Nichtlinearitat und Strukturbildung

Chaos fiir die Schule!

VOLKHARD NORDMEIER | HANS-JOACHIM SCHLICHTING

Ob Konvektion im Milchkaffee oder Wolkenbildung: Im Alltag
gibt es viele nichtlineare Phdnomene, die Schiiler beobachten
und erfolgreich analysieren kénnen. So kann die Schulphysik
spannende Themen aus der modernen Chaos-Forschung

behandeln.

>Abb. 1 Poly-
gonmuster in
einer diinnen 0l-
schicht, die mit
Kupferpulver ver-
setzt wurde.

>> Abb. 2 Wol-
kenstrukturen
machen die Kon-
vektionsdynamik
von Luftmassen
sichtbar.

32 | Phys. Unserer Zeit

chulphysik muss keinesfalls beim Bohrschen Atommo-

dell aufhoren. Es gibt aktuelle Forschungsgebiete, die
den Unterricht mit faszinierenden Themen befruchten kon-
nen. Sie vermitteln den naturwissenschaftlichen Zugang zu
unserer Welt anschaulich tiber Naturbeobachtung, Experi-
ment und Theorie. Eine solche Moglichkeit bietet die nicht-
lineare Physik. Es gibt in unserer Alltagswelt viele gut
beobachtbare Strukturen, die durch nichtlineare Effekte ent-
stehen. Wir stellen hier einige Beispiele und ein Modell-
system vor, an denen schon Schiiler wesentliche Aspekte
der nichtlinearen Physik kennen lernen konnen.

Muster auf dem Milchkaffee
Wenn man heifden Kaffee mit Milch versetzt oder Kakao-
pulver in heifes Wasser gibt, lisst sich mit etwas Gliick ei-
ne polygone Zellenstruktur an der Oberfliche des Getrinks
beobachten. Dieses Zellenmuster ist entgegen dem Augen-
schein alles andere als starr. Ein niherer Blick zeigt, dass
kollektive Stromungen in der Fliissigkeit es hervorbringen.
Sie werden durch die in der Fliissigkeit suspendierten Milch-
oder Kakaobestandteile sichtbar. Im Jahr 1900 entdeckte
der Physiker Henri Bénard diese Zellenstruktur, deshalb
spricht man auch von Bénard-Zellen. Dieses Phinomen ist

heute noch immer wissenschaftlich interessant [1].
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Ein Freihandexperiment kann die Bénard-Zellen sehr
eindrucksvoll demonstrieren. Dazu versetzt man etwas
Silikonol mit Metallpulver als Indikator, gibt eine wenige
Millimeter hohe Schicht in eine flache Schale (Deckel einer
Cremedose) und heizt diese moglichst gleichmiflig von
unten auf. Schon einige Teelichter rufen innerhalb kurzer
Zeit eindrucksvolle Polygonmuster hervor (Abbildung 1).

Bénard-Konvektion und Wetter
Einer der grundlegenden Vorginge des Wettergeschehens
ist die Konvektion von Luftmassen. Die Erdoberfliche wird
von der Sonne bestrahlt und erwirmt die Luftschicht tiber
dem Boden. Sie steigt dann in die hoheren Luftschichten
auf, die kilter und dichter sind. Manchmal entstehen dabei
‘Wolkenstrukturen, die dhnliche Konvektionsmuster wie die
Bénard-Konvektion zeigen (Abbildung 2). Der Wasserdampf
der aufsteigenden, warmen Luft kondensiert in der kithlen
Hohe als Wolken aus und macht die Bewegungsstruktur
sichtbar.

1963 gelang es dem Meteorologen Edward N. Lorenz
[2], das Prinzip dieses grundlegenden Wettermechanismus
durch drei gekoppelte nichtlineare Differentialgleichungen
zu beschreiben (,Das Lorenz-System*,S. 39) [3, 4]. Er mach-
te dabei eine interessante Entdeckung: Die Reduktion des
von vielen Variablen abhingigen Wettergeschehens auf ein
derartig einfaches System schrinkte die Komplexitit seiner
Verhaltensmoglichkeiten in keiner Weise ein. Er fand, dass
auch ein von nur drei Variablen bestimmtes System unvor-
hersagbares, also chaotisches Verhalten zeigen kann.

Das Lorenz-System ist schon aufgrund der drastischen
Reduktion der Variablen weit davon entfernt, eine auch nur

annihernd realistische Beschreibung des Wetters zu liefern.




Es zeigt aber unter anderem, dass die langfristige Unvor-
hersagbarkeit des Wetters weniger auf der untiberschauba-
ren Zahl der Variablen beruht als vielmehr auf der Nichtli-
nearitit des Systems. Die Untersuchung des Lorenz-Modells
stellt daher die einfachste Moglichkeit dar, Aufschluss tiber
die wesentlichen Merkmale eines derartigen komplexen
Systems zu erlangen. Aufderdem ist das Lorenz-Modell auch
den Mitteln der Schulphysik zuginglich.

Das chaotische Wasserrad
Das Lorenz-System ist ein eindrucksvolles Beispiel fiir eine
Eigenschaft hochdimensionaler Vielteilchensysteme, wie sie
die Atmosphire darstellt: Sie konnen durch Mechanismen,
die einem Phaseniibergang dhneln, aus der enormen Viel-
falt moglicher Verhaltensweisen eine Struktur heraus-
schilen, die allein durch nur drei Freiheitsgrade bestimmt
ist [5]. Innerhalb des Systems kommt es zu einem kollekti-
ven Verhalten, das an eine starre mechanische Koordinati-
on der Teilchen untereinander erinnert. Die Lorenzsche
Reduktion der Komplexitit des Wettergeschehens ist also
drastisch: Sie lisst nur noch ein ,mechanisches Gerippe“ der
thermodynamischen Konvektion in einem Fluid {ibrig.

