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Zur Gleichgewichtsproblematik beim Fahrradfahren

Hans Joachim Schlichting

1. Einleitung

Die physikalische Beschreibung eines fahrenden
Zweirads hat Mathematiker und Physiker immer
wieder herausgefordert. WHIPPLE /10/ und Mc
GAW /7/ dirften die ersten gewesen sein, die eine
Theorie des Fahrradfahrens vorgelegt haben. Spéater
befalten sich TIMOSHENKO und YOUNG /9/ er-
neut mit der Problematik. Die Ergebnisse wurden
kaum akzeptiert, weil viele vertraute Aspekte des
Fahrradfahrens nicht erklart werden konnten, Al-
lenfalls spezielle, mathematisch leicht zu behan-
delnde Detailprobleme flossen in einige Lehr- und
Fachbiicher /8, 3/ ein. In jlingster Zeit hat man sich
dieser Problematik sowohl experimentell als auch
theoretisch erneut angenommen /6, 4/, vermutlich
als eine Folge des Comebacks des Fahrrads.

Dabei wurden zwar einige frihere Hypothesen wi-
derlegt, insgesamt aber keine konstruktive Alterna-
tive geboten. Es scheinen zu viele EinfluRfaktoren
zu bericksichtigen zu sein, vor allem solche, die
vom unterschiedlichen individuellen Fahrverhalten
des jeweiligen Fahrers abhangen, daR eine ge-
schlossene Theorie Uberhaupt illusorisch erscheint.
Erfolgsversprechender sind demgegeniiber Versu-
che, das Fahrradfahren auf dem Computer zu simu-
lieren /1/. Jedenfalls zeigten erste Versuche ver-
wertbare praktische Ergebnisse, insbesondere auch
im Hinblick auf sicherheitstechnische Verbesse-
rungen des Fahrraddesigns /11, S. 180/.

Wir wollen uns daher auf eine mathematische Dis-
kussion nicht einlassen. Stattdessen beschranken
wir uns im folgenden auf eine weitgehend qualita-
tive Darstellung des Gleichgewichtsverhaltens ei-
nes sich "normal" verhaltenden Durchschnittsfah-
rers auf einem handelstiblichen Zweirad. Dadurch
wird ein Verstandnis der wesentlichen Mechanis-
men des Gleichgewichtsverhaltens auf relativ ein-
fache Weise zuganglich. Mit Hilfe einiger quantita-
tiver Abschatzungen sollen Vorstellungen uber die
auftretenden Grof3enordnungen entwickelt werden.

Gleichgewicht halten
ist die erfolgreichste Bewegung des Lebens.

Beutelrock

2. Gleichgewicht im statischen und dynami-
schen Fall

Die Verwunderung vieler Menschen dariiber, dal}
man auf zwei Radern Uberhaupt fahren kann, be-
ruht vermutlich darauf, dafl die Anschauung des
Menschen weitgehend geprégt ist vom Gleichge-
wichtsverhalten ruhender Objekte. So haben bei-
spielsweise Tische und Stiihle mindestens drei Bei-
ne (Unterstiitzungspunkte), um stabil zu stehen.
Das Zweirad mit nur zwei Unterstiitzungspunkten
(Bertihrpunkt von Vorderrad und Hinterrad mit
dem Boden) ist statisch gesehen labil. Bereits klei-
ne Stoérungen (die praktisch stets vorhanden sind)
genugen, um das Fahrrad zu kippen, d.h. in eine
unerwiinschte stabile Lage zu bringen. Jeder Radler
kennt die Bemuhungen, ein Rad durch einen Stén-
der oder durch Anlehnen an eine Hauswand vor
dem Umkippen geschiitzt abzustellen. Auf einem
ruhenden Rad sitzend das Gleichgewicht zu hallen,
erfordert in der Tat akrobatische Fahigkeiten. Diese
Erfahrungen werden jedoch zu Unrecht zur Beur-
teilung eines fahrenden Radlers herangezogen. Be-
wegte Objekte, seien es rotierende Kreisel oder
fliegende Balle, verhalten sich vollig verschieden
von ruhenden.

3. Zur Technik des Radfahrens
3.1. Ein Radier ist standig am Umkippen

Die primdre Vertrautheit mit ruhenden Objekten
macht es erforderlich, daB man das Radfahren, d.h.
die Beherrschung eines bewegten Objekts, erlernt.
Die Technik, die man sich dabei mehr unbewuft als
bewuBt zu eigen macht, ist véllig verschieden von
der Technik des Balancierens, mit der man labile
ruhende Objekte im Gleichgewicht halt.

