizzierte Extremalprinzip der minimalen
Dissipationsrate drückt sich im Optimierungsprozess
darin aus, dass das zuströmende Wasser mithilfe mög-
lichst weniger Teilsegmente und zugleich geringer
Durchflussmengen abgeführt wird.

4.3 Simulation von Flussnetzwerken 

Für die Computersimulation hat es sich als günstig er-
wiesen, nicht ein quadratisches, sondern ein dreiecki-
ges Gitter als Grundlage der numerischen
Berechnungen zu verwenden. (Darin sind beispiels-

2
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Abb. 6. Simulation eines Flussnetzwerkes mit Abfluss in der
Ecke (auf einem Gitter mit 200 x 200 Feldern)

Abb. 7. Simulation eines Flussnetzwerkes mit Abfluss in der
Mitte

Qi = 1 1 2 1 1 li = 1 1 1

2 4 8 11 2 1 1 1 1

1 6 25 1 1 1 1 0 1 1

2 3 7 2 2 1 1 1

1 1 1 4 1 1 1 1

2 2

2

2 2

2 2

⇒  PDiss ~  ·  +  · 1 +  · 1  ·  +  · 1
+  · 1 +  · 1 +  · 1 +  ·  +  · 1
+  · 1 +  · 1 +  · 0 +  · 1 +  · 1
+  ·  +  · 1 +  · 1 +  · 1 +  · 
+  · 1 +  · 1 +  ·  +  ·  +  · 1
» 41,07

Tab. 1.

1 2 1 2 1 2 1

2 4 8 11 2 2

1 6 25 1 1

2 2 3 7 2 2 2

1 1 1 2 4 2 1
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weise alle nächsten Nachbarn gleich weit voneinander
entfernt). Eine mögliche Initialisierung eines Netzwer-
kes besteht z. B. darin, alle Flächenabschnitte der Reihe
nach miteinander zu verbinden (vgl. Abb. 4, links). Die
Dissipationsrate eines derartigen Netzwerkes erweist
sich allerdings im Vergleich zu dem Kanalsystem aus
Abbildung 3 oder der Realisation aus Abbildung 4
(rechts) als äußerst ungünstig. 
Damit ein System während des Optimierungsprozes-
ses nicht in einer Konfiguration gefangen bleibt, die
zwar lokal, jedoch nicht global optimal ist, muss bei
der Auswahl der jeweils neuen Iterationsstufe eine ge-
wisse statistische Toleranz mit einprogrammiert wer-
den. Um eine insgesamt optimale Konfiguration zu
erreichen, muss zwischenzeitlich also auch eine Varia-
tion erlaubt sein, die eine höhere Dissipationsrate
besitzt, um eben in den darauffolgenden Entwick-
lungsstadien einen global günstigeren Systemzustand
erreichen zu können. 
Die in Abbildung 5 dargestellte Zeitreihe zur Dissipa-
tionsrate zeigt deutlich, dass mithilfe des hier beschrie-
benen Algorithmus ein optimales Flussnetzwerk mit
einer minimalen Energiedissipationsrate gewonnen
werden kann. Simulationsergebnisse für Netzwerke
auf größeren Gittern zeigen die Abbildungen 6 und 7.

5 Strukturen aus Zufall und 
Notwendigkeit

Verzweigungsstrukturen sind sowohl einfach als auch
komplex. Einfach sind sie insofern, als sie einen extre-
malen Zustand darstellen, in dem die Energiedissipa-
tionsrate minimal ist. Diese Einfachheit äußert sich
jedoch auf komplexe Weise in einem kaum zu über-
schauenden vielfältig verzweigten Netzwerk. Dabei
sind zufällige Einflüsse in den entscheidenden Phasen
des Entstehungsprozesses auf bleibende Weise in das
Muster des Netzwerks eingegangen. 
Der Einfachheit der Minimalstruktur entspricht die
Einfachheit des thermodynamischen Prinzips, das hier
seinen konkreten Ausdruck findet: Da das System
trotz der Dissipation von Energie das thermodynami-
sche Gleichgewicht aufgrund der ständigen Zufuhr

von Materie und Energie nicht erreichen kann, tut es
das Zweitbeste. Es kommt dem thermodynamischen
Gleichgewicht so nahe wie möglich, indem es die En-
ergiedissipationsrate als Maß für die Entfernung vom
Gleichgewicht so klein wie möglich macht. 
Das hier vorgestellte Beispiel soll einmal mehr de-
monstrieren, dass mithilfe einfacher thermodynami-
scher Überlegungen Probleme im Physikunterricht
thematisiert werden können, die einerseits einen Bei-
trag zur Einführung in die nichtlineare Physik und zur
Nichtgleichgewichtsthermodynamik liefern und an-
dererseits ein zumindest globales Verständnis kom-
plexer Selbstorganisationsvorgänge in der Natur
ermöglichen. 
Die beschriebene Software kann unter Einsendung ei-
nes frankierten Rückumschlags bei den Autoren bezo-
gen werden oder im Internet unter www.uni-
muenster.de/Physik/DP heruntergeladen werden.
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