Deshalb kann man diese Idee in eine mechanische Kon-
struktion umsetzen. Dabei erhilt man ein Modell, das im Ex-
periment einfach bedienbar ist und dessen Verhalten die Lo-
renz-Gleichungen beschreiben. Es erlaubt somit, das Ver-
halten komplexer nichtlinearer Systeme mit einfachen
Mitteln experimentell zu demonstrieren und zu untersu-
chen [6]. Das Modell realisiert die starren Konvektionswir-
bel, deren Motor die thermisch bedingten Dichteinderun-
gen der Fliissigkeit sind, durch ein Wasserrad. Eine detail-
lierte Beschreibung des Versuchsaufbaus findet sich auf der
Homepage von Physik in unserer Zeit (www.wiley-vch.
de/home/phiuz).

Abbildung 3 zeigt den Versuchsaufbau: Zentrales Ele-
ment ist ein Fahrrad-Vorderrad, das um seine Nabe drehbar
gelagert ist. Die Felge ist mit einem Kranz von baugleichen
Wasserbehiltern versehen. Sie sind beweglich aufgehingt,
so dass ihre Offnungen wihrend der Drehung des Rades -
wie die Gondeln eines Riesenrades - stets nach oben zei-
gen. Jeder Wasserbehilter hat im Boden ein kleines Ab-
flussloch, dessen Grofle ebenfalls fiir alle Wasserbehilter
gleich ist. Angetrieben wird das Rad mit Wasser. Es regnet
aus einem gleichmifig perforierten Behilter herab, der ei-
nen grofReren Teil des Raddurchmessers tiberdeckt: So soll
sich der Massenfluss des Wassers moglichst gleichmifig
uber beide Seiten des Rades verteilen.

Deshalb ist es auf den ersten Blick nicht einsichtig,
warum das Rad sich jemals drehen soll. Eine gleichmiBlige
Wasserberieselung, so wiirde man vermuten, kann ja keine
ungleichmiflige Verteilung von Wasser in den Behiltern
verursachen. Denn nur eine exzentrische Massenverteilung
wiirde zu einem resultierenden Drehmoment fithren, das
ungleich Null ist. Wie der folgende Abschnitt zeigt, wird das
Rad jedoch genau so bewegt. Hier sei schon ein wesent-
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licher Punkt verraten: Die
Wasseraufnahme und -abga-
be der Gondeln variiert.
Dieses Wasserrad bildet
ein mechanisches Analogon
zur Bénard-Konvektion. Der
Wasserzufluss von oben ent-
spricht der Abkiihlung der
oberen Schicht des Fluids
und der damit verbundenen
Gewichtszunahme. Die Wir-
innerhalb des
Fluids wird hier vom Wasser-

meleitung

fluss von hoheren in tiefere
‘Wasserbehilter nachgebildet.

Wie bewegt sich das

Wasserrad?

Die Bewegung des Wasser-
rads hingt von mehreren Pa-
rametern ab. Von praktischer
Bedeutung fir das Experi-
ment sind das zustromende Wasser, die Querschnittsoffnung
der Abfliisse der Gondeln und die Achsreibung des Rades.
Da von diesen Parametern der zuflieende Wasserstrom am
einfachsten zu steuern ist, dient er als Kontrollparameter.
Reibung und Querschnitt der Abflusslocher werden auf ge-
cignete Werte festgelegt. Als Ordnungsparameter bietet
sich die Drehgeschwindigkeit des Rades an, die in Abhin-
gigkeit vom Wasserstrom zu verschiedenen Bewegungs-
figuren fiihrt. Unter einer Bewegungsfigur soll das ,End-
verhalten“ des Systems verstanden werden. Dieses Verhal-
ten spielt sich nach einiger Zeit ein und verindert sich
qualitativ nicht mehr, solange der Kontrollparameter seinen
Wert beibehilt.

Um einen systematischen Uberblick iiber die Verhal-
tensmoglichkeiten des Wasserrades zu erlangen, fahren wir
den Kontrollparameter durch den Wertebereich, der fiir das
System relevant ist. Dabei lassen wir das Rad in der Regel
aus der Ruhe starten. Bei sehr geringem Wasserstrom flief3t
das Wasser sofort durch die Abflusslocher der Behilter wie-
der ab. Da dies bis auf kleine Fluktuationen fiir alle Behil-
ter gleichermaglen gilt, dndert sich an der symmetrischen
Verteilung des Drehmoments des Rades nichts, und es bleibt
in Ruhe. Diese Ruhelage ist stabil. Sto3t man das Rad leicht
an, so kommt es schnell wieder zum Stillstand.

Nimmt der Wasserstrom zu, dann kann das Wasser nicht
so schnell wieder abflieflen. Es staut sich in den oberen
Behiltern etwas auf. Solange die Achsreibung der Wasser-
behilter die dadurch bedingten zufilligen Abweichungen
von der Gleichverteilung noch ausgleicht, bleibt das Rad in
Ruhe oder kommt - wenn auch viel langsamer - wieder zur
Ruhe. Je stirker der Wasserstrom wichst, desto mehr
Wasser sammelt sich in den oberen Behiltern. Das Rad
bekommt eine zunehmend kopflastige Massenverteilung.
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Abb. 3 Das cha-
otische Wasserrad
im Experiment.
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‘Wenn der Wasserstrom schlief3lich einen kritischen Wert
uberschreitet, fiihrt diese Kopflastigkeit zu einer labilen
Situation: Es gentigt der sprichwortliche Tropfen, um eine
Drehung in der einen oder anderen Richtung in Gang zu
bringen. Der darin steckende Zufall bricht die Symmetrie
des ruhenden Rades. Sobald die Entscheidung fiir eine Dreh-
richtung gefallen ist, bleibt es auch dabei. Der Zufall wird
gewissermafien in der Drehrichtung konserviert. Kleine
Storungen konnen daran nichts indern.

