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Ob Konvektion im Milchkaffee oder Wolkenbildung: Im Alltag
gibt es viele nichtlineare Phänomene, die Schüler beobachten
und erfolgreich analysieren können. So kann die Schulphysik
spannende Themen aus der modernen Chaos-Forschung
behandeln.

Ein Freihandexperiment kann die Bénard-Zellen sehr
eindrucksvoll demonstrieren. Dazu versetzt man etwas 
Silikonöl mit Metallpulver als Indikator, gibt eine wenige
Millimeter hohe Schicht in eine flache Schale (Deckel einer
Cremedose) und heizt diese möglichst gleichmäßig von 
unten auf. Schon einige Teelichter rufen innerhalb kurzer
Zeit eindrucksvolle Polygonmuster hervor (Abbildung 1).

Bénard-Konvektion und Wetter
Einer der grundlegenden Vorgänge des Wettergeschehens
ist die Konvektion von Luftmassen. Die Erdoberfläche wird
von der Sonne bestrahlt und erwärmt die Luftschicht über
dem Boden. Sie steigt dann in die höheren Luftschichten
auf, die kälter und dichter sind. Manchmal entstehen dabei
Wolkenstrukturen,die ähnliche Konvektionsmuster wie die
Bénard-Konvektion zeigen (Abbildung 2). Der Wasserdampf
der aufsteigenden, warmen Luft kondensiert in der kühlen
Höhe als Wolken aus und macht die Bewegungsstruktur
sichtbar.

1963 gelang es dem Meteorologen Edward N. Lorenz
[2], das Prinzip dieses grundlegenden Wettermechanismus
durch drei gekoppelte nichtlineare Differentialgleichungen
zu beschreiben („Das Lorenz-System“,S. 39) [3,4]. Er mach-
te dabei eine interessante Entdeckung: Die Reduktion des
von vielen Variablen abhängigen Wettergeschehens auf ein
derartig einfaches System schränkte die Komplexität seiner
Verhaltensmöglichkeiten in keiner Weise ein. Er fand, dass
auch ein von nur drei Variablen bestimmtes System unvor-
hersagbares, also chaotisches Verhalten zeigen kann.

Das Lorenz-System ist schon aufgrund der drastischen
Reduktion der Variablen weit davon entfernt,eine auch nur
annähernd realistische Beschreibung des Wetters zu liefern.

Schulphysik muss keinesfalls beim Bohrschen Atommo-
dell aufhören. Es gibt aktuelle Forschungsgebiete, die

den Unterricht mit faszinierenden Themen befruchten kön-
nen. Sie vermitteln den naturwissenschaftlichen Zugang zu
unserer Welt anschaulich über Naturbeobachtung, Experi-
ment und Theorie. Eine solche Möglichkeit bietet die nicht-
lineare Physik. Es gibt in unserer Alltagswelt viele gut 
beobachtbare Strukturen,die durch nichtlineare Effekte ent-
stehen. Wir stellen hier einige Beispiele und ein Modell-
system vor, an denen schon Schüler wesentliche Aspekte
der nichtlinearen Physik kennen lernen können.

Muster auf dem Milchkaffee
Wenn man heißen Kaffee mit Milch versetzt oder Kakao-
pulver in heißes Wasser gibt, lässt sich mit etwas Glück ei-
ne polygone Zellenstruktur an der Oberfläche des Getränks
beobachten. Dieses Zellenmuster ist entgegen dem Augen-
schein alles andere als starr. Ein näherer Blick zeigt, dass 
kollektive Strömungen in der Flüssigkeit es hervorbringen.
Sie werden durch die in der Flüssigkeit suspendierten Milch-
oder Kakaobestandteile sichtbar. Im Jahr 1900 entdeckte
der Physiker Henri Bénard diese Zellenstruktur, deshalb
spricht man auch von Bénard-Zellen. Dieses Phänomen ist
heute noch immer wissenschaftlich interessant [1].
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Es zeigt aber unter anderem, dass die langfristige Unvor-
hersagbarkeit des Wetters weniger auf der unüberschauba-
ren Zahl der Variablen beruht als vielmehr auf der Nichtli-
nearität des Systems. Die Untersuchung des Lorenz-Modells
stellt daher die einfachste Möglichkeit dar, Aufschluss über
die wesentlichen Merkmale eines derartigen komplexen 
Systems zu erlangen. Außerdem ist das Lorenz-Modell auch
den Mitteln der Schulphysik zugänglich.

Das chaotische Wasserrad
Das Lorenz-System ist ein eindrucksvolles Beispiel für eine
Eigenschaft hochdimensionaler Vielteilchensysteme,wie sie
die Atmosphäre darstellt: Sie können durch Mechanismen,
die einem Phasenübergang ähneln, aus der enormen Viel-
falt möglicher Verhaltensweisen eine Struktur heraus-
schälen, die allein durch nur drei Freiheitsgrade bestimmt
ist [5]. Innerhalb des Systems kommt es zu einem kollekti-
ven Verhalten, das an eine starre mechanische Koordinati-
on der Teilchen untereinander erinnert. Die Lorenzsche 
Reduktion der Komplexität des Wettergeschehens ist also
drastisch: Sie lässt nur noch ein „mechanisches Gerippe“ der
thermodynamischen Konvektion in einem Fluid übrig.

