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Chaos heim Wasserrad-

eln einfaches mechanisches Modell fir das Lorenzsystem

H. Joachim Schlichting

Beschreibung des Systems

Das hier untersuchte Wasserrad ist ein dissipatives,
nichtlineares System, das durch einen Antrieb in pe-
riodische und nichtperiodische Bewegungen ver-
setzt werden kann. Im Unterschied zu den vorher
beschriebenen Systemen ist der Antrieb selbst je-
doch nicht periodisch, dem System kann daher von
auflen kein Zeitrhythmus aufgepragt werden. Das
Woasserrad muf3 seinen Rhythmus selbst finden, in-
dem es die erzwungenen Bewegungen mit den Sys-
temparametern und dem Energieangebot in Einklang
bringt.. Man nennt ein solches System autonom.

Das chaotische Wasserrad ist eine experimentell

konstanter
asserzufiup

Abb: 1: Schematische Darstellung des Wasserrades

handhabbare Realisation des LorenzSystems, das
nicht nur das erste, sondern auch das am besten un-
tersuchte Modell eines chaotischen Systems dar-
stellt. Edward Lorenz leitete dieses Modell zur Be-
schreibung des meteorologischen Phanomens ab,
dal’ Schichten von Flussigkeiten und Gasen spon-
tan regelméalige Konvektionsmuster ausbilden kdn-
nen, wenn die Temperaturdifferenz zwischen Ober-
und Unterseite zwischen kritischen Werten liegt

Die Bewegungsgleichungen

Die Bewegung des Rades, ausgedriickt durch die
zeitliche Anderung des Drehimpulses, wird zum -
nen durch das Drehmoment bestimmt, das der Was-
serinhalt m(j ) eines an der Felge (Radius r) ange-
brachten Behélters an der Stelle j (gegen die Hori-
zontale gemessen) ausiibt. Dem wirkt zum anderen
ein Drehmoment aufgrund der als proportional zur
Winkelgeschwindigkeit w unterstellten Reibung
entgegen. Da fur den Antrieb die gesamte auf die
einzelnen Behdlter verteilte Wassermasse aus-
schlaggebend ist, denken wir uns die Wassermasse
als kontinuierlich tber alle Winkel j verteilt. Diese
Vereinfachung kommt der Annahme gleich, das Rad
besitze unendlich viele Behdlter mit unendlich vielen
Abflissen. Unter Vernachlassigung der Masse des
Rades erhélt man dann:

dirZnw —
=- grmcos( ) - kw €
dt
Trégheit Antriebskraft ~ Reibung

Dabei ist k eine Reibungskonstante und g die Erd-
beschleunigung. Der Strich Uber den Symbolen be-
zeichnet die Integration Uber das gesamte Winkelin-
tervall.

Die zeitliche Anderung der Massenverteilung wird
durch die Differenz aus Massengewinn und Mas-
senverlust der Behélter bestimmt. Der Verlust kann

a's proportional zum Wasserinhalt m(j ) der Behélter
angesetzt werden. Die Wasseraufnahme nehmen wir
als proportional zur Hohe der Gondeln bezuglich des
unteren Radrandes an. Diese N&herung ist ziemlich
grob, wenn das Wasser nur in der Mitte zugefuhrt
wird, aber besser, wenn das Rad in einem gleichmé-
Bigen Regen steht.
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Gewinn Verlust

Dabei sind A und h positive Konstanten. Integrati-
on von Gleichung (2) Uber den Vollwinkel

Z—T = 20Ar - him ®

zeigt, dal} der gesamte Wasserzuflul? konstant
(=2pAr) ist und dal? m asymptotisch den Grenzwert
2pAr/h annimmt. Nimmt man an, dald sich dieser

Grenzwert bereits eingestellt hat, kann man Glei-
chung (1) in die Form bringen:
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Mit Hilfe von Gleichung (2) erhdt man

d mcos(j )=
dt
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und ebenso

dmsnj
dt

Mit der linearen K oordinatentransformation

t¢=ht, X:-lw, Y:lmcosj,
h kh

=w mcos] - hmdnj +p Ar,(6)

r —— Ar?
Z =- g_ msnj +gp—2
kh kh
erhdlt man folgenden Satz von Differentialgleichun-
gen,

X =s (Y- X) is = };3 und
Y=RX-Y-XZ  mit] 2pAr2
7 = - IR:gp r
Z=XY-Z PR=5 0

Dabei bedeutet xdie Differentiation nach der trans-
formierten Zeit t'.