Auch ein fahrendes Fahrrad wiirde umkippen,
wenn sich der Schwerpunkt nicht mehr senkrecht
Uber der Verbindungslinie der beiden Beriihrpunkte
AB Mmit dem Boden befénde (vgl. Bild 1). Denn die
am Schwerpunkt S angreifende Schwerkraft wiirde



zu einem Drehmoment und damit zu einer Drehung
um AB flhren. Da diese Situation praktisch stan-
dig gegeben ist, fragt man sich, was ein Radler
macht, um nicht zu kippen. An Reaktionsmdglich-
keiten stehen ihm die Schwerpunktsverlagerungen
durch Bewegung des eigenen Korpers und die Dre-
hung des Lenkers zur Verfligung. Vor allem letzte-
re ist die entscheidende MalRnahme, die der prak-
tisch standig nach der einen oder anderen Seite
kippende Radler ausnutzt. Die naive Vermutung,
daBR man etwa bei einem Kippen nach links nach
rechts gegenzusteuern hétte, ist falsch. Dies wiirde
den beginnenden Sturz nur noch beschleunigen.
Man muB im Gegenteil in die gleiche Richtung,
nach links, steuern.

3.2. Wie fahrt man eine Kurve?

Um dies zu verstehen, betrachten wir, was passiert,
wenn der Lenker eingeschlagen wird, d. h. das Rad
eine Kurve zu fahren beginnt:
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Der Situation, wie sie der Radfahrer selbst erlebt,
angemessener ist die Beschreibung der Kurvenfahrt
beziiglich des mit dem Fahrrad mitbewegten Be-
zugssystems. Die auf diese Weise heraustransfor-
mierte Zentralkraft ist dann durch eine im Schwer-
punkt angreifende Scheinkraft, der Zentrifugalkraft
F, =—F, zu bericksichtigen, die sich aus der
Sicht des Fahrers jedoch sehr real als eine ihn nach
aufen (von M weg) ziehende Kraft bemerkbar
macht. Will er durch das auf diese Weise (beziig-
lich Drehpunkt A) wirkende Drehmoment D, , nicht
umgekippt werden, so hat er durch Verlagerung
seines Schwerpunktes S dafiir zu sorgen, daf} das
Fahrrad um einen passenden Winkel o geneigt
wird. Durch eine solche Neigung kann die Ge-

wichtskraft ein D, ausgleichendes Drehmoment

D, hervorrufen:

Fur die Betrage von D, und D, gilt (vgl. Bild 2):

Bild 1: Seitenansicht des Fahrrads mit den Berihrpunk-
ten A und B und dem Schwerpunkt S (bezogen auf Fahr-
rad und Fahrer).

Um einfache Verhéltnisse zu haben, fahre der Rad-
ler auf einer Kreisbahn vom Radius r, (in Bild 2
perspektivisch angedeutet). Die Kurvenfahrt ist ei-
ne Abweichung von der gleichférmig geradlinigen
Bewegung und erfordert eine auf den Kreismittel-
punkt M gerichtete Kraft

F, = —mVTf 1)

(wobei V die Geschwindigkeit des Rades, T die
Richtung bestimmende Einheitsradiusvektor und m
die im Schwerpunkt S zentriert gedachte Gesamt-
masse von Fahrrad und Fahrer ist), Aufgebracht

wird Ifz durch die am eingeschlagenen Vorderrad
angreifende Reibungskraft IfR, die ihrerseits durch

die Muskelkraft hervorgerufen wird, mit der der
Fahrer den Lenker eingeschlagen halt.

Bild 2: Riickansicht eines Radlers wahrend der Kreis-

fahrt (Mittelpunkt M, Radiusvektor I . Links daneben
die der Bewegung zugrunde liegenden Kréfte. |fB ist die

Reaktionskraft des Bodens.

2

v
D,=F,-a-cosa=m-—-a-cosa 2

r

D,=F;-a-sina=mg-a-sina. (3)
Aus der Gleichgewichtsbedingung D, = D, ergibt
sich

F, =F -tana=mg-tanx (4)

bzw. flr den Neigungswinkel o

2

®)

a = arctan

Der Neigungswinkel «, der bei einer Kurvenfahrt
zur Aufrechterhaltung des (dynamischen) Gleich-
gewichts eingenommen wird, ist demnach um so
groBer, je groRer die Fahrgeschwindigkeit und je



enger die Kurve (d. h. je kleiner r) ist. Dieses Er-
gebnis wird durch die Erfahrung voll bestatigt. Will
man eine enge Kurve mit groRer Geschwindigkeit
nehmen, so mul? man sich stark in die Kurve legen.
(Aus Grinden, die wir weiter unten noch anspre-
chen werden, wird man in den meisten Féllen bei
engen Kurven jedoch lieber den Neigungswinkel
durch Herabsetzen der Geschwindigkeit moglichst
klein halten).