Dieser Wechsel von Ruhe zur Drehung dhnelt einem
Phasentibergang. Dreht sich das Rad beispielsweise nach
links, dann iberwiegen auf dieser Seite die etwas stirker ge-
fiilllten Behilter. Sie kommen auf dem Weg unter der Re-
genrinne hindurch gerade aus dem Regen und hatten noch
wenig Gelegenheit, wieder Wasser abzulassen. Auf der rech-
ten Seite steigen dagegen Behilter von unten auf, die auf
dem letzten Teil ihrer Rundreise durch die oberen Behilter
weitgehend vom Regen abgeschirmt waren. Thr Massenzu-
fluss beschrinkte sich fast nur auf das Wasser, das sie aus
den kiinstlichen Lecks der oberen Behilter empfingen. Sie
tragen also weniger Wasser und sind somit leichter.

Auch die Tatsache, dass durch die Abflussoffnungen der
oberen Behilter wieder Wasser in die unteren Behilter
stromt, dndert nichts an der Asymmetrie. Denn bei dieser
Wasserzufuhr sind die unteren Behilter auf der linken
Seite ebenfalls bevorzugt: Sie haben hauptsichlich stark
gefiillte Behilter tiber sich, die folglich auch mehr Wasser
abgeben. Im Mittel befindet sich also stets die grofdere Was-
sermasse auf der linken Radseite, wodurch das links-
drehende Moment iiberwiegt.

Im gerade betrachteten Fall eines noch relativ geringen
Wasserstroms stellt sich eine Drehbewegung in eine Rich-
tung stabil ein. Kleine Schwankungen in der Wasserhohe
der Behilter und damit im Verhiltnis der Drehmomente zu-
einander werden stets wieder abgebaut, weil mit dem Was-
serstand auch die Abflussrate zunimmt.

Mit zunehmendem Wasserstrom stellt sich das stationi-
re Gleichgewicht zwischen Zu- und Abfluss bei immer hohe-

ABB. 4 | ZWEIDIMENSIONALER ATTRAKTOR

X(t+1) X(t+1)

Zweidimensionale Attraktor-Rekonstruktionen aus den simulierten (links) und aus
den experimentellen (rechts) Daten des chaotischen Wasserrades. Die simulierten
Daten entsprechen denen in Abbildung 8, die experimentellen denen in Abbildung
8 rechts. Links reprdsentiert X die simulierte Stromungsgeschwindigkeit, rechts die
gemessene Tachospannung.
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rem Wasserstand in den Behiltern ein. Das antreibende
Drehmoment und mit ihm die Drehgeschwindigkeit neh-
men dementsprechend zu. Allerdings dauert es mit wach-
sender Drehgeschwindigkeit immer linger, bis das durch
zunehmende Schwankungen geprigte Einschwingverhal-
ten (Transienten) abgebaut ist. Der stationidre Endzustand
wird also immer spiter erreicht.

Wie kommt es zu diesen Schwankungen? Mit wachsen-
dem Zustrom nimmt das aus der Ruhe startende System
zunichst viel Wasser auf. Dadurch wachsen das linksdre-
hende Moment und die Drehgeschwindigkeit ebenfalls stark
an: Die Behilter dringen zum einen tiefer in den rechten Be-
reich des Rades ein, bevor sie merklich Wasser abgegeben
haben. Zum anderen sinkt die Verweilzeit der Behilter im
Zustrombereich und sie nehmen weniger Wasser auf. Er-
steres fuhrt zu einer Zunahme des rechtsdrehenden, Letz-
teres zu einer Abnahme des linksdrehenden Moments, bei-
des zusammen also zu einer Abbremsung des Rades. Nun
kann es wieder mehr Wasser aufnehmen. Damit wichst die
Drehgeschwindigkeit erneut an - wenn auch zunichst noch
auf einen kleineren Wert als beim vorhergehenden Umlauf.

Erhoht man den Wasserstrom weiter, so wird schlief3lich
ein zweiter kritischer Wert Giberschritten. In einem erneu-
ten Wechsel, der wieder an einen Phaseniibergang erinnert,
kehrt das Rad seine Drehrichtung um: Die stark angefiillten
Behilter des linken Radbereichs gelangen dann derart
schnell in den rechten Bereich, dass die nach oben gefor-
derten, weitgehend entleerten Behilter sich kaum fiillen
konnen. Deshalb schaffen sie kein Gegengewicht, das
geniigt, um die schweren Behilter iber den Umkehrpunkt
zu drehen: Die Behilter sausen wieder zurtick. Das tun sie
mit einer etwas reduzierten Geschwindigkeit, weshalb es zu
keiner weiteren Richtungsumkehr kommt. Die zunichst
starken Schwankungen bauen sich bis zur stationiren Dre-
hung ab - nunmehr mit umgekehrtem Drehsinn.