Deshalb kann man diese Idee in eine mechanische Kon-
struktion umsetzen. Dabei erhält man ein Modell,das im Ex-
periment einfach bedienbar ist und dessen Verhalten die Lo-
renz-Gleichungen beschreiben. Es erlaubt somit, das Ver-
halten komplexer nichtlinearer Systeme mit einfachen
Mitteln experimentell zu demonstrieren und zu untersu-
chen [6]. Das Modell realisiert die starren Konvektionswir-
bel, deren Motor die thermisch bedingten Dichteänderun-
gen der Flüssigkeit sind, durch ein Wasserrad. Eine detail-
lierte Beschreibung des Versuchsaufbaus findet sich auf der
Homepage von Physik in unserer Zeit (www.wiley-vch.
de/home/phiuz).

Abbildung 3 zeigt den Versuchsaufbau: Zentrales Ele-
ment ist ein Fahrrad-Vorderrad, das um seine Nabe drehbar
gelagert ist. Die Felge ist mit einem Kranz von baugleichen
Wasserbehältern versehen. Sie sind beweglich aufgehängt,
so dass ihre Öffnungen während der Drehung des Rades –
wie die Gondeln eines Riesenrades – stets nach oben zei-
gen. Jeder Wasserbehälter hat im Boden ein kleines Ab-
flussloch, dessen Größe ebenfalls für alle Wasserbehälter
gleich ist. Angetrieben wird das Rad mit Wasser. Es regnet
aus einem gleichmäßig perforierten Behälter herab, der ei-
nen größeren Teil des Raddurchmessers überdeckt: So soll
sich der Massenfluss des Wassers möglichst gleichmäßig
über beide Seiten des Rades verteilen.

Deshalb ist es auf den ersten Blick nicht einsichtig,
warum das Rad sich jemals drehen soll. Eine gleichmäßige
Wasserberieselung, so würde man vermuten, kann ja keine
ungleichmäßige Verteilung von Wasser in den Behältern
verursachen. Denn nur eine exzentrische Massenverteilung
würde zu einem resultierenden Drehmoment führen, das
ungleich Null ist. Wie der folgende Abschnitt zeigt,wird das
Rad jedoch genau so bewegt. Hier sei schon ein wesent-

licher Punkt verraten: Die
Wasseraufnahme und -abga-
be der Gondeln variiert.

Dieses Wasserrad bildet
ein mechanisches Analogon
zur Bénard-Konvektion. Der
Wasserzufluss von oben ent-
spricht der Abkühlung der
oberen Schicht des Fluids
und der damit verbundenen
Gewichtszunahme. Die Wär-
meleitung innerhalb des
Fluids wird hier vom Wasser-
fluss von höheren in tiefere
Wasserbehälter nachgebildet.

Wie bewegt sich das
Wasserrad?

Die Bewegung des Wasser-
rads hängt von mehreren Pa-
rametern ab. Von praktischer
Bedeutung für das Experi-
ment sind das zuströmende Wasser,die Querschnittsöffnung
der Abflüsse der Gondeln und die Achsreibung des Rades.
Da von diesen Parametern der zufließende Wasserstrom am
einfachsten zu steuern ist, dient er als Kontrollparameter.
Reibung und Querschnitt der Abflusslöcher werden auf ge-
eignete Werte festgelegt. Als Ordnungsparameter bietet
sich die Drehgeschwindigkeit des Rades an, die in Abhän-
gigkeit vom Wasserstrom zu verschiedenen Bewegungs-
figuren führt. Unter einer Bewegungsfigur soll das „End-
verhalten“ des Systems verstanden werden. Dieses Verhal-
ten spielt sich nach einiger Zeit ein und verändert sich
qualitativ nicht mehr, solange der Kontrollparameter seinen
Wert beibehält.

Um einen systematischen Überblick über die Verhal-
tensmöglichkeiten des Wasserrades zu erlangen, fahren wir
den Kontrollparameter durch den Wertebereich,der für das
System relevant ist. Dabei lassen wir das Rad in der Regel
aus der Ruhe starten. Bei sehr geringem Wasserstrom fließt
das Wasser sofort durch die Abflusslöcher der Behälter wie-
der ab. Da dies bis auf kleine Fluktuationen für alle Behäl-
ter gleichermaßen gilt, ändert sich an der symmetrischen
Verteilung des Drehmoments des Rades nichts,und es bleibt
in Ruhe. Diese Ruhelage ist stabil. Stößt man das Rad leicht
an, so kommt es schnell wieder zum Stillstand.

Nimmt der Wasserstrom zu,dann kann das Wasser nicht
so schnell wieder abfließen. Es staut sich in den oberen
Behältern etwas auf. Solange die Achsreibung der Wasser-
behälter die dadurch bedingten zufälligen Abweichungen
von der Gleichverteilung noch ausgleicht, bleibt das Rad in
Ruhe oder kommt – wenn auch viel langsamer – wieder zur
Ruhe. Je stärker der Wasserstrom wächst, desto mehr 
Wasser sammelt sich in den oberen Behältern. Das Rad 
bekommt eine zunehmend kopflastige Massenverteilung.