Fahrt ein Radfahrer beispielsweise mit einer Ge-
schwindigkeit von 15 km/h in einer Kreisbahn vom
Radius r = 10 m ein, so mul er sich um einen Win-
kel von = 10° in die Kurve legen.

3.3. Der Radler pendelt um die Gleichge-
wichtslage

Es bleibt die Frage zu klaren, wie es der Fahrer er-
reicht, die Neigung in die korrekte Richtung her-
vorzurufen. Denn ein bloRes Einschlagen des Len-
kers fiihrt nach dem eben Gesagten unweigerlich
zum Umkippen. Der Trick besteht darin, daf der
Fahrer, wenn er z. B. eine Linkskurve fahren moch-
te, kurz nach rechts lenkt, dadurch ein Kippen nach
links bewirkt, dieses dann durch Einschlagen des
Lenkers nach links abfangt und dabei die Kurven-
fahrt hervorruft.

Kommen wir zum Ausgangsproblem der Technik
des Gleichgewichtshaltens beim Fahrradfahren zu-
riick, so kann man die eben gewonnenen Aussagen
umkehren und feststellen:

Jede wie auch immer zustande kommende Abwei-
chung des Radlers aus der Senkrechten muR durch
ein angemessenes Einschlagen des Lenkers beant-
wortet werden. Man schlagt den Lenker so stark
ein, dall das dadurch bedingte Drehmoment grofer
wird als das durch die Neigung hervorgerufene mit
der Folge, daB das Fahrrad wieder aufgerichtet
wird, Wahrend der Aufrichtung wird man den Len-
ker in dem MaRe wieder in die Geradeausrichtung
bringen wie die Neigung aufgehoben wird. Ein in
der Praxis kaum zu vermeidendes Ubersteuern mit
der Folge einer Neigung in die andere Richtung
wird man erneut mit einer entsprechenden Steuer-
aktion nunmehr in entgegengesetzte Richtung be-
antworten. Mit anderen Worten: Das Gleichge-
wichthalten beim Radfahren beruht auf einem &u-
Rerst subtilen Wechselspiel zwischen Kippen und
Wiederaufrichten. Der Radfahrer wird kaum exakt
ein statisches Gleichgewicht einhalten, sondern
stdndig ein dynamisches Gleichgewicht einregeln,
d. h. stdndig um die Gleichgewichtslage pendeln.
Von diesen Pendelbewegungen des Lenkers merkt
man i.a. wenig, sie werden unbewuft als Antwort
auf Abweichungen vom Gleichgewicht vorgenom-
men. Ist man jedoch z.B. auf sandigem Untergrund,
oder beim Bergauffahren gezwungen, langsam zu
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fahren, oder gerét man mit dem Fahrrad in StralRen-
bahnschienen, so merkt man jedoch sehr wohl et-
was von den Aktionen zur Aufrechterhaltung des
Gleichgewichts. GeméR Glg. (3) mussen bei Klei-
nen Geschwindigkeiten sehr kleine Krimmungsra-
dien, d.h. sehr enge Kurven gefahren werden, um
die durch Stérungen bedingten Neigungen (¢ = 0)

zu kompensieren. Der Lenker mul? also jeweils sehr
stark eingeschlagen werden. Da starkes Lenkerein-
schlagen auflerdem mit zusatzlichen Stérungen des
Gleichgewichts verbunden sein dirfte, somit grofe-
re a als normal auftreten, beobachtet man in einem
solchen Fall einen stark schwankenden Radler mit
stark Uberlappenden Spuren (z. B. in Sand oder
Schnee) von Vorder- und Hinterrad (siehe Bild 3).
Bei einer Geschwindigkeit von beispielsweise 4
km/h und einer stérungsbedingten Neigung von a =
5° mul} ein Kreisbogen vom Radius r = 1,4 m be-
fahren werden. Umgekehrt zeichnen sich schnelle
Fahrten durch aufRerst ruhigen, schwankungsfreien
Lauf aus, zur Kompensation von Stérungen des
Gleichgewichts geniigen Kkleinste Auslenkungen,
entsprechend sehr grofRen Kriimmungsradien. Bei-
spielsweise worden stérungsbedingte Neigungen
von o = 5° bei einer Geschwindigkeit von v = 35
km/h durch eine von einer Geraden abweichenden
Kurvenfahrt mit r = 110 m behoben.

b

Bild 3: Schematische Darstellung des Spurverlaufs von
Vorderrad (a) und Hinterrad (b) bei niedriger Geschwin-
digkeit.

Die Bedeutung des Lenkens, nicht nur fir die
Fahrtrichtungsbestimmung, sondern auch fir das
Einhalten des Gleichgewichts, merkt man spates-
tens dann, wenn - durch weichen Vorfall auch im-
mer - der Lenker blockiert ist. Dies fihrt in der Re-
gel zum Sturz.



4. Die Bedeutung der Reibung

4.1. Seitliches Wegrutschen

Es wurde bereits erwahnt, daB die flr eine Kurven-
fahrt aufzubringende Zentralkraft F, durch die
Reibungskraft IfR des Rades mit dem Boden auf-
gebracht werden muf:

F.=E,.

F, ist ihrerseits von der Gewichtskraft F_ abhan-

gig, mit der das Laufrad auf den Boden driickt: Fur
die maximale Reibungskraft F. _ gilt betragsma-

Rig:

R max

FRmax = uFs,

wobei , der vom Untergrund abhangende Rei-

bungskoeffizient ist (sieche Tabelle 1). Die Rei-
bungskraft F, und damit die Zentralkraft F,, die

fur eine Kurvenfahrt nétig ist, ist somit begrenzt:

Tabelle 1: Reibungskoeffizienten £¢ fiir einige typische
Fahrbahnen /11/

Material U
Beton, 0,8-09
Asphalt (trocken)

Beton, Asphalt (naR3) 0,4-0,7
Rollsplit 0,6-0,7
Loser Sand 0,3-04
Eis 0,1-0,2

F, < Famax = 1Fs (6)

Wegen Glg. (4) darf deshalb ein Neigungswinkel
von

a = arctan(F,,,,, /mg) = arctan u (7)

nicht uberschritten werden. Anderenfalls kommt es
zu einem Wegrutschen des Vorderrades und damit
unweigerlich zum Sturz.

Auf einer sandigen Fahrbahn (& = 0,3) darf ein

Fahrrad einen Neigungswinkel von o = 16,7° nicht
Uberschreiten. Der maximale Winkel bei optimalen
Straenverhéltnissen (£ = 0,9) betrégt knapp 42°.

Bei einer Geschwindigkeit von 30 km/h kann man
demnach auf Sandboden nur einen sehr weiten
Kreis mit r > 24 m fahren. Selbst unter optimalen
Bedingungen (& = 0,9) darf der Kreis nicht enger

als r 8 m sein. Damit erklart sich, daf ein Radfah-
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rer, der einen engen Kreis fahren mochte, die Ge-
schwindigkeit so stark herabsetzen muf}, daR die
Unglg. (6) erfillt bleibt.

4.2. Fahrbahnbdschung

Die Destabilisierung aufgrund des Neigungswin-
kels bei Kurvenfahrten (beispielsweise bei Fahrrad-
rennen im Stadion, bei denen groBRBe Geschwindig-
keiten auftreten) kann durch eine passende Neigung
der Bahn aufgehoben werden. Eine solche Fahr-
bahnneigung ist dann optimal, wenn das Rad senk-
recht zur Bahn féhrt.

Aufgrund von Glg. (5) mul bei einer gegebenen
Geschwindigkeit fur kleine Bahnradien eine relativ
starke, fiir groBe Radien eine relativ schwache
Bahnneigung vorhanden sein.

Bei vorgegebenem Bahnradius mufl die Neigung
der Bahn umso gréRer sein, je schneller gefahren
wird.

5. Automatische Gleichgewichtsregelung

Die bisherigen Uberlegungen beruhten auf der
Voraussetzung, dal das Gleichgewicht durch ein
weitgehend unbewul3tes, auf die Bedingungen der
jeweiligen Radfahrt fein abgestimmtes Regelver-
halten des Fahrers eingestellt wird. JONES /4/ hat
experimentell festgestellt, dal es so gut wie unmdg-
lich ist, ein nicht fahrbares ("unridable") Fahrrad zu
konstruieren.