Ubergang ins Chaos
Erhoht man den Zustrom weiter, dann erreicht er einen drit-
ten kritischen Wert. Er ist nun so stark, dass die Schwan-
kungen nach der Richtungsumkehr noch nicht gentigend
vermindert sind, um schlie8lich in die stationire Drehung
einmiinden zu konnen. So entwickelt sich eine vollig neue
Bewegungsfigur: Das Wasserrad bleibt - anschaulich ge-
sprochen - in dem Bemiihen gefangen, nach der Rich-
tungsumkehr die Schwankungen abzubauen. Deshalb kehrt
sich die Bewegungsrichtung immer mal wieder um. Aller-
dings pendelt sich das System dabei nicht etwa in eine
gleichformige Schwingung ein. Stattdessen entwickelt es
eine vollig unregelmiRige Bewegungsfigur. Auch im End-
zustand zeigt es ungeordnete Wechsel zwischen ungleich-
formigen Schwingungen und Drehungen, die der Begriff
chaotisch zutreffend beschreibt.

Uber Chaos kann man sich nur schwer eine Anschau-
ung verschaffen, sonst wire es kein Chaos. Wir konnen uns
aber plausibel machen, warum es gerade nach Uberschrei-
ten des dritten kritischen Punktes entsteht. Voraussetzung



fiir chaotisches Verhalten ist die Sensitivitit des Systems, wo-
nach kleinste Storungen sehr schnell verstirkt werden. Im
vorliegenden Fall kann sich das Drehmoment des Rades von
der einen in die andere Richtung indern, bevor noch ein
Umlauf vollendet wurde. Die irregulire Bewegungsfigur ist
gepriagt von Phasen verhaltenen Zogerns und schnellen
Spurts.

Nun konnte man erwarten, dass eine weitere Steigerung
des Wasserstroms keine grundsitzliche Verinderung mehr
hervorrufen kann. Doch kurz bevor der maximale Wasser-
stand in den Behiltern den oberen Rand erreicht, ver-
schwindet bei einem vierten kritischen Punkt das Chaos
wie ein Spuk. Im Rauschen eines starken Wasserstroms fin-
det das Wasserrad wieder zu einer ,geordneten“ Bewe-
gungsfigur zuriick, dieses Mal allerdings einer reguliren
Schwingung.

Quantitative Beschreibung
Um das Verhalten des Wasserrades quantitativ zu bestim-
men, beschreiben wir die Drehbewegung durch die zeit-
liche Anderung des Gesamtdrehimpulses. Dieser setzt sich
aus der Summe zweier Drehmomente zusammen: Das Erste
bewirkt der Wasserinhalt 72(¢@) eines an der Felge (Radius
7) angebrachten Behilters am Ort eines Winkels ¢. Gegen
dieses Drehmoment wirkt ein zweites, das die Reibung an
der Achse verursacht. Dabei nehmen wir an, dass die Rei-
bung proportional zur Winkelgeschwindigkeit @ ist. Fir
den Antrieb ist die gesamte Wassermasse ausschlaggebend,
die sich auf alle Behilter verteilt. Zur Vereinfachung denken
wir uns die Wassermasse als kontinuierlich tiber alle Win-
kel ¢ verteilt: Das wire also ein Rad mit unendlich vielen,
infinitesimal kleinen Behiltern mit unendlich vielen Ab-
fliissen.

Die zeitliche Anderung der Massenverteilung bestimmt
sich aus der Differenz des Massengewinns durch den Zu-
fluss und des Massenverlusts durch den Abfluss. Der Verlust
kann als proportional zur Wassermasse m(¢) in den Be-
hiltern angesetzt werden. Der Einfachheit halber nehmen
wir an, dass der Wasserzufluss proportional zur Hohe der
Gondeln tiber dem unteren Radrand ist. Diese Niherung ist
umso besser, je gleichmiiger der Wasserzufluss tiber den
gesamten Querschnitt des Rades ist.

Eine detaillierte Herleitung der Bewegungsgleichungen
geben wir auf www.wiley-vch.de/home/phiuz. Die eben
gegebene Beschreibung lisst sich in einer Differentialglei-
chung ausdriicken, die durch eine Lineartransformation in
eine spezielle Form der Lorenz-Gleichungen tiberfiihrt wer-
den kann:

X=0(Y-X),Y=RX-Y-XZ Z=XY - Zmit

gnAr2

und R= 3

2rAr’ kb

Dabei ist » der Radius des Rades, & die Reibungskon-
stante, A der Wasserzufluss, g die Erdbeschleunigung und »
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die Hohe. Dieser Fall lisst sich  ABB. 5
nicht elementar analytisch aus-

werten, sondern muss nume-

RUHEZUSTAND

risch integriert werden. Wir wih-
len R als Kontrollparameter, der

linear mit dem Wasserzufluss A
variiert. Da o und A umgekehrt

proportional zueinander sind,
gilt oR = const. Um zu den ex-

Tachogenerator-Spannung/V
&

perimentellen Ergebnissen pas-

sende Werte zu erhalten, haben
wir OR = 240 gesetzt.

Wir betrachten die Bewe-
gungen des Wasserrades zum einen als Zeitreihe. Dazu tra-
gen wir die im Wesentlichen durch die direkt gemessene
Winkelgeschwindigkeit bestimmte Variable X als Funktion
der Zeit auf. Zum anderen stellen wir die Bewegung im Zu-
standsraum des Systems dar: Das ist der durch die Varia-
blen X, Y und Z aufgespannte, dreidimensionale und ab-
strakte Raum, in dem eine charakteristische Bahn das Ver-
halten des Systems beschreibt: die , Trajektorie“. Dabei sind die
Observablen X, Y, Z im Folgenden immer dimensionslos.

Von Trajektorien und Attraktoren
Das Endverhalten, auf das sich das System nach dem Start
schlie3lich einstellt, lisst sich mathematisch durch die Fix-
punkte analysieren. Das sind die Punkte im Zustandsraum,
die bei der zeitlichen Entwicklung des Systems invariant
sind, bei denen also simtliche zeitlichen Ableitungen der
Variablen verschwinden. Wenn das Wasserrad zur Ruhe
kommt, windet sich die Trajektorie spiralformig auf den Ur-
sprung als Fixpunkt zu, auf dem sie fortan verbleibt. Bei
den Drehbewegungen laufen die Trajektorien in Spiralen je
nach Drehsinn auf einen der beiden symmetrisch zueinan-
der im Zustandsraum gelegenen Fixpunkte zu.

Neben den Fixpunkten wird das System durch Attrak-
toren beschrieben. Unter Attraktoren versteht man im Prin-
zip die Grenzmengen, auf die das System sich hin entwickelt
[7, 8]. Eine gewisse Anschaulichkeit erlangen Attraktoren
in Form von geometrischen Gebilden im Zustandsraum, die
das Langzeitverhalten des Systems darstellen. Wenn das
System zur Ruhe kommt, endet die Trajektorie in einem
Punkt (Punktattraktor). Stellt sich eine stationire Drehung
ein, so lduft die Trajektorie in sich selbst zuriick und stellt
eine geschlossene Kurve dar (Grenzzyklus).

Interessant wird das Attraktorkonzept eigentlich erst fiir
chaotische Bewegungen. Bei der direkten Beobachtung des
Systems kann man nimlich kaum die Zeitreihe einer chao-
tischen von der einer rein stochastischen Bewegung un-
terscheiden. Die Darstellung im Zustandsraum zeigt hinge-
gen fiir die chaotische Bewegung ein zweifach gebogenes,
kompaktes und dsthetisches Gebilde: Die chaotische Tra-
jektorie windet sich wie auf einer Achterbahn um zwei Fix-
punkte, ohne sie je zu erreichen. Abbildung 4 zeigt solche
Achterbahnen - wie sie erzeugt wurden, beschreiben wir
weiter unten.
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Zeit t/min

Trotz eines manu-
ellen Impulses
kommt das Was-
serrad wieder zur
Ruhe (Rg < 1). Die
Tachogenerator-
Spannung ist ein
MaR fiir die Win-
kelgeschwindig-
keit des drehen-
den Rades.

Phys. Unserer Zeit | 35



36 | Phys. Unserer Zeit

Der Attraktor reprisentiert also die Gesamtheit dieser
Anniherungsversuche und lisst die darin verborgenen Ord-
nungsbemiithungen des Systems zu einer geometrischen Ge-
stalt gerinnen. Auf diese Weise vermittelt er die Einsicht,
dass auch die irregulire Bewegung Ausdruck einer tieferen
Regelmifigkeit sein kann. Wirde das System sich hinge-
gen rein stochastisch bewegen, dann ergibe auch seine
Bahn im Zustandsraum kein regelmifdiges Muster.

Im Bereich der chaotischen Wasserrad-Bewegung ist die
morphologische Ahnlichkeit der Attraktoren die einzige
Moglichkeit, das theoretisch berechnete und das gemesse-
ne Verhalten zu vergleichen (Abbildung 4). Dazu muss man
aber aus den experimentellen Daten die Zustandsraum-Dar-
stellung ermitteln. Das erscheint auf den ersten Blick aus-
sichtslos, weil wir keine einfache Moglichkeit haben, die
Variablen Y und Z zu messen. Wegen der nichtlinearen Ab-
hingigkeit der Variablen untereinander enthilt die Variable
X aber auch Informationen tber das Verhalten von Y und
Z. Darauf basiert ein Rekonstruktionsverfahren: Es erlaubt
uns, mogliche Werte von Y und Z aus X anhand ,zeitver-
zogerter® Koordinaten zu ,berechnen®. Die zeitverzogerte
Y-Koordinate wird in den Abbildungen durch die Delay-
Variable X (¢ + 7) dargestellt. Eine genauere Beschreibung
der Rekonstruktion geben wir auf www.wiley-vch.de/
home/phiuz, Beispiele finden sich auch in [7,9, 10].

Vergleich zwischen Theorie und Experiment
Bei der numerischen Auswertung der Bewegungsgleichun-
gen betrachten wir das Systemverhalten fiir verschiedene
Werte des Parameters R. Die grafische Darstellung der zeit-
lichen Entwicklung beschrinken wir auf X(#)-Diagramme,
weil der Koordinate X die anschaulichste Bedeutung zu-
kommt. Sie ist im Wesentlichen durch die Winkelge-
schwindigkeit des Wasserrades bestimmt (siche Herleitung
der Bewegungsgleichungen auf www.wiley-vch.de/
home/phiuz). Deshalb nennen wir sie im Folgenden
der Einfachheit halber auch so. Das Verhalten im eigentlich
dreidimensionalen Zustandsraum stellen wir der Uber-
sichtlichkeit halber als zweidimensionale Projektionen
dar: die Wasserverteilung im Wasserrad Y tiber der Winkel-
geschwindigkeit X.

Den Wasserzufluss Ag haben wir experimentell be-
stimmt. Der Grenzfall des Wasserzuflusses, bei dem das Sys-
tem gerade noch zur Ruhe kommt oder gerade mit der Dre-
hung anfingt, ist experimentell nur schwer zu bestimmen.
Bei unserem Wasserrad lag er bei Ag = 18 cm?/s. Da in den
Bewegungsgleichungen R linear mit dem Wasserzufluss
variiert, haben wir die hier dargestellten experimentellen
Ergebnisse auf diesen Zufluss normiert (R : = 1).

Die Untersuchung beginnt mit geringem Wasserzufluss
und entsprechend kleinen Werten des Kontrollparameters
R oder Rg. Sie werden den einzelnen Bewegungsfiguren
entsprechend Schritt fiir Schritt erhoht. Im Experiment ge-
hen wir stets vom Ruhezustand aus: Dazu haben wir die An-
fangsbedingungen in der Computersimulation so gewihlt,
dass das System in der Nihe des Ursprungs startet.
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Ruhezustand

Fiir kleine Werte von R (0 < R < 1) kommt das System stets
zur Ruhe. Ursprung des Zustandsraums und einziger Fix-
punkt des Systems fallen zusammen. Im Experiment lisst
sich das nachvollziehen, indem man bei sehr geringem Was-
serstrom Ry das Rad manuell in Bewegung setzt. Es kommt
dann allmihlich wieder zum Stillstand, wie Abbildung 5
zeigt. Diese und die folgenden Abbildungen sind tibrigens
mit dem Programm SiniS (Simulation nichtlinearer Systeme)
erzeugt, das von www.wiley-vch.de/home/phiuz her-
untergeladen werden kann.

Gleichférmige Drehung
Sobald R den Wert 1 Uberschreitet, setzt eine Drehung in
der einen oder anderen Richtung ein. R = 1 entspricht al-
so dem ersten kritischen Wert. Eine Stimmgabelbifurkation
sorgt dafiir, dass der Fixpunkt im Ursprung instabil wird
und zwei neue Fixpunkte entstehen [6]. So lange R < 1,125
bleibt, handelt es sich um stabile Knoten: Die Trajektorien
eines bei X = 0 gestarteten Systems laufen je nach der zu-
fillig eingeschlagenen Drehrichtung direkt auf einen von
beiden zu. Oberhalb eines Wertes R = 1,125 nihert sich
die Trajektorie dem jeweiligen Fixpunkt nicht mehr direkt,
sondern auf einem spiralformigen Weg.

Im Experiment zeigt sich dieses Szenario, indem der
Ruhezustand ab einem Wasserzulauf von A = 18 cm3/s
(also Rg = 1) instabil wird: Das Rad beginnt sich in einer
durch zufillige Storungen bestimmten Richtung zu drehen
und steuert schlie8lich unter abklingenden Schwankungen
(Abbildung 6) eine feste Drehgeschwindigkeit an (Ab-
bildung 6 rechts). Mit wachsendem Wasserstrom nehmen
die Schwankungen und die Endgeschwindigkeit zu.

Vorchaotischer Bereich
Oberhalb von R = 15,9 kann das aus der Ruhe startende
Wasserrad den Fixpunkt nicht mehr erreichen. Es miindet
in einen instabilen Grenzzyklus ein (heterokline Verbindung
[6]), indem es unentschlossen zwischen positiven und ne-
gativen X-Werten hin und her pendelt. Rein qualitativ kann
das Verhalten nicht eingeordnet werden. Erst der Blick in
den Zustandsraum zeigt, dass das Wasserrad ein chaotisches
Verhalten angenommen hat. Ursache ist eine so genannte
Blue-Sky-Katastrophe [6]. Dennoch kann das System auch
in diesem Parameterbereich in ein regulires Verhalten ein-
miinden. Dazu muss man es nicht aus der Ruhe, sondern
von passenden anderen Punkten aus starten (Abbildung 7).

Mit anderen Worten: Im Intervall 15,9 < R < 19,5 ko-
existieren das chaotische und das regulire Verhalten. Dabei
erweist sich der einmal eingenommene Bewegungszustand
als relativ unempfindlich gegeniiber stetigen Variationen
von R: Erst bei Uberschreiten der Intervallgrenze kippt das
System aus dem chaotischen Verhalten in die regulire Dre-
hung oder umgekehrt (Hysterese).

Stellt man im Experiment den Wasserzulauf von Anfang
an auf R = 16, dann beginnt das Rad sofort, sich heftig zu
drehen. Es dreht sich jedoch zunichst mit stark schwan-
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Abb. 6 Die Schwankungen klingen langsam ab (R = 10). Die
einmal eingeschlagene Drehrichtung bleibt erhalten. Rechts:
Stabile Rotation des Wasserrades gegen den Uhrzeigersinn
(Re ~ 10).

Abb. 7 Chaotischer Einschwingvorgang im vorchaotischen
Parameterbereich (R = 16). Die Transienten bewegen sich
zundchst in Auswidrtsspiralen um den einen Fixpunkt, ehe sie
sich dann dem anderen zuwenden. Erst wenn sie bei einem
dieser Wechsel einem der Fixpunkte nahe genug kommen,
werden sie von diesem angezogen und bewegen sich spiral-
formig auf ihn zu. Rechts: Vorturbulenter Einschwingvorgang
des Wasserrades (Rg ~ 16).

Abb. 8 Die Zeitreihe zeigt eine chaotische Bewegung
(links). Der Zustandsraum zeigt das typische Bild eines
Lorenz-Attraktor (die Vorstufe war bereits in Abbildung 8

zu sehen): Die Transienten umrunden die beiden instabilen
Fixpunkte auRerhalb des Ursprunges in unregelmdfRigem
Wechsel. Die Trajektorie néhert sich ihnen an, ohne ihnen zu
nahe zu kommen. Stets schaukeln sich die Schwankungen zu
einer Richtungsumkehr auf und ein dhnliches, aber nicht
vorhersagbares Spiel wiederholt sich am anderen Fixpunkt
(R = 29). Rechts: Chaotische Zeitreihe des Wasserrades

(Re = 29).
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Bei R = 100 treten periodische Schwankungen mit Richtungsdnderungen auf:
Das System schwingt periodisch.
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Bei sehr starkem Wasserzufluss schwingt das Wasserrad periodisch.

kender Winkelgeschwindigkeit und wechselt hiufiger sei-
ne Drehrichtung, bevor es sich auf eine stationire, aber im-
mer noch leicht schwankende Drehbewegung einpendelt.
Der Drehsinn dieser sich letztlich einstellenden Bewegung
kann nicht vorhergesagt werden (Abbildung 7 rechts).

Chaos
Die beiden instabilen Grenzzyklen nihern sich mit weiter
wachsendem R immer mehr den zugehorigen Fixpunkten
an, bis sie mit diesen bei R = 19,5 zusammenfallen. Dieser
Fall heiflt Hopf-Bifurkation [6]. Jenseits dieses Parameter-
wertes ist es auf keine Weise mehr moglich, zu einer re-
guliren Drehung zu gelangen. Eine Vorhersage des Trajek-
torienverlaufs ist unmoglich geworden. Wihrend die Zeit-
reihe keine Struktur mehr erkennen lisst, ziehen die
Trajektorien im Zustandsraum in divergierenden Spiralen
eine achterbahnférmige Spur um die nunmehr instabilen
Fixpunkte, ohne sie je zu erreichen. In unregelmifiger
Folge und Anzahl der Umdrehungen umrunden sie mal den
einen, mal den anderen Fixpunkt. Dabei zeichnen sie ein
filigranes, blattartiges Gebilde, das eine unendlich feine
LBlitterteigstruktur® besitzt. Mit dieser fraktalen Eigenschaft
stellt der Lorenz-Attraktor ein Zwischending zwischen Kur-
ve und Fliche dar (Abbildung 8). Auch im Experiment stellt
sich oberhalb eines gewissen kritischen Wertes fiir den Was-
serzufluss keine stationire Drehbewegung mehr ein. Das
Rad dreht sich mit schwankender Geschwindigkeit und in-
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dert in unvorhersagbarer Weise den Drehsinn (Abbildung
8 rechts).

Handelt es sich bei dieser Bewegung um das von den
Lorenz-Gleichungen erzeugte Chaos? Um diese Frage be-
friedigend zu beantworten, reicht der Vergleich der Win-
kelgeschwindigkeits-Zeit-Diagramme nicht aus. Dazu miis-
sen wir den chaotischen Attraktor aus den experimentell
gemessenen X-Werten rekonstruieren. Um nicht Apfel mit
Birnen zu vergleichen, rekonstruieren wir auch aus den
numerisch berechneten X-Werten den Attraktor. Der Ver-
gleich der beiden rekonstruierten Attraktoren zeigt dieselbe
Topologie und spricht fiir eine gute Ubereinstimmung
zwischen Theorie und Experiment (Abbildung 4).

Reguldre Schwingungen
Die weitere Erhohung von R fithrt zunichst zu keiner
weiteren Verhaltensinderung des Systems, es bleibt beim
Chaos. Wie schon angedeutet, fillt das System dann bei
einem sehr hohen Wert von R = 100 in ein regulires Ver-
halten zurtick - diesmal jedoch in periodische Schwingun-
gen anstelle von Drehungen (Abbildung 9).

Wer bei den hohen Wasserstromen die Behilter in ab-
rupten Wechseln ihren chaotischen Tanz vollfiihren sieht,
kann sich kaum vorstellen, wie das Wasserrad bei einer wei-
teren Steigerung des Wasserstroms wieder den ,Dreh“ zu
einer reguliren Schwingung hin bekommt. Und dennoch
passiert genau das: Wie von der Theorie vorhergesagt,
beginnen sich im Experiment die fast tiberbordenden Behil-
ter bei sehr hohem Wasserzulauf regelmif3ig zu heben und
zu senken, also auf und ab zu schwingen (Abbildung 10).
Die Schwingung bleibt auch bei weiterer Erhohung des
Wasserstroms solange stabil, bis das Wasser tiber den Rand
der Behiilter fliet und das System damit den Giiltigkeits-
bereich des Modells verlisst.

In Veroffentlichungen zum Lorenz-System wird die
Bewegungsfigur der periodischen Schwingung oft gar nicht
diskutiert - vermutlich, weil in diesem Parameterbereich
das Lorenz-System nicht mehr als Modell der Bénard-Kon-
vektion gelten kann.

Auf geordnetem Weg ins Chaos
Obwohl sich nicht alle Bewegungsfiguren des Lorenz-Mo-
dells anhand des Wasserrades experimentell reproduzieren
lassen, konnen am Lorenz-System fast alle wichtigen nicht-
linearen Phinomene demonstriert und untersucht werden.
Einige Beispiele haben wir hier vorgestellt: globale Bifur-
kationen wie die Hopf-Bifurkation oder Uberginge ins Cha-
os wie die Blue-Sky-Katastrophe. Ebenfalls grundlegend
wichtig und mit dem Wasserrad gut demonstrierbar sind
globale Bifurkationen wie die homokline und die hetero-
kline Verbindung und andere Uberginge ins Chaos, zum
Beispiel das Feigenbaum-Szenario oder der intermittieren-
de Ubergang [5, 6]. Einige der hier dargestellten Inhalte
konnen sicherlich nicht unmittelbar in den schulischen Phy-
sikunterricht iibernommen werden. Mit seinen detaillier-
ten Tipps zum Experiment und zu physikalischen Denk-



modellen soll dieser Beitrag vor allem eine Fiille an Infor-
mationen bieten, auf denen ein Unterricht aufgebaut wer-
den kann.

Zusammenfassung

Modellsysteme kénnen Schiilern die Grundlagen der
nichtlinearen Physik anschaulich vermitteln. Sie schlagen
so einen Bogen von der Schulphysik zur aktuellen Forschung.
Ein solches Modellsystem ist das chaotische Wasserrad, das
Lehrer auf einfache Weise fiir den Schulunterricht nachbauen
kénnen. Im Wesentlichen steuert der Zufluss des Wassers
das Verhalten des Wasserrads. Wdchst er, so durchlduft das
Rad von der geordneten, gleichférmigen Drehung bis zum
Chaos verschiedene Phasen von Bewegungsfiguren. Das
Experiment kann grundlegende Modelle und Begriffe der
Chaostheorie demonstrieren: lokale und globale Bifurkationen
und verschiedene Ubergdnge ins Chaos.

Stichworte
Nichtlineare Physik, nichtlineare Dynamik, Bénard-Konvek-
tion, Lorenz-System, Lorenz-Attraktor, Chaos, Chaostheorie,
lokale Bifurkation, Hopf-Bifurkation, Stimmgabel-Bifurkation,
heterokline Verbindung, globale Bifurkation, Blue-Sky-
Katastrophe, Schulexperiment, Physik-Didaktik.

Danksagung
Wir bedanken uns bei Jutta Wieching und Oliver Busse, die
im Rahmen TIhrer Examensarbeiten das chaotische Wasser-
rad experimentell und numerisch untersucht haben.

Literatur

[1] G. Ahlers et al., Physik Journal 2002, 2, 31.

[2] E.N.Lorenz, J. Atmosph. Sciences 1963, 20, 130.

[3] A.].Lichtenberg, Regular and Stochastic Motion. Springer Verlag,
Heidelberg und Berlin 1983.

[4] C.Sparrow, The Lorenz Equations. Springer Verlag, New York 1982.

[5] H.Haken, Synergetik. Springer Verlag, Heidelberg und Berlin 1983.

[6] H.]. Schlichting et al., Physik und Didaktik 1991, 3, 196.

[7] ). Argyris et al., Die Erforschung des Chaos. Vieweg Verlag,
Braunschweig und Wiesbaden: 1995.

[8] J. M. T. Thomson, H. B. Steward, Nonlinear Dynamics and Chaos.
John Wiley & Sons, New York 1986.

[9] H.D.I. Abarbanel, Analysis of Observed Chaotic Data. Springer
Verlag, New York 1996.

[10] V. Nordmeier, H. J. Schlichting, Praxis der Naturwissenschaften -

Physik 1996, 1, 45.

NICHTLINEARE DYNAMIK

PHYSIKDIDAKTIK

DAS LORENZ-SYSTEM

Lorenz ging von einer Fluidschicht mit
der Dicke h aus, die der Schwerkraft
unterliegt. AuBerdem ist sie oben und
unten den konstanten Temperaturen T;
und Tp = Tq + AT; ausgesetzt. Er ge-
langte durch Kombination von Navier-
Stokes-Gleichung, Warmeleitungs-
gleichung und Kontinuitdtsgleichung zu
einem sehr einfachen System nicht-
linearer Differentialgleichungen:

a(Y-X)
RX-Y-XZ
XY -bZ

X
14
z

o beschreibt das Verhdltnis der Wéarme,
die die Reibung in der Strémung er-
zeugt, zur Warme, die aus dem System
abflieBt (Prandtl-Zahl). Bei der Untersu-
chung des Lorenz-Systems ist es {iblich,
den Wert fiir kaltes Wasser (o = 10)
einzusetzen. bist ein Geometriefaktor.
Er ist ein MaR fiir die Form der Konvek-
tionsrollen. Meist wird er auf den Wert
b= 3/8 gesetzt. Er steht dann fiir den
kleinst moglichen Wert der Temperatur-
differenz AT, bei dem Konvektion
einsetzt. In diesem Beitrag gilt der
Spezialfall b=1. R~ ATist ein MaR fiir
die Temperaturdifferenz. Es ist so
normiert, dass Konvektion bei R=1
einsetzt.

Die Autoren

,Spielwiese*.
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Die auftretenden Koordinaten haben
folgende Bedeutung:

X(t) ist ein MaR fiir die Stromungsge-
schwindigkeit in den Konvektionsrollen:

v(xz t) ~ X(t),
insbesondere also
X=0sv=0.

Das Vorzeichen von X beschreibt den
Umlaufsinn der Konvektionsstrémung.
Y(t) und Z(t) beschreiben die Abwei-
chung des Temperaturfeldes von dem
Fall, der sich bei reiner Warmeleitung
einstellt (homogen in X- und linear in
Z-Richtung). Y(t) beschreibt insbeson-
dere die horizontale Temperaturvertei-
lung. Es ist ein MaR fiir den Temperatur-
unterschied zwischen aufsteigenden
und absinkenden Volumenelementen.

Im Fall Y=0 ist der Temperaturverlauf
Thomogen in X-Richtung. Der Fall
X-Y>0 besagt, dass aufsteigende
Volumenelemente warmer als absin-
kende sind. Z(t) beschreibt zusatzlich
die vertikale Abweichung von der
Linearitat.
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