Abb. 3 Das cha-
otische Wasserrad
im Experiment.
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Wenn der Wasserstrom schließlich einen kritischen Wert
überschreitet, führt diese Kopflastigkeit zu einer labilen 
Situation: Es genügt der sprichwörtliche Tropfen, um eine
Drehung in der einen oder anderen Richtung in Gang zu
bringen. Der darin steckende Zufall bricht die Symmetrie
des ruhenden Rades. Sobald die Entscheidung für eine Dreh-
richtung gefallen ist, bleibt es auch dabei. Der Zufall wird
gewissermaßen in der Drehrichtung konserviert. Kleine
Störungen können daran nichts ändern.

Dieser Wechsel von Ruhe zur Drehung ähnelt einem
Phasenübergang. Dreht sich das Rad beispielsweise nach
links,dann überwiegen auf dieser Seite die etwas stärker ge-
füllten Behälter. Sie kommen auf dem Weg unter der Re-
genrinne hindurch gerade aus dem Regen und hatten noch
wenig Gelegenheit,wieder Wasser abzulassen. Auf der rech-
ten Seite steigen dagegen Behälter von unten auf, die auf
dem letzten Teil ihrer Rundreise durch die oberen Behälter
weitgehend vom Regen abgeschirmt waren. Ihr Massenzu-
fluss beschränkte sich fast nur auf das Wasser, das sie aus
den künstlichen Lecks der oberen Behälter empfingen. Sie
tragen also weniger Wasser und sind somit leichter.

Auch die Tatsache,dass durch die Abflussöffnungen der
oberen Behälter wieder Wasser in die unteren Behälter
strömt, ändert nichts an der Asymmetrie. Denn bei dieser
Wasserzufuhr sind die unteren Behälter auf der linken 
Seite ebenfalls bevorzugt: Sie haben hauptsächlich stark 
gefüllte Behälter über sich, die folglich auch mehr Wasser
abgeben. Im Mittel befindet sich also stets die größere Was-
sermasse auf der linken Radseite, wodurch das links-
drehende Moment überwiegt.

Im gerade betrachteten Fall eines noch relativ geringen
Wasserstroms stellt sich eine Drehbewegung in eine Rich-
tung stabil ein. Kleine Schwankungen in der Wasserhöhe
der Behälter und damit im Verhältnis der Drehmomente zu-
einander werden stets wieder abgebaut, weil mit dem Was-
serstand auch die Abflussrate zunimmt.

Mit zunehmendem Wasserstrom stellt sich das stationä-
re Gleichgewicht zwischen Zu- und Abfluss bei immer höhe-

rem Wasserstand in den Behältern ein. Das antreibende
Drehmoment und mit ihm die Drehgeschwindigkeit neh-
men dementsprechend zu. Allerdings dauert es mit wach-
sender Drehgeschwindigkeit immer länger, bis das durch
zunehmende Schwankungen geprägte Einschwingverhal-
ten (Transienten) abgebaut ist. Der stationäre Endzustand
wird also immer später erreicht.

Wie kommt es zu diesen Schwankungen? Mit wachsen-
dem Zustrom nimmt das aus der Ruhe startende System
zunächst viel Wasser auf. Dadurch wachsen das linksdre-
hende Moment und die Drehgeschwindigkeit ebenfalls stark
an: Die Behälter dringen zum einen tiefer in den rechten Be-
reich des Rades ein, bevor sie merklich Wasser abgegeben
haben. Zum anderen sinkt die Verweilzeit der Behälter im
Zustrombereich und sie nehmen weniger Wasser auf. Er-
steres führt zu einer Zunahme des rechtsdrehenden, Letz-
teres zu einer Abnahme des linksdrehenden Moments, bei-
des zusammen also zu einer Abbremsung des Rades. Nun
kann es wieder mehr Wasser aufnehmen. Damit wächst die
Drehgeschwindigkeit erneut an – wenn auch zunächst noch
auf einen kleineren Wert als beim vorhergehenden Umlauf.

Erhöht man den Wasserstrom weiter, so wird schließlich
ein zweiter kritischer Wert überschritten. In einem erneu-
ten Wechsel,der wieder an einen Phasenübergang erinnert,
kehrt das Rad seine Drehrichtung um: Die stark angefüllten
Behälter des linken Radbereichs gelangen dann derart
schnell in den rechten Bereich, dass die nach oben geför-
derten, weitgehend entleerten Behälter sich kaum füllen
können. Deshalb schaffen sie kein Gegengewicht, das
genügt, um die schweren Behälter über den Umkehrpunkt
zu drehen: Die Behälter sausen wieder zurück. Das tun sie
mit einer etwas reduzierten Geschwindigkeit,weshalb es zu
keiner weiteren Richtungsumkehr kommt. Die zunächst
starken Schwankungen bauen sich bis zur stationären Dre-
hung ab – nunmehr mit umgekehrtem Drehsinn.