Dieses Differentialgleichungssystem stellt einen
Speziafall des sogenannten Lorenz-Systems dar,
welches eines der am meisten untersuchten chaoti-
schen Systeme ist. Nach einer kurzen Herleitung der
Lorenz-Gleichungen werden wir mit ihrer Hilfe die
Verhaltensmdglichkeiten des Wasserrades smulie-

ren und anschlieRend mit den experimentellen E-
gebnissen vergleichen.

Bewegungsfiguren des Wasserrads

Um einen systematischen Uberblick tiber die Verhal-
tensmdglichkeiten des Wasserrades zu erlangen,
muf3 der Kontrollparameter durch den fir das Sys-
tem relevanten Wertebereich "gefahren" werden.
Dabel ist es zweckméafdig das Rad aus der Ruhe zu
starten. Mit zunehmendem Wasserzuflul? stellen
sich nacheinander die folgenden Bewegungsfiguren
an:

Ruhe: Bei sehr kleinem Zuflul3 rinnt das Wasser
durch die Behélter hindurch, ohne daf? sich an der
Ruhestellung des Rades etwas andert. Selbst wenn
man dem Rad einen kurzen Anstol3 gibt, kommt es
sofort wieder zur Ruhe. Nimmt der Zuflu zu, so
kann das Wasser durch die relativ kleine Offnung in
den Behdltern nicht so schnell wieder abflief3en, und
die Wasserhohe steigt etwas an, zuerst in den obe-
ren Behdltern. Solange die dadurch bedingte Kopf-
|astigkeit des Systems durch die Reibung ausgegli-
chen wird, bleibt das Rad in Ruhe bzw. kommt zur
Ruhe.

Drehung: Erst wenn der ZufluR einen ersten kriti-
schen Wert Uiberschreitet, fihrt die Kopflastigkeit zu
einer labilen Situation: Kleinste zuféllige Schwan-
kungen in der Fillhéhe der Behélter geniigen, um
die Symmetrie des ruhenden Rades zu brechen. Es
beginnt, sich in die eine oder andere Richtung zu
drehen. Und wenn es erst einmalrotiert, dann bleibt
esauch dabei: Der die Drehrichtung "auswurfelnde"
Zufall wird gewissermal3en konsaviert.

Dreht sich das Rad beispielsweise nach links, dann
bewegen sich gerade die stérker gefiiliten Behélter
auf der linken Seite des Rades herunter und die we-
niger gefillten, weil zumindest teilweise wieder leer-
gelaufenen, Behalter auf der rechten Seite herauf.
Dementsprechend ist aufgrund der gréf3eren Masse
auf der linken Radseite das linksdrehende Moment
stets groRer als das rechtsdrehende Moment. Folg-
lich stellt sich (beim hier vorausgesetzten relativ ge-
ringen Zustrom) eine stabile Drehbewegung ein.
Kleine Schwankungen in der Wasserhohe der Be-
hélter und damit im Verh&ltnis der Drehmomente zu-
einander werden stets wieder abgebaut, weil mit dem
Wasserstand auch der Abflu® zunimmt.

Drehung mit Hindernissen: Wird der Wasserzul auf
weiter hochgeregelt, so stellt sich das stationare
Gleichgewicht zwischen Zuflu und Abflu bei e-
nem entsprechend héheren Wasserstand in den Be-
héltern ein. Solange dabei ein gewisser zweiter kriti-
scher Wert nicht Uberschritten wird (siehe unten),
landet das Rad zwar stets wieder in einer station&-
ren, nun aber schnelleren, Drehbewegung - dler-



dings mit zunehmendem Zuflul? immer unwilliger:
Die Bewegung wird zu Beginn, as Folge eines
Wechsels zwischen starken Beschleunigungen und
Abbremsungen, nicht nur immer ungleichférmiger,
sondern braucht auch immer mehr Zeit, um die Figur
der stationdren Drehung zu erreichen.