Normale Fahrrader sind jedoch so konstruiert, dafl
sie das Regelverhalten des Fahrers weitgehend un-
terstitzen. So ist es beispielsweise moglich, ein
Fahrrad ohne Berlihrung des Lenkers zu lenken
(etwa beim Freihandigfahren oder beim Schieben
am Sattel), d.h. insbesondere auch Kurven zu fah-
ren. Da n&dmlich beim normalen Fahrrad die Lenk-
stangenachse geometrisch verlangert unter dem

Mittelpunkt C, des Vorderrades vorbeigeht und

vor dem Beriihrpunkt A zwischen Reifen und Bo-
den den Boden in A' trifft (siehe Bild 1) bewirkt die
(aufgrund der Neigung des gesamten Rades zu ei-

ner Seite) in C, angreifende Schwerkraft des Vor-

derrades einen Lenkereinschlag in dieselbe Rich-
tung. Damit ist aber nach den obigen Ausfiihrungen
je nach der Starke der jeweiligen Fahrradneigung
ein Wiederaufrichten oder ein Kurvenfahren még-
lich, ohne dal} der Lenker beriihrt werden mufte.

6. Kreiseleffekte

Bislang wurde die Masse der Laufrader pauschal in
die Gesamtmasse m mit einbezogen. Auferdem
wurde ein moglicher Kreiseleffekt auf das Gleich-
gewichtsverhalten des Fahrrads vernachlassigt. Ob



und inwieweit eine solche Naherung gerechtfertigt
ist, soll kurz beleuchtet werden: Die mit einer Win-
kelgeschwindigkeit @ drehenden Laufréder des
Fahrrads vom Radius o und Trégheitsmoment |
stellen Kreisel dar. Wird der Lenker eingeschlagen,
beispielsweise um einen Kreisbogen von Radius r
zu befahren, dann bewirkt eine solche aufgezwun-
gene Prazessionsbewegung des Laufrades ein Kip-
pendes Drehmoment D, auf die Laufradachse

Ivgl. z. B. 2/
Di=lw-Q, (8)

wodurch gleichsam automatisch die zur Aufrecht-
erhaltung des Gleichgewichts notwendige Radnei-
gung eingeleitet wird. € ist die Winkelgeschwin-
digkeit der durch den Lenkeinschlag eingenomme-
nen Kreisbahn und daher durch den Quotienten v/r
gegeben. Mit | =mg,, - p° sowie @ =V/p er-
gibt sich dann:

D, :%sz- ©)

r
Bei einer Geschwindigkeit von 30 km/h, einem
Kreisbahnradius r = 30 m, einem Radradius p =

35 cm und einer Reifenmasse Mg, = 1 kg ergibt
sich ein Drehmoment D, = 0,8 Nm.

Im Vergleich zum Drehmoment D, (vgl. Glg. (2)),
welches mita =1 m und m = 85 kg den Wert D, =

96 Nm annimmt, ist es jedoch vernachléssigbar
klein. Allerdings zeigen KLEIN und SOMMER-
FELD /5/, dai8 die Kreiselwirkungen der Laufréder
insofern in "besonders intelligenter Weise" zur
Aufrechterhaltung des Gleichgewichts beitragen,
als sie "vermoge der Phase ihre Wirkung zuerst ein
Uberfallen des Rades spiiren und dann die viel
stérkeren, aber etwas langsamen Centrifugalwir-
kungen in den Dienst der Stabilitat spannen™ /5, S.
884/.

Literatur:

/1 /1 DOUG LAS, R.R.: Computer simulation of bi-
cycle dynamics. Buffalo: Calspan Corp., ASME
paper fall 1973. P. 35 ff.

/2] GERTHSEN, C.; KNESER, H.O.; VOGEL, H.:
Physik. Heidelberg etc.: Springer 1977, 13. S. 65 f.

/3 GRAMMEL, R.: Der Kreisel Braunschweig:
Vieweg 1920. S. 183 ff.

/4] JONES, D.E.H.: The Stability of the Bicycle.
Phys. Today 23 (1970) 34 (Apr. 1970).

/5/ KLEIN, F.;SOMMERFELD,A.: Uber die Theo-
rie des Kreisels. Stuttgart: Teubner 1965.

technic-didact 9/4, 257 (1984).

/6/ LOWELL, J.; Mc KELL, H.D.: The stability of
bicycles. Am. J. Phys. 50 (1982) 12, S.1106.

7/ Mc GAW, G.T.: Engineer. (London) 30 (2. Dez.
1898).

/8/ SOMMERFELD, A.: Mechanik. Leipzig: Akad.
Verlagsges, 1968,8. S. 138.

19/ TIMOSHENKO, S.; YOUNG, D.H.: Advanced
Dynamics. New York: Mc Graw, Hill 1948. P. 239.

/10/ WHIPPLE, F.J.W.: The stability of the motion
of a bicycle. Quaterly Journal of Pure and Applied
Mathematics 30, (1899), S. 312-348.

/11/ WHITT, F.; WILSON, D.: Bicycling Science:
Ergonomics and Mechanics. Cambridge, Mass.:
Mit Press 1979. P. 180.