Übergang ins Chaos 
Erhöht man den Zustrom weiter,dann erreicht er einen drit-
ten kritischen Wert. Er ist nun so stark, dass die Schwan-
kungen nach der Richtungsumkehr noch nicht genügend
vermindert sind, um schließlich in die stationäre Drehung
einmünden zu können. So entwickelt sich eine völlig neue
Bewegungsfigur: Das Wasserrad bleibt – anschaulich ge-
sprochen – in dem Bemühen gefangen, nach der Rich-
tungsumkehr die Schwankungen abzubauen. Deshalb kehrt
sich die Bewegungsrichtung immer mal wieder um. Aller-
dings pendelt sich das System dabei nicht etwa in eine
gleichförmige Schwingung ein. Stattdessen entwickelt es
eine völlig unregelmäßige Bewegungsfigur. Auch im End-
zustand zeigt es ungeordnete Wechsel zwischen ungleich-
förmigen Schwingungen und Drehungen, die der Begriff
chaotisch zutreffend beschreibt.

Über Chaos kann man sich nur schwer eine Anschau-
ung verschaffen, sonst wäre es kein Chaos. Wir können uns
aber plausibel machen, warum es gerade nach Überschrei-
ten des dritten kritischen Punktes entsteht. Voraussetzung
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Zweidimensionale Attraktor-Rekonstruktionen aus den simulierten (links) und aus
den experimentellen (rechts) Daten des chaotischen Wasserrades. Die simulierten
Daten entsprechen denen in Abbildung 8, die experimentellen denen in Abbildung 
8 rechts. Links repräsentiert X die simulierte Strömungsgeschwindigkeit, rechts die
gemessene Tachospannung.
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für chaotisches Verhalten ist die Sensitivität des Systems,wo-
nach kleinste Störungen sehr schnell verstärkt werden. Im
vorliegenden Fall kann sich das Drehmoment des Rades von
der einen in die andere Richtung ändern, bevor noch ein
Umlauf vollendet wurde. Die irreguläre Bewegungsfigur ist
geprägt von Phasen verhaltenen Zögerns und schnellen
Spurts.

Nun könnte man erwarten,dass eine weitere Steigerung
des Wasserstroms keine grundsätzliche Veränderung mehr
hervorrufen kann. Doch kurz bevor der maximale Wasser-
stand in den Behältern den oberen Rand erreicht, ver-
schwindet bei einem vierten kritischen Punkt das Chaos
wie ein Spuk. Im Rauschen eines starken Wasserstroms fin-
det das Wasserrad wieder zu einer „geordneten“ Bewe-
gungsfigur zurück, dieses Mal allerdings einer regulären
Schwingung.

Quantitative Beschreibung
Um das Verhalten des Wasserrades quantitativ zu bestim-
men, beschreiben wir die Drehbewegung durch die zeit-
liche Änderung des Gesamtdrehimpulses. Dieser setzt sich
aus der Summe zweier Drehmomente zusammen: Das Erste
bewirkt der Wasserinhalt m(ϕ) eines an der Felge (Radius
r) angebrachten Behälters am Ort eines Winkels ϕ. Gegen
dieses Drehmoment wirkt ein zweites, das die Reibung an
der Achse verursacht. Dabei nehmen wir an, dass die Rei-
bung proportional zur Winkelgeschwindigkeit ω ist. Für
den Antrieb ist die gesamte Wassermasse ausschlaggebend,
die sich auf alle Behälter verteilt. Zur Vereinfachung denken
wir uns die Wassermasse als kontinuierlich über alle Win-
kel ϕ verteilt: Das wäre also ein Rad mit unendlich vielen,
infinitesimal kleinen Behältern mit unendlich vielen Ab-
flüssen.

Die zeitliche Änderung der Massenverteilung bestimmt
sich aus der Differenz des Massengewinns durch den Zu-
fluss und des Massenverlusts durch den Abfluss. Der Verlust
kann als proportional zur Wassermasse m(ϕ) in den Be-
hältern angesetzt werden. Der Einfachheit halber nehmen
wir an, dass der Wasserzufluss proportional zur Höhe der
Gondeln über dem unteren Radrand ist. Diese Näherung ist
umso besser, je gleichmäßiger der Wasserzufluss über den
gesamten Querschnitt des Rades ist.

Eine detaillierte Herleitung der Bewegungsgleichungen
geben wir auf www.wiley-vch.de/home/phiuz. Die eben
gegebene Beschreibung lässt sich in einer Differentialglei-
chung ausdrücken, die durch eine Lineartransformation in
eine spezielle Form der Lorenz-Gleichungen überführt wer-
den kann:
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Dabei ist r der Radius des Rades, k die Reibungskon-
stante, A der Wasserzufluss,g die Erdbeschleunigung und h
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die Höhe. Dieser Fall lässt sich
nicht elementar analytisch aus-
werten, sondern muss nume-
risch integriert werden. Wir wäh-
len R als Kontrollparameter,der
linear mit dem Wasserzufluss A
variiert. Da σ und A umgekehrt
proportional zueinander sind,
gilt σR = const. Um zu den ex-
perimentellen Ergebnissen pas-
sende Werte zu erhalten,haben
wir σR = 240 gesetzt.

Wir betrachten die Bewe-
gungen des Wasserrades zum einen als Zeitreihe. Dazu tra-
gen wir die im Wesentlichen durch die direkt gemessene
Winkelgeschwindigkeit bestimmte Variable X als Funktion
der Zeit auf. Zum anderen stellen wir die Bewegung im Zu-
standsraum des Systems dar: Das ist der durch die Varia-
blen X, Y und Z aufgespannte, dreidimensionale und ab-
strakte Raum, in dem eine charakteristische Bahn das Ver-
halten des Systems beschreibt:die „Trajektorie“. Dabei sind die
Observablen X, Y, Z im Folgenden immer dimensionslos.

Von Trajektorien und Attraktoren
Das Endverhalten, auf das sich das System nach dem Start
schließlich einstellt, lässt sich mathematisch durch die Fix-
punkte analysieren. Das sind die Punkte im Zustandsraum,
die bei der zeitlichen Entwicklung des Systems invariant
sind, bei denen also sämtliche zeitlichen Ableitungen der 
Variablen verschwinden. Wenn das Wasserrad zur Ruhe
kommt,windet sich die Trajektorie spiralförmig auf den Ur-
sprung als Fixpunkt zu, auf dem sie fortan verbleibt. Bei
den Drehbewegungen laufen die Trajektorien in Spiralen je
nach Drehsinn auf einen der beiden symmetrisch zueinan-
der im Zustandsraum gelegenen Fixpunkte zu.

Neben den Fixpunkten wird das System durch Attrak-
toren beschrieben. Unter Attraktoren versteht man im Prin-
zip die Grenzmengen,auf die das System sich hin entwickelt
[7, 8]. Eine gewisse Anschaulichkeit erlangen Attraktoren 
in Form von geometrischen Gebilden im Zustandsraum,die
das Langzeitverhalten des Systems darstellen. Wenn das 
System zur Ruhe kommt, endet die Trajektorie in einem
Punkt (Punktattraktor). Stellt sich eine stationäre Drehung
ein, so läuft die Trajektorie in sich selbst zurück und stellt
eine geschlossene Kurve dar (Grenzzyklus).

Interessant wird das Attraktorkonzept eigentlich erst für
chaotische Bewegungen. Bei der direkten Beobachtung des
Systems kann man nämlich kaum die Zeitreihe einer chao-
tischen von der einer rein stochastischen Bewegung un-
terscheiden. Die Darstellung im Zustandsraum zeigt hinge-
gen für die chaotische Bewegung ein zweifach gebogenes,
kompaktes und ästhetisches Gebilde: Die chaotische Tra-
jektorie windet sich wie auf einer Achterbahn um zwei Fix-
punkte, ohne sie je zu erreichen. Abbildung 4 zeigt solche
Achterbahnen – wie sie erzeugt wurden, beschreiben wir
weiter unten.
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Der Attraktor repräsentiert also die Gesamtheit dieser
Annäherungsversuche und lässt die darin verborgenen Ord-
nungsbemühungen des Systems zu einer geometrischen Ge-
stalt gerinnen. Auf diese Weise vermittelt er die Einsicht,
dass auch die irreguläre Bewegung Ausdruck einer tieferen
Regelmäßigkeit sein kann. Würde das System sich hinge-
gen rein stochastisch bewegen, dann ergäbe auch seine
Bahn im Zustandsraum kein regelmäßiges Muster.

Im Bereich der chaotischen Wasserrad-Bewegung ist die
morphologische Ähnlichkeit der Attraktoren die einzige
Möglichkeit, das theoretisch berechnete und das gemesse-
ne Verhalten  zu vergleichen (Abbildung 4). Dazu muss man
aber aus den experimentellen Daten die Zustandsraum-Dar-
stellung ermitteln. Das erscheint auf den ersten Blick aus-
sichtslos, weil wir keine einfache Möglichkeit haben, die
Variablen Y und Z zu messen. Wegen der nichtlinearen Ab-
hängigkeit der Variablen untereinander enthält die Variable
X aber auch Informationen über das Verhalten von Y und
Z. Darauf basiert ein Rekonstruktionsverfahren: Es erlaubt
uns, mögliche Werte von Y und Z aus X anhand „zeitver-
zögerter“ Koordinaten zu  „berechnen“. Die zeitverzögerte
Y-Koordinate wird in den Abbildungen durch die Delay-
Variable X (t + τ) dargestellt. Eine genauere Beschreibung
der Rekonstruktion geben wir auf www.wiley-vch.de/
home/phiuz, Beispiele finden sich auch in [7, 9, 10].

Vergleich zwischen Theorie und Experiment
Bei der numerischen Auswertung der Bewegungsgleichun-
gen betrachten wir das Systemverhalten für verschiedene
Werte des Parameters R. Die grafische Darstellung der zeit-
lichen Entwicklung beschränken wir auf X(t)-Diagramme,
weil der Koordinate X die anschaulichste Bedeutung zu-
kommt. Sie ist im Wesentlichen durch die Winkelge-
schwindigkeit des Wasserrades bestimmt (siehe Herleitung
der Bewegungsgleichungen auf www.wiley-vch.de/
home/phiuz). Deshalb nennen wir sie im Folgenden 
der Einfachheit halber auch so. Das Verhalten im eigentlich
dreidimensionalen Zustandsraum stellen wir der Über-
sichtlichkeit halber als zweidimensionale Projektionen 
dar: die Wasserverteilung im Wasserrad Y über der Winkel-
geschwindigkeit X.

Den Wasserzufluss AE haben wir experimentell be-
stimmt. Der Grenzfall des Wasserzuflusses,bei dem das Sys-
tem gerade noch zur Ruhe kommt oder gerade mit der Dre-
hung anfängt, ist experimentell nur schwer zu bestimmen.
Bei unserem Wasserrad lag er bei AE ≈ 18 cm3/s. Da in den
Bewegungsgleichungen R linear mit dem Wasserzufluss 
variiert, haben wir die hier dargestellten experimentellen 
Ergebnisse auf diesen Zufluss normiert (RE : = 1).

Die Untersuchung beginnt mit geringem Wasserzufluss
und entsprechend kleinen Werten des Kontrollparameters
R oder RE. Sie werden den einzelnen Bewegungsfiguren
entsprechend Schritt für Schritt erhöht. Im Experiment ge-
hen wir stets vom Ruhezustand aus: Dazu haben wir die An-
fangsbedingungen in der Computersimulation so gewählt,
dass das System in der Nähe des Ursprungs startet.

Ruhezustand 
Für kleine Werte von R (0 ≤ R < 1) kommt das System stets
zur Ruhe. Ursprung des Zustandsraums und einziger Fix-
punkt des Systems fallen zusammen. Im Experiment lässt
sich das nachvollziehen, indem man bei sehr geringem Was-
serstrom RE das Rad manuell in Bewegung setzt. Es kommt
dann allmählich wieder zum Stillstand, wie Abbildung 5
zeigt. Diese und die folgenden Abbildungen sind übrigens
mit dem Programm SiniS (Simulation nichtlinearer Systeme)
erzeugt, das von www.wiley-vch.de/home/phiuz her-
untergeladen werden kann.

Gleichförmige Drehung
Sobald R den Wert 1 überschreitet, setzt eine Drehung in
der einen oder anderen Richtung ein. R = 1 entspricht al-
so dem ersten kritischen Wert. Eine Stimmgabelbifurkation
sorgt dafür, dass der Fixpunkt im Ursprung instabil wird
und zwei neue Fixpunkte entstehen [6]. So lange R ≤ 1,125
bleibt, handelt es sich um stabile Knoten: Die Trajektorien
eines bei X = 0 gestarteten Systems laufen je nach der zu-
fällig eingeschlagenen Drehrichtung direkt auf einen von
beiden zu. Oberhalb eines Wertes  R = 1,125 nähert sich
die Trajektorie dem jeweiligen Fixpunkt nicht mehr direkt,
sondern auf einem spiralförmigen Weg.

Im Experiment zeigt sich dieses Szenario, indem der 
Ruhezustand ab einem Wasserzulauf von AE ≈ 18 cm3/s 
(also RE = 1) instabil wird: Das Rad beginnt sich in einer
durch zufällige Störungen bestimmten Richtung zu drehen
und steuert schließlich unter abklingenden Schwankungen
(Abbildung 6) eine feste Drehgeschwindigkeit an (Ab-
bildung 6 rechts). Mit wachsendem Wasserstrom nehmen
die Schwankungen und die Endgeschwindigkeit zu.

Vorchaotischer Bereich
Oberhalb von R = 15,9 kann das aus der Ruhe startende
Wasserrad den Fixpunkt nicht mehr erreichen. Es mündet
in einen instabilen Grenzzyklus ein (heterokline Verbindung
[6]), indem es unentschlossen zwischen positiven und ne-
gativen X-Werten hin und her pendelt. Rein qualitativ kann
das Verhalten nicht eingeordnet werden. Erst der Blick in
den Zustandsraum zeigt,dass das Wasserrad ein chaotisches
Verhalten angenommen hat. Ursache ist eine so genannte
Blue-Sky-Katastrophe [6]. Dennoch kann das System auch
in diesem Parameterbereich in ein reguläres Verhalten ein-
münden. Dazu muss man es nicht aus der Ruhe, sondern
von passenden anderen Punkten aus starten (Abbildung 7).

Mit anderen Worten: Im Intervall 15,9 < R < 19,5 ko-
existieren das chaotische und das reguläre Verhalten. Dabei
erweist sich der einmal eingenommene Bewegungszustand
als relativ unempfindlich gegenüber stetigen Variationen
von R: Erst bei Überschreiten der Intervallgrenze kippt das
System aus dem chaotischen Verhalten in die reguläre Dre-
hung oder umgekehrt (Hysterese).

Stellt man im Experiment den Wasserzulauf von Anfang
an auf RE ≈ 16, dann beginnt das Rad sofort, sich heftig zu
drehen. Es dreht sich jedoch zunächst mit stark schwan-
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Abb. 6 Die Schwankungen klingen langsam ab (R = 10). Die
einmal eingeschlagene Drehrichtung bleibt erhalten. Rechts:
Stabile Rotation des Wasserrades gegen den Uhrzeigersinn
(RE ≈ 10).

Abb. 7 Chaotischer Einschwingvorgang im vorchaotischen
Parameterbereich (R = 16). Die Transienten bewegen sich
zunächst in Auswärtsspiralen um den einen Fixpunkt, ehe sie
sich dann dem anderen zuwenden. Erst wenn sie bei einem
dieser Wechsel einem der Fixpunkte nahe genug kommen,
werden sie von diesem angezogen und bewegen sich spiral-
förmig auf ihn zu. Rechts: Vorturbulenter Einschwingvorgang
des Wasserrades (RE ≈ 16).

Abb. 8 Die Zeitreihe zeigt eine chaotische Bewegung 
(links). Der Zustandsraum zeigt das typische Bild eines 
Lorenz-Attraktor (die Vorstufe war bereits in Abbildung 8 
zu sehen): Die Transienten umrunden die beiden instabilen
Fixpunkte außerhalb des Ursprunges in unregelmäßigem
Wechsel. Die Trajektorie nähert sich ihnen an, ohne ihnen zu
nahe zu kommen. Stets schaukeln sich die Schwankungen zu
einer Richtungsumkehr auf und ein ähnliches, aber nicht
vorhersagbares Spiel wiederholt sich am anderen Fixpunkt 
(R = 29). Rechts: Chaotische Zeitreihe des Wasserrades 
(RE ≈ 29).
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kender Winkelgeschwindigkeit und wechselt häufiger sei-
ne Drehrichtung, bevor es sich auf eine stationäre, aber im-
mer noch leicht schwankende Drehbewegung einpendelt.
Der Drehsinn dieser sich letztlich einstellenden Bewegung
kann nicht vorhergesagt werden (Abbildung 7 rechts).

Chaos
Die beiden instabilen Grenzzyklen nähern sich mit weiter
wachsendem R immer mehr den zugehörigen Fixpunkten
an, bis sie mit diesen bei R = 19,5 zusammenfallen. Dieser
Fall heißt Hopf-Bifurkation [6]. Jenseits dieses Parameter-
wertes ist es auf keine Weise mehr möglich, zu einer re-
gulären Drehung zu gelangen. Eine Vorhersage des Trajek-
torienverlaufs ist unmöglich geworden. Während die Zeit-
reihe keine Struktur mehr erkennen lässt, ziehen die
Trajektorien im Zustandsraum in divergierenden Spiralen
eine achterbahnförmige Spur um die nunmehr instabilen
Fixpunkte, ohne sie je zu erreichen. In unregelmäßiger 
Folge und Anzahl der Umdrehungen umrunden sie mal den
einen, mal den anderen Fixpunkt. Dabei zeichnen sie ein 
filigranes, blattartiges Gebilde, das eine unendlich feine
„Blätterteigstruktur“ besitzt. Mit dieser fraktalen Eigenschaft
stellt der Lorenz-Attraktor ein Zwischending zwischen Kur-
ve und Fläche dar (Abbildung 8). Auch im Experiment stellt
sich oberhalb eines gewissen kritischen Wertes für den Was-
serzufluss keine stationäre Drehbewegung mehr ein. Das
Rad dreht sich mit schwankender Geschwindigkeit und än-

dert in unvorhersagbarer Weise den Drehsinn (Abbildung
8 rechts).

Handelt es sich bei dieser Bewegung um das von den
Lorenz-Gleichungen erzeugte Chaos? Um diese Frage be-
friedigend zu beantworten, reicht der Vergleich der Win-
kelgeschwindigkeits-Zeit-Diagramme nicht aus. Dazu müs-
sen wir den chaotischen Attraktor aus den experimentell
gemessenen X-Werten rekonstruieren. Um nicht Äpfel mit
Birnen zu vergleichen, rekonstruieren wir auch aus den 
numerisch berechneten X-Werten den Attraktor. Der Ver-
gleich der beiden rekonstruierten Attraktoren zeigt dieselbe
Topologie und spricht für eine gute Übereinstimmung 
zwischen Theorie und Experiment (Abbildung 4).

Reguläre Schwingungen
Die weitere Erhöhung von R führt zunächst zu keiner 
weiteren Verhaltensänderung des Systems, es bleibt beim
Chaos. Wie schon angedeutet, fällt das System dann bei 
einem sehr hohen Wert von R = 100 in ein reguläres Ver-
halten zurück – diesmal jedoch in periodische Schwingun-
gen anstelle von Drehungen (Abbildung 9).

Wer bei den hohen Wasserströmen die Behälter in ab-
rupten Wechseln ihren chaotischen Tanz vollführen sieht,
kann sich kaum vorstellen,wie das Wasserrad bei einer wei-
teren Steigerung des Wasserstroms wieder den „Dreh“ zu
einer regulären Schwingung hin bekommt. Und dennoch
passiert genau das: Wie von der Theorie vorhergesagt,
beginnen sich im Experiment die fast überbordenden Behäl-
ter bei sehr hohem Wasserzulauf regelmäßig zu heben und
zu senken, also auf und ab zu schwingen (Abbildung 10).
Die Schwingung bleibt auch bei weiterer Erhöhung des
Wasserstroms solange stabil, bis das Wasser über den Rand
der Behälter fließt und das System damit den Gültigkeits-
bereich des Modells verlässt.

In Veröffentlichungen zum Lorenz-System wird die 
Bewegungsfigur der periodischen Schwingung oft gar nicht
diskutiert – vermutlich, weil in diesem Parameterbereich
das Lorenz-System nicht mehr als Modell der Bénard-Kon-
vektion gelten kann.

Auf geordnetem Weg ins Chaos 
Obwohl sich nicht alle Bewegungsfiguren des Lorenz-Mo-
dells anhand des Wasserrades experimentell reproduzieren
lassen, können am Lorenz-System fast alle wichtigen nicht-
linearen Phänomene demonstriert und untersucht werden.
Einige Beispiele haben wir hier vorgestellt: globale Bifur-
kationen wie die Hopf-Bifurkation oder Übergänge ins Cha-
os wie die Blue-Sky-Katastrophe. Ebenfalls grundlegend
wichtig und mit dem Wasserrad gut demonstrierbar sind
globale Bifurkationen wie die homokline und die hetero-
kline Verbindung und andere Übergänge ins Chaos, zum
Beispiel das Feigenbaum-Szenario oder der intermittieren-
de Übergang [5, 6]. Einige der hier dargestellten Inhalte
können sicherlich nicht unmittelbar in den schulischen Phy-
sikunterricht übernommen werden. Mit seinen detaillier-
ten Tipps zum Experiment und zu physikalischen Denk-
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Bei R = 100 treten periodische Schwankungen mit Richtungsänderungen auf: 
Das System schwingt periodisch.
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Bei sehr starkem Wasserzufluss schwingt das Wasserrad periodisch.
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modellen soll dieser Beitrag vor allem eine Fülle an Infor-
mationen bieten, auf denen ein Unterricht aufgebaut wer-
den kann.

Zusammenfassung
Modellsysteme können Schülern die Grundlagen der
nichtlinearen Physik anschaulich vermitteln. Sie schlagen 
so einen Bogen von der Schulphysik zur aktuellen Forschung.
Ein solches Modellsystem ist das chaotische Wasserrad, das
Lehrer auf einfache Weise für den Schulunterricht nachbauen
können. Im Wesentlichen steuert der Zufluss des Wassers 
das Verhalten des Wasserrads. Wächst er, so durchläuft das
Rad von der geordneten, gleichförmigen Drehung bis zum
Chaos verschiedene Phasen von Bewegungsfiguren. Das
Experiment kann grundlegende Modelle und Begriffe der
Chaostheorie demonstrieren: lokale und globale Bifurkationen
und verschiedene Übergänge ins Chaos.

Stichworte
Nichtlineare Physik, nichtlineare Dynamik, Bénard-Konvek-
tion, Lorenz-System, Lorenz-Attraktor, Chaos, Chaostheorie,
lokale Bifurkation,Hopf-Bifurkation,Stimmgabel-Bifurkation,
heterokline Verbindung, globale Bifurkation, Blue-Sky-
Katastrophe, Schulexperiment, Physik-Didaktik.
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DA S  LO R E N Z- S YS T E M |
Lorenz ging von einer Fluidschicht mit
der Dicke h aus, die der Schwerkraft
unterliegt. Außerdem ist sie oben und
unten den konstanten Temperaturen T1

und T0 = T1 + ∆T1 ausgesetzt. Er ge-
langte durch Kombination von Navier-
Stokes-Gleichung, Wärmeleitungs-
gleichung und Kontinuitätsgleichung zu
einem sehr einfachen System nicht-
linearer Differentialgleichungen:

X· = σ (Y – X)
Y· = RX – Y – XZ
Z· = XY – bZ.

σ beschreibt das Verhältnis der Wärme,
die die Reibung in der Strömung er-
zeugt, zur Wärme, die aus dem System
abfließt (Prandtl-Zahl). Bei der Untersu-
chung des Lorenz-Systems ist es üblich,
den Wert für kaltes Wasser (σ = 10)
einzusetzen. b ist ein Geometriefaktor.
Er ist ein Maß für die Form der Konvek-
tionsrollen. Meist wird er auf den Wert
b = 3/8 gesetzt. Er steht dann für den
kleinst möglichen Wert der Temperatur-
differenz ∆T, bei dem Konvektion
einsetzt. In diesem Beitrag gilt der
Spezialfall b = 1. R ∼ ∆T ist ein Maß für
die Temperaturdifferenz. Es ist so 
normiert, dass Konvektion bei R = 1
einsetzt.

Die auftretenden Koordinaten haben
folgende Bedeutung:

X(t) ist ein Maß für die Strömungsge-
schwindigkeit in den Konvektionsrollen:

v (x,z, t) ∼ X(t), 

insbesondere also 

X = 0 ⇔ v = 0.

Das Vorzeichen von X beschreibt den
Umlaufsinn der Konvektionsströmung.
Y(t) und Z(t) beschreiben die Abwei-
chung des Temperaturfeldes von dem
Fall, der sich bei reiner Wärmeleitung
einstellt (homogen in X- und linear in 
Z-Richtung). Y(t) beschreibt insbeson-
dere die horizontale Temperaturvertei-
lung. Es ist ein Maß für den Temperatur-
unterschied zwischen aufsteigenden
und absinkenden Volumenelementen.

Im Fall Y = 0  ist der Temperaturverlauf
T homogen in X-Richtung. Der Fall 
X · Y > 0 besagt, dass aufsteigende
Volumenelemente wärmer als absin-
kende sind. Z(t) beschreibt zusätzlich
die vertikale Abweichung von der
Linearität.