Wodurch wird diese Ungleichférmigkeit bedingt?
Mit wachsendem Zustrom nimmt das aus der Ruhe
startende System zunadchst viel Wasser auf, wo-
durch das linksdrehende Moment und infolgedes-
sen die Drehgeschwindigkeit eine starke Zunahme
erfahren. Dadurch geraten zum einen die Behdlter
weiter in den rechten Bereich des Rades, bevor sie
wesentlich an Wasser eingebif3t haben. Zum ande-
ren verringert sich die Verweilzeit der Behdter im
Zustrombereich, wodurch die Wasseraufnahme ver-
ringert wird. Ersteres fihrt zu einer Zunahme des
rechtsdrehenden, letzteres zu einer Abnahme des
linksdrehenden Moments, beides zusammen also zu
einer Abbremsung des Rades. Die unmittelbare Fol-
ge davon ist aber ein erneutes Anwachsen der
Drehgeschwindigkeit, wenn auch auf einen kleine-
ren Wert al's beim vorhergehenden Umlauf.

Drehung mit Richtungswechsel: Vergrofiert man den
Zulauf weiter, so kommt es zur ersten Richtungsum:
kehr des Rades: Die stark angeflillten Behélter des
linken Radbereichs sausen dann derart schnell in
den rechten Bereich, daf3 im linken Bereich nicht
rechtzeitig ein gentigendes Gegengewicht geschaf-
fen werden kann, um die schweren Behélter Uber
den Umkehrpunkt zu beférdern. Aber nach dem be-
wahrten Prinzip "einmal ist keinmal" mindet auch
diesmal die Bewegung in eine stationdre Drehung
ein, alerdings mit umg ekehrtem Drehsinn.

Chaos: Erst wenn die ZufluR3rate einen dritten kriti-
schen Wert Uberschreitet, leitet die Richtungsum:
kehr eine neue Bewegungsfigur ein. Weder bleibt es
bei einer einmaligen Anderung der Drehrichtung,
noch kommt es auch nach langerer Zeit wieder zu
einer stationaren Drehung.

Naiverweise wirde man erwarten, daf3 sich das Sys-
tem nach diesem Symmetriebruch auf eine gleich-
formige Schwingung einpendelt, bei der sich die
Richtungsumkehr periodisch wiederholt. Dies ist
vorerst jedoch nicht der Fall. Das Rad nimmt statt-
dessen eine Bewegungsfigur ein, die man nicht ein-
fach beschreiben kann, weil auch nach langerer Zeit,
also im Endzustand, vollig unregelméiige Wechsel
zwischen ungleichférmigen Schwingungen und
Drehungen auftreten, und die daher mit einem Wort
als chaotisch zu bezeichnen ist.

Ginstige Bedingungen fur Chaos. Qualitativ kann
man nicht mehr veranschaulichen, warum sich keine
regelmaltige Bewegungsfigur mit Richtungswech-
seln, sondern eine chaotische einstellt. Wir kénnen

uns aber plausibel machen, warum gerade nach die-
sem Symmetriebruch Chaos auftreten kann.

Wesentlich fir das Entstehen von Chaos ist das
Vorhandensein von sensitiven Punkten [3], an de-
nen kleinste Stérungen qualitative Verhaltensande-
rungen bewirken kdnnen. Im vorliegenden Fall ist
der "Uberschlagspunkt" des Rades sensitiv. Anihm
wird jeder Behdlter vorbeigefihrt und dahingehend
Uberpriift, ob er passieren kann oder "zurlickgewie-
sen" werden mu3. Im reguléren Parameterbereich ist
die Uberpriifung eine reine Formalitét, denn die je-
weilige Bewegungsfigur ist so eindeutig determi-
niert, dal?3 z.B. kleine Unterschiede in der Masse, die
die Behdlter durch Zufallsschwankungen wahrend
der Rundreise stets annehmen, keine Rolle spielen.
Demgegeniiber sind in gewissen Parameterberei-
chen selbst kleinste Schwankungen entscheidend
dafiir, ob es zum Uberschlag oder zur Bewegungs-
umkehr kommt: Dadurch wird der Bewegungsablauf
gewissermalden durch den den Schwankungen an-
haftenden Zufall bestimmt, was nur zu einem chaoti-
schen, unvorhersehbaren Verhalten fihren kann.

Schwingung: Steigert man den Wasserzulauf noch
weiter, so wird schliefllich doch noch alles wieder
regulér: Die Bewegung endet in einer stabilen regu-
l&ren Schwingung.

Dynamik des Wasserrads

Ob der soeben beschriebene Symmetriebruch, zu
dem sich die Drehung aufgrund der Zunahme des
Wasserzuflusses aufgeschaukelt hat, den Beginn
einer regulédren oder einer chaotischen Bewegungs-
figur einlautet, kann- wie gesagt- durch rein qualita-
tive Uberlegungen im Anschauungsraum nicht mehr
ausgemacht werden. Die Beantwortung der Frage
setzt eine quantitative Analyse des Verhaltens des
Wasserrades voraus.

Genau genommen - und das ist einer der zentralen
Punkte der Chaosforschung - wird ein sehr viel ge-
ringerer Anspruch erhoben: Es bleibt bel einer quali-
tativen Betrachtung. Allerdings findet sie nicht im
Anschauungsraum sondern im Zustandsraum (vgl.
z.B.[3]) statt. Das setzt zwar die quantitative Losung
der Bewegungsgleichung des Wasserrads voraus,
aber es geniigt, dai die Bewegungsgleichungen nur
die wesentlichen Merkmale des Systems erfassen.
Auf Details kommt es bel der M odellierung nicht an;
das Problem kann durch Naherungen stark verein-
facht werden. Im vorliegenden Fall ist die Situation
deshalb besonders einfach, weil die Bewegungs-
gleichungen- wie oben gezeigt- auf die Lorenz
Gleichungen zuriickgefuhrt werden kénnen, deren
Dynamik in den vergangenen Jahren ausfihrlich
diskutiert worden ist.



Das Lorenz-System

Der Meteorologe E. N. Lorenz [5] beschéftigte sich
1963 im Zusammenhang mit dem Problem der Wet-
tervorhersage mit den Warmetransportvorgangen in
der Atmosphére, die dadurch angeregt werden, daid
die Luft am Erdboden erwdrmt wird, oben aber in
Verbindung steht mit einem Warmeresarvoir niedri-
ger Temperatur, dem Weltraum.

Wie man aus Beobachtungen von Wolkenbildun-
gen weil3, treten dabei sowohl unregelmafdige, chao-
tische, al's auch hochgeordnete Transportphanome-
ne (Bénard-Konvektion) auf. Letztere zeigen sich
zB. eindrucksvoll in den sogenannten Wolkenstra-
Ben, die eine Uber viele Kilometer fast translation-
sinvariante Struktur darstellen.

Das Phanomen wird modelliert durch die Schicht ei-
nes Fluids mit der Dicke h, die der Schwerkraft un-
terliegt und auRRerdem oben und unten den konstan-
ten Temperaturen T, und T, = T, + DT > T, ausge-
setztist.

Setzt man die Konvektionsstrémung als translation-
sinvariant (/fly © 0) und quellenfrei ©x = 0) vor-
aus, dann kann man ihr Geschwindigkeitsfeld als
Rotation eines skalaren Potentials y (x,z,t) schreiben:

/ ™ // Y
/ SRR ///p\\\ z
s /(Q\.muugj
(OHito))) :
\\\y ) N
A SN T S

Abb. 2: Typisches Strémungsbild bel der Bénard-
Konvektion
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Lorenz (siehe z.B. [6]) fuhrte nebeny dieVariable

Q(x z1t) =T (x,z1)- %z )

als Mad fur die Abweichung des Temperaturprofils
von der Linearitét ein. Er entwickelte die beiden Va-
riablen in eine doppelte Fourier-Reihein x und z und
berlicksichtigte nur die drei wichtigsten Koeffizien-
ten, eine Naherung, die sicher nur in der Nahe der
kritischen Temperaturdifferenz gerechtfertigt ist, bei
der das Fluid in Konvektionsbewegung gerét. Auf-
grund dieser Naherung l&3t sichy darstellen als

y (xzt) ~ X0 in22x%nE 2 (g
éeh g éh g

wobei der dimensionslose Geometriefaktor a das Sei-
tenverhéltnis einer Konvektionszelle angibt. An-
schaulich bedeutet das die Beschrankung auf L6-
sungen mit dem folgenden Stromungsbild (fur X *
0):

Eine solche Konvektionsstruktur stellt sich ein,
wenn eine Flussigkeits- oder Gasschicht von unten
geheizt wird. Zunachst wird die Warme durch

Waérmeleitung auf die Flussigkeitsschicht Ubertra-
gen, durch Warmeleitung an die Flissigkeitsober-
flache transportiert und dort abgegeben. Uber-
schreitet der Warmestrom jedoch eine bestimmte kri-
tische Grolke, so wird die Symmetrie des Warme-
transportvorgangs plétzlich gebrochen. Neben der
Warmeleitung tritt der sehr viel effektivere Mecha-
nismus der Konvektion auf. Der Auftrieb der e-
warmten und daher spezifisch leichteren Flissigkeit
wird dann auf einmal gréf3er als die die Bewegung
hindernde Reibung und fihrt zum Einsetzen einer
Bewegung. Die aufsteigende warmere wird durch
nachstromende kéltere Flussigkeit ersetzt, die -
dann ihrerseits erwarmt wird, aufsteigt, an der FlUs-
sigkeitsoberflache Wéarme an die kéltere Umgebung
abgibt, wieder absinkt, bis sie schliefilich, erneut er-
warmt, den Kreis abermals durchlauft. Bei passen-
den Randbedingungen organisiert sich das Kreis-
laufgeschehen in einem hochgeordneten Muster
von Konvektionsrollen. Der Drehsinn dieser Rollen
wird durch kleinste zuféllige Bewegungen (Fluktua-
tionen) wahrend des Symmetriebruchs festgel egt.

Lorenz setzte seinen Ansatz fur wund Qin ein Diffe-
rentialgleichungssystem ein, das er durch Kombina-
tion von Navier-Stokes-Gleichung, Wéarmeleitungs-
gleichung und Kontinuitatsgleichung erhielt. Er ge-
langte dadurch zu dem bereits oben erwéhnten Sys-
tem nichtlinearer Differentialgleichungen, den soge-
nannten Lorenz- Gleichungen:



X =s (Y- X)
Y=RX-Y- XZ (10)
Z=XY- bz

Dabei haben die auftretenden Konstanten folgende
Bedeutung:

s = Verhdltnis der in der Strémung durch Rei-
bung erzeugten Wérme zur fortgeleiteten War-
me (Prandtl-Zahl). Bei der Untersuchung des
Lorenz-Systems ist es Ublich, den Wert fur kal-
tes Wasser (s = 10) einzusetzen.

b = Geometriefaktor, der ein Mal3 fur die Form
der Konvektionsrollen ist. Meist wird er auf den
Wert gesetzt, fur den Konvektion beim kleinst-
moglichen Wert von DT einsetzt (b = 8/3).

R ~ DT ist ein Mal fur die Temperaturdifferenz,
das so normiert ist, da® Konvektion bei R = 1
einsetzt.

Die auftretenden Koordinaten haben folgende Be-
deutung:

X(t) ist ein Mal fir die Strémungsgeschwin-
digkeit in den Konvektionsrollen:

v (X,z,t) ~ X(t), insbesondere aso X = 0
0O v=o.

Das Vorzeichen von X beschreibt den Um-
laufsinn der Konvektionsstromung.

Y (t) und Z(t) beschreiben die Abweichung des
Temperaturfeldes von dem Fall, der sich bei rei-
ner Warmeleitung einstellt (homogen in X- und
linear in Z-Richtung).

Y (t) beschreibt insbesondere die horizontale
Temperaturverteilung. Es ist ein MaR flir den
Temperaturunterschied zwischen aufsteigenden
und absinkenden V olumenel ementen.

Y=0b T ist homogen in x-Richtung.

X xY >0b Aufsteigende Volumenelemen-
te sind wéarmer al's absinkende.

Z(t) beschreibt zusétzlich die vertikale Abwei-
chung von der Linearitét.

Ahnlichkeiten zwischen Wasserrad
und Bénard-Konvektion

Die Aquivalenz zwischen Lorenzsystem und Was-
serrad liegt auf der Hand:

Der Antrieb der Bewegung besteht in der Gewichts-
zunahme von

Volumenelemente infolge von Warmeabgabe bzw.
Wasseraufnahme in Anwesenheit der Schwerkraft.

Der Warmeabgabe an der Oberfléache beim Lorenz
System entspricht beim Wasserrad der Wasser-
zufluB von oben. Die Warmeleitung innerhalb der
FlUssigkeit ist der Wasserabgabe von oberen Behél-
tern in untere, die Warmeaufnahme an der Flissig-
keitsunterseite ist dem Wasserverlust durch die
Abfluf’locher des Rades in das untere

Auffangbecken analog. Bei geringer Temperaturdif-
ferenz, entsprechend einem schwachen Regen, tut
sich hier wie dort nichts. Die FlUssigkeit bzw. das
Rad bleiben in Ruhe. Der Symmetriebruch, durch
den die Flussigkeit vom Zustand der Ruhe in den
der Bewegung Ubergeht, findet sich ebenfalls beim
Wasserrad wieder. Die sich infolgedessen einstel-
lende Drehbewegung des Wasserrades beschreibt
bisin Details das Verhalten einer Konvektionswalze.

Weitergehende Analogien gibt es allerdings nicht
mehr. Zwar geht auch die Bénard- Konvektion bei
genligender Erhéhung der Temperatur in Turbulenz
Uber, aber die Tiefenstruktur dieser Turbulenz hat
nichts mehr mit den wohlorganisierten chaotischen
Vorgangen zu tun, die wir beim Wasserrad beobach-
ten und die schliefdlich durch ein reguldres Schwin-
gen abgeschlossen werden. Das ist auch nicht ver-
wunderlich. Wahrend das Lorenz-Modell fir die Be-
schreibung der Bénard- Konvektion nur nadhe-
rungsweise gultig ist (in der Umgebung von R = 1),
gibt es - wie die obige Herleitung zeigt - eine solche
Einschrankung fur ein Wasserrad mit unendlich vie-
len Behdltern nicht. Da ein solches theoretisches
Wasserrad von einem mit nur wenigen Behéltern
nicht grundsétzlich verschieden ist, kbnnen wir er-
warten, dal? die Verhaltensmerkmale von Wasserrad
und L orenz-System qualitativ Ubereinstimmen.

Der Lorenz-Attraktor

Bei der Untersuchung des Lorenz-Systems werden
meist die Parameter s (=10) und b (= 8/3) konstant
gehalten und das Verhalten des Systems in Abhan-
gigkeit vom Parameter R untersucht. Der Vergleich
von Gl. (7) und (10) zeigt jedoch zunachst, dal3 beim
Wasserrad b = 1 gesetzt werden muf3. Interessiert
man sich fir das Verhalten des Wasserrades in Ab-
hangigkeit vom Wasserzuflul3 A bei lonstantem
Reibungskoeffizienten und unveranderten Ausflul3-
|6chern (h = const, k = const), dann kann man die
beiden anderen Parameter s und R nicht unabhangig
voneinander variieren:

S ~1,R~A bPs R:constgezizg
A @ 2hrg

Um beim Einsetzen des chaotischen Verhaltens ahn-
liche Parameterwerte zu haben wie Ublich, wahlen
wir



sR=240

Das entspricht einer Zeitkonstante fir den Wasse-
rausflul vont = 1/h = 3.5s.

Die qualitative Ubereinstimmung im chaotischen
Verhalten der beiden Systeme &3t sich nur schwer
durch einen direkten Vergleich der experimentellen
und theoretischen Daten erkennen. Hier kann allen-
fdls die "Form" der Geschwindigkeit- Zeit-
Diagramme entsprechende Hinweise geben. Charak-
teristischer sind indessen die sogenannten Attrak-
toren im Zustandsraum des Systems, die das End-
verhalten in einem bestimmten Parameterbereich rep-
résentieren.

Einfache Eigenschaften der Lorenz-
Gleichungen

Im folgenden werden deshalb die Ergebnisse, die
aus einer Auswertung der Lorenz-Gleichungen her-
vorgehen, im Zustandsraum dargestellt und denim
Anschauungsraum auftretenden Bewegungen m-
geordnet . Einige einfache Eigenschaften lassen sich
bereits analytisch ableiten:

Das Gleichungssystem spiegelt die Symmetrie
des zugrundeliegenden physikalischen Prob-
lems gegeniiber einer Anderung des Drehsinns:

(X,Y,Z2) ® (-X,-Y,Z) P
(X,Y,2) ® (-X,-Y,2)

Zustande, die sich nur im Rotationssinn unter-
scheiden, sind gleichwertig.

Das System hat folgende Fixpunkte:
FP1 = (0,0,0);

Fr23= (4/b(R- 1),4/b(R- 1),R- 1)

R < 1: Nur FP1 existiert und ist stabil:
Bel niedriger Temperaturdifferenz ist
die reine Warmeleitung bzw. der Ruhe-
zustand des Rades das einzig mo gliche
Endverhalten. Das Fluid bzw. das Rad
bleibt in Ruhe, bzw. kommt zur Ruhe,
wenn es anfanglich in Bewegung war.

1< R< s (s+b+3)/(s-b-1): FP1 ist in-
stabil, aber FP2 und FP3 sind stabil.
Wegen sR =const = cund b = 1 |&t
sich der zweite Teil der Bedingung um:
schreiben und numerisch auswerten:

R-cR+cR+¢>0 U0 R<195
oder R>1135

Anzumerken ist, dafd wegen der Kopplung zwischen
s und R im Unterschied zum Ublicherweise behan-
delten Fall des Lorenzmodells (s = 10, b= 3/8 ) bei

sehr hohen Wasserstrémen (R > 113.5) die Fixpunk-
te wieder stabil werden. Bei mittleren und sehr ho-
hen Wasserstromen nimmt das Rad eine stabile
Rollbewegung ein.

R> s(s+b+3)/(s-b-1) U 195 < R < 1135: Alle
drei Fixpunkte sind instabil. Bei grofRen Was-
serstromen unterhalb einer Grenze von R =
113.5 kann das Endverhalten nicht ohne weite-
res vorhergesagt werden (Chaos).

Simulation des Systemverhatens

Weitere Aussagen sind analytisch schwierig zu ge-
winnen. Das Differentialgleichungssystem wird da-
her numerisch integriert und das Systemverhalten
grafisch dargestellt. Bei der Darstellung der zeitli-
chen Entwicklung gentgt es, sich auf X(t)-
Diagramme zu beschréanken, weil der Koordinate X
die anschaulichste Bedeutung zukommt und auf3er-
dem die Y (t)- und Z(t)-Diagramme sehr ahnlich aus-
sehen. Der Zusammenhang zwischen den Koordina-
ten wird als Trajektorie im Zustandsraum dargestellt.
Um be diesen Diagrammen die Vorstellