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Zur Gleichgewichtsproblematik beim Fahrradfahren 

Hans Joachim Schlichting 

 

 

Gleichgewicht halten  
ist die erfolgreichste Bewegung des Lebens. 

Beutelrock 

 
1. Einleitung 

Die physikalische Beschreibung eines fahrenden 
Zweirads hat Mathematiker und Physiker immer 
wieder herausgefordert. WHIPPLE /10/ und Mc 
GAW /7/ dürften die ersten gewesen sein, die eine 
Theorie des Fahrradfahrens vorgelegt haben. Später 
befaßten sich TIMOSHENKO und YOUNG /9/ er-
neut mit der Problematik. Die Ergebnisse wurden 
kaum akzeptiert, weil viele vertraute Aspekte des 
Fahrradfahrens nicht erklärt werden konnten, Al-
lenfalls spezielle, mathematisch leicht zu behan-
delnde Detailprobleme flossen in einige Lehr- und 
Fachbücher /8, 3/ ein. In jüngster Zeit hat man sich 
dieser Problematik sowohl experimentell als auch 
theoretisch erneut angenommen /6, 4/, vermutlich 
als eine Folge des Comebacks des Fahrrads. 

Dabei wurden zwar einige frühere Hypothesen wi-
derlegt, insgesamt aber keine konstruktive Alterna-
tive geboten. Es scheinen zu viele Einflußfaktoren 
zu berücksichtigen zu sein, vor allem solche, die 
vom unterschiedlichen individuellen Fahrverhalten 
des jeweiligen Fahrers abhängen, daß eine ge-
schlossene Theorie überhaupt illusorisch erscheint. 
Erfolgsversprechender sind demgegenüber Versu-
che, das Fahrradfahren auf dem Computer zu simu-
lieren /1/. Jedenfalls zeigten erste Versuche ver-
wertbare praktische Ergebnisse, insbesondere auch 
im Hinblick auf sicherheitstechnische Verbesse-
rungen des Fahrraddesigns /11, S. 180/. 

Wir wollen uns daher auf eine mathematische Dis-
kussion nicht einlassen. Stattdessen beschränken 
wir uns im folgenden auf eine weitgehend qualita-
tive Darstellung des Gleichgewichtsverhaltens ei-
nes sich "normal" verhaltenden Durchschnittsfah-
rers auf einem handelsüblichen Zweirad. Dadurch 
wird ein Verständnis der wesentlichen Mechanis-
men des Gleichgewichtsverhaltens auf relativ ein-
fache Weise zugänglich. Mit Hilfe einiger quantita-
tiver Abschätzungen sollen Vorstellungen über die 
auftretenden Größenordnungen entwickelt werden. 

2. Gleichgewicht im statischen und dynami-
schen Fall 

Die Verwunderung vieler Menschen darüber, daß 
man auf zwei Rädern überhaupt fahren kann, be-
ruht vermutlich darauf, daß die Anschauung des 
Menschen weitgehend geprägt ist vom Gleichge-
wichtsverhalten ruhender Objekte. So haben bei-
spielsweise Tische und Stühle mindestens drei Bei-
ne (Unterstützungspunkte), um stabil zu stehen. 
Das Zweirad mit nur zwei Unterstützungspunkten 
(Berührpunkt von Vorderrad und Hinterrad mit 
dem Boden) ist statisch gesehen labil. Bereits klei-
ne Störungen (die praktisch stets vorhanden sind) 
genügen, um das Fahrrad zu kippen, d.h. in eine 
unerwünschte stabile Lage zu bringen. Jeder Radler 
kennt die Bemühungen, ein Rad durch einen Stän-
der oder durch Anlehnen an eine Hauswand vor 
dem Umkippen geschützt abzustellen. Auf einem 
ruhenden Rad sitzend das Gleichgewicht zu hallen, 
erfordert in der Tat akrobatische Fähigkeiten. Diese 
Erfahrungen werden jedoch zu Unrecht zur Beur-
teilung eines fahrenden Radlers herangezogen. Be-
wegte Objekte, seien es rotierende Kreisel oder 
fliegende Bälle, verhalten sich völlig verschieden 
von ruhenden. 

3. Zur Technik des Radfahrens 

3.1. Ein Radier ist ständig am Umkippen 

Die primäre Vertrautheit mit ruhenden Objekten 
macht es erforderlich, daß man das Radfahren, d.h. 
die Beherrschung eines bewegten Objekts, erlernt. 
Die Technik, die man sich dabei mehr unbewußt als 
bewußt zu eigen macht, ist völlig verschieden von 
der Technik des Balancierens, mit der man labile 
ruhende Objekte im Gleichgewicht hält. 

Auch ein fahrendes Fahrrad würde umkippen, 
wenn sich der Schwerpunkt nicht mehr senkrecht 
über der Verbindungslinie der beiden Berührpunkte 
ΑΒ  mit dem Boden befände (vgl. Bild 1). Denn die 
am Schwerpunkt S angreifende Schwerkraft würde 
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zu einem Drehmoment und damit zu einer Drehung 
um ΑΒ  führen. Da diese Situation praktisch stän-
dig gegeben ist, fragt man sich, was ein Radler 
macht, um nicht zu kippen. An Reaktionsmöglich-
keiten stehen ihm die Schwerpunktsverlagerungen 
durch Bewegung des eigenen Körpers und die Dre-
hung des Lenkers zur Verfügung. Vor allem letzte-
re ist die entscheidende Maßnahme, die der prak-
tisch ständig nach der einen oder anderen Seite 
kippende Radler ausnutzt. Die naive Vermutung, 
daß man etwa bei einem Kippen nach links nach 
rechts gegenzusteuern hätte, ist falsch. Dies würde 
den beginnenden Sturz nur noch beschleunigen. 
Man muß im Gegenteil in die gleiche Richtung, 
nach links, steuern. 

3.2. Wie fährt man eine Kurve? 

Um dies zu verstehen, betrachten wir, was passiert, 
wenn der Lenker eingeschlagen wird, d. h. das Rad 
eine Kurve zu fahren beginnt: 

Um einfache Verhältnisse zu haben, fahre der Rad-
ler auf einer Kreisbahn vom Radius r, (in Bild 2 
perspektivisch angedeutet). Die Kurvenfahrt ist ei-
ne Abweichung von der gleichförmig geradlinigen 
Bewegung und erfordert eine auf den Kreismittel-
punkt M gerichtete Kraft 

r
r
vmFZ ˆ

2

−=     (1) 

(wobei v  die Geschwindigkeit des Rades, r̂  die 
Richtung bestimmende Einheitsradiusvektor und m 
die im Schwerpunkt S zentriert gedachte Gesamt-
masse von Fahrrad und Fahrer ist), Aufgebracht 
wird ZF  durch die am eingeschlagenen Vorderrad 
angreifende Reibungskraft RF , die ihrerseits durch 
die Muskelkraft hervorgerufen wird, mit der der 
Fahrer den Lenker eingeschlagen hält. 

Der Situation, wie sie der Radfahrer selbst erlebt, 
angemessener ist die Beschreibung der Kurvenfahrt 
bezüglich des mit dem Fahrrad mitbewegten Be-
zugssystems. Die auf diese Weise heraustransfor-
mierte Zentralkraft ist dann durch eine im Schwer-
punkt angreifende Scheinkraft, der Zentrifugalkraft 

ZZ FF −=  zu berücksichtigen, die sich aus der 
Sicht des Fahrers jedoch sehr real als eine ihn nach 
außen (von M weg) ziehende Kraft bemerkbar 
macht. Will er durch das auf diese Weise (bezüg-
lich Drehpunkt A) wirkende Drehmoment 1D , nicht 
umgekippt werden, so hat er durch Verlagerung 
seines Schwerpunktes S dafür zu sorgen, daß das 
Fahrrad um einen passenden Winkel α geneigt 
wird. Durch eine solche Neigung kann die Ge-
wichtskraft ein 1D  ausgleichendes Drehmoment 

2D  hervorrufen: 

Für die Beträge von 1D  und 2D  gilt (vgl. Bild 2): 

αα coscos
2

1 ⋅⋅=⋅⋅′= a
r
vmaFD Z

,  (2) 

αα sinsin2 ⋅⋅=⋅⋅= amgaFD G .  (3) 

Aus der Gleichgewichtsbedingung 21 DD =  ergibt 
sich 

αα tantan ⋅=⋅=′ mgFF GZ   (4) 

bzw. für den Neigungswinkel α 

rg
v
⋅

=
2

arctanα .    (5) 

Der Neigungswinkel α, der bei einer Kurvenfahrt 
zur Aufrechterhaltung des (dynamischen) Gleich-
gewichts eingenommen wird, ist demnach um so 
größer, je größer die Fahrgeschwindigkeit und je 

 
Bild 1: Seitenansicht des Fahrrads mit den Berührpunk-
ten A und B und dem Schwerpunkt S (bezogen auf Fahr-
rad und Fahrer). 

 
Bild 2: Rückansicht eines Radlers während der Kreis-
fahrt (Mittelpunkt M, Radiusvektor r . Links daneben 
die der Bewegung zugrunde liegenden Kräfte. 

BF  ist die 
Reaktionskraft des Bodens. 
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enger die Kurve (d. h. je kleiner r) ist. Dieses Er-
gebnis wird durch die Erfahrung voll bestätigt. Will 
man eine enge Kurve mit großer Geschwindigkeit 
nehmen, so muß man sich stark in die Kurve legen. 
(Aus Gründen, die wir weiter unten noch anspre-
chen werden, wird man in den meisten Fällen bei 
engen Kurven jedoch lieber den Neigungswinkel 
durch Herabsetzen der Geschwindigkeit möglichst 
klein halten). 

Fährt ein Radfahrer beispielsweise mit einer Ge-
schwindigkeit von 15 km/h in einer Kreisbahn vom 
Radius r = 10 m ein, so muß er sich um einen Win-
kel von α = 10° in die Kurve legen. 

3.3. Der Radler pendelt um die Gleichge-
wichtslage 

Es bleibt die Frage zu klären, wie es der Fahrer er-
reicht, die Neigung in die korrekte Richtung her-
vorzurufen. Denn ein bloßes Einschlagen des Len-
kers führt nach dem eben Gesagten unweigerlich 
zum Umkippen. Der Trick besteht darin, daß der 
Fahrer, wenn er z. B. eine Linkskurve fahren möch-
te, kurz nach rechts lenkt, dadurch ein Kippen nach 
links bewirkt, dieses dann durch Einschlagen des 
Lenkers nach links abfängt und dabei die Kurven-
fahrt hervorruft. 

Kommen wir zum Ausgangsproblem der Technik 
des Gleichgewichtshaltens beim Fahrradfahren zu-
rück, so kann man die eben gewonnenen Aussagen 
umkehren und feststellen: 

Jede wie auch immer zustande kommende Abwei-
chung des Radlers aus der Senkrechten muß durch 
ein angemessenes Einschlagen des Lenkers beant-
wortet werden. Man schlägt den Lenker so stark 
ein, daß das dadurch bedingte Drehmoment größer 
wird als das durch die Neigung hervorgerufene mit 
der Folge, daß das Fahrrad wieder aufgerichtet 
wird, Während der Aufrichtung wird man den Len-
ker in dem Maße wieder in die Geradeausrichtung 
bringen wie die Neigung aufgehoben wird. Ein in 
der Praxis kaum zu vermeidendes Übersteuern mit 
der Folge einer Neigung in die andere Richtung 
wird man erneut mit einer entsprechenden Steuer-
aktion nunmehr in entgegengesetzte Richtung be-
antworten. Mit anderen Worten: Das Gleichge-
wichthalten beim Radfahren beruht auf einem äu-
ßerst subtilen Wechselspiel zwischen Kippen und 
Wiederaufrichten. Der Radfahrer wird kaum exakt 
ein statisches Gleichgewicht einhalten, sondern 
ständig ein dynamisches Gleichgewicht einregeln, 
d. h. ständig um die Gleichgewichtslage pendeln. 
Von diesen Pendelbewegungen des Lenkers merkt 
man i.a. wenig, sie werden unbewußt als Antwort 
auf Abweichungen vom Gleichgewicht vorgenom-
men. Ist man jedoch z.B. auf sandigem Untergrund, 
oder beim Bergauffahren gezwungen, langsam zu 

fahren, oder gerät man mit dem Fahrrad in Straßen-
bahnschienen, so merkt man jedoch sehr wohl et-
was von den Aktionen zur Aufrechterhaltung des 
Gleichgewichts. Gemäß Glg. (3) müssen bei klei-
nen Geschwindigkeiten sehr kleine Krümmungsra-
dien, d.h. sehr enge Kurven gefahren werden, um 
die durch Störungen bedingten Neigungen ( )0≠α  
zu kompensieren. Der Lenker muß also jeweils sehr 
stark eingeschlagen werden. Da starkes Lenkerein-
schlagen außerdem mit zusätzlichen Störungen des 
Gleichgewichts verbunden sein dürfte, somit größe-
re a als normal auftreten, beobachtet man in einem 
solchen Fall einen stark schwankenden Radler mit 
stark überlappenden Spuren (z. B. in Sand oder 
Schnee) von Vorder- und Hinterrad (siehe Bild 3). 
Bei einer Geschwindigkeit von beispielsweise 4 
km/h und einer störungsbedingten Neigung von α = 
5° muß ein Kreisbogen vom Radius r = 1,4 m be-
fahren werden. Umgekehrt zeichnen sich schnelle 
Fahrten durch äußerst ruhigen, schwankungsfreien 
Lauf aus, zur Kompensation von Störungen des 
Gleichgewichts genügen kleinste Auslenkungen, 
entsprechend sehr großen Krümmungsradien. Bei-
spielsweise worden störungsbedingte Neigungen 
von α = 5° bei einer Geschwindigkeit von v = 35 
km/h durch eine von einer Geraden abweichenden 
Kurvenfahrt mit r = 110 m behoben. 

Die Bedeutung des Lenkens, nicht nur für die 
Fahrtrichtungsbestimmung, sondern auch für das 
Einhalten des Gleichgewichts, merkt man spätes-
tens dann, wenn - durch weichen Vorfall auch im-
mer - der Lenker blockiert ist. Dies führt in der Re-
gel zum Sturz. 

 
Bild 3: Schematische Darstellung des Spurverlaufs von 
Vorderrad (a) und Hinterrad (b) bei niedriger Geschwin-
digkeit. 
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4. Die Bedeutung der Reibung 

4.1. Seitliches Wegrutschen 
Es wurde bereits erwähnt, daß die für eine Kurven-
fahrt aufzubringende Zentralkraft ZF  durch die 

Reibungskraft RF  des Rades mit dem Boden auf-
gebracht werden muß: 

RF  = ZF .  

RF  ist ihrerseits von der Gewichtskraft GF  abhän-
gig, mit der das Laufrad auf den Boden drückt: Für 
die maximale Reibungskraft maxRF  gilt betragsmä-
ßig: 

GR FF µ=max , 

wobei µ  der vom Untergrund abhängende Rei-
bungskoeffizient ist (siehe Tabelle 1). Die Rei-
bungskraft RF  und damit die Zentralkraft ZF , die 
für eine Kurvenfahrt nötig ist, ist somit begrenzt: 

 

GRZ FFF µ=≤ max    (6) 

Wegen Glg. (4) darf deshalb ein Neigungswinkel 
von 

( ) µα arctan/arctan max == mgFR  (7) 

nicht überschritten werden. Anderenfalls kommt es 
zu einem Wegrutschen des Vorderrades und damit 
unweigerlich zum Sturz. 

Auf einer sandigen Fahrbahn (µ  = 0,3) darf ein 
Fahrrad einen Neigungswinkel von α = 16,7° nicht 
überschreiten. Der maximale Winkel bei optimalen 
Straßenverhältnissen (µ  = 0,9) beträgt knapp 42°. 

Bei einer Geschwindigkeit von 30 km/h kann man 
demnach auf Sandboden nur einen sehr weiten 
Kreis mit r > 24 m fahren. Selbst unter optimalen 
Bedingungen (µ  = 0,9) darf der Kreis nicht enger 
als r ≈ 8 m sein. Damit erklärt sich, daß ein Radfah-

rer, der einen engen Kreis fahren möchte, die Ge-
schwindigkeit so stark herabsetzen muß, daß die 
Unglg. (6) erfüllt bleibt. 

4.2. Fahrbahnböschung 

Die Destabilisierung aufgrund des Neigungswin-
kels bei Kurvenfahrten (beispielsweise bei Fahrrad-
rennen im Stadion, bei denen große Geschwindig-
keiten auftreten) kann durch eine passende Neigung 
der Bahn aufgehoben werden. Eine solche Fahr-
bahnneigung ist dann optimal, wenn das Rad senk-
recht zur Bahn fährt. 

Aufgrund von Glg. (5) muß bei einer gegebenen 
Geschwindigkeit für kleine Bahnradien eine relativ 
starke, für große Radien eine relativ schwache 
Bahnneigung vorhanden sein. 

Bei vorgegebenem Bahnradius muß die Neigung 
der Bahn umso größer sein, je schneller gefahren 
wird. 

5. Automatische Gleichgewichtsregelung 

Die bisherigen Überlegungen beruhten auf der 
Voraussetzung, daß das Gleichgewicht durch ein 
weitgehend unbewußtes, auf die Bedingungen der 
jeweiligen Radfahrt fein abgestimmtes Regelver-
halten des Fahrers eingestellt wird. JONES /4/ hat 
experimentell festgestellt, daß es so gut wie unmög-
lich ist, ein nicht fahrbares ("unridable") Fahrrad zu 
konstruieren. 

Normale Fahrräder sind jedoch so konstruiert, daß 
sie das Regelverhalten des Fahrers weitgehend un-
terstützen. So ist es beispielsweise möglich, ein 
Fahrrad ohne Berührung des Lenkers zu lenken 
(etwa beim Freihändigfahren oder beim Schieben 
am Sattel), d.h. insbesondere auch Kurven zu fah-
ren. Da nämlich beim normalen Fahrrad die Lenk-
stangenachse geometrisch verlängert unter dem 
Mittelpunkt 1C  des Vorderrades vorbeigeht und 
vor dem Berührpunkt A zwischen Reifen und Bo-
den den Boden in A' trifft (siehe Bild 1) bewirkt die 
(aufgrund der Neigung des gesamten Rades zu ei-
ner Seite) in 1C  angreifende Schwerkraft des Vor-
derrades einen Lenkereinschlag in dieselbe Rich-
tung. Damit ist aber nach den obigen Ausführungen 
je nach der Stärke der jeweiligen Fahrradneigung 
ein Wiederaufrichten oder ein Kurvenfahren mög-
lich, ohne daß der Lenker berührt werden müßte. 

6. Kreiseleffekte 

Bislang wurde die Masse der Laufräder pauschal in 
die Gesamtmasse m mit einbezogen. Außerdem 
wurde ein möglicher Kreiseleffekt auf das Gleich-
gewichtsverhalten des Fahrrads vernachlässigt. Ob 

Tabelle 1: Reibungskoeffizienten µ  für einige typische 
Fahrbahnen /11/ 

Material µ 

Beton,  
Asphalt (trocken) 

0,8 - 0,9 

Beton, Asphalt (naß) 0,4 - 0,7 

Rollsplit 0,6 - 0,7 

Loser Sand 0,3 - 0,4 

Eis 0,1 - 0,2 
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und inwieweit eine solche Näherung gerechtfertigt 
ist, soll kurz beleuchtet werden: Die mit einer Win-
kelgeschwindigkeit ω  drehenden Laufräder des 
Fahrrads vom Radius ρ  und Trägheitsmoment I 
stellen Kreisel dar. Wird der Lenker eingeschlagen, 
beispielsweise um einen Kreisbogen von Radius r 
zu befahren, dann bewirkt eine solche aufgezwun-
gene Präzessionsbewegung des Laufrades ein kip-
pendes Drehmoment KD  auf die Laufradachse 
/vgl. z. B. 2/: 

Ω⋅= ωIDK ,    (8) 

wodurch gleichsam automatisch die zur Aufrecht-
erhaltung des Gleichgewichts notwendige Radnei-
gung eingeleitet wird. Ω  ist die Winkelgeschwin-
digkeit der durch den Lenkeinschlag eingenomme-
nen Kreisbahn und daher durch den Quotienten v/r 
gegeben. Mit 2ρ⋅= RadmI  sowie ρω /v=  er-
gibt sich dann: 

ρ2v
r

mD Rad
K ⋅= .    (9) 

Bei einer Geschwindigkeit von 30 km/h, einem 
Kreisbahnradius r = 30 m, einem Radradius ρ  = 

35 cm und einer Reifenmasse =Radm  1 kg ergibt 
sich ein Drehmoment KD  = 0,8 Nm. 

Im Vergleich zum Drehmoment 1D  (vgl. Glg. (2)), 
welches mit a = 1 m und m = 85 kg den Wert 1D  = 
96 Nm annimmt, ist es jedoch vernachlässigbar 
klein. Allerdings zeigen KLEIN und SOMMER-
FELD /5/, daß die Kreiselwirkungen der Laufräder 
insofern in "besonders intelligenter Weise" zur 
Aufrechterhaltung des Gleichgewichts beitragen, 
als sie "vermöge der Phase ihre Wirkung zuerst ein 
Überfallen des Rades spüren und dann die viel 
stärkeren, aber etwas langsamen Centrifugalwir-
kungen in den Dienst der Stabilität spannen" /5, S. 
884/. 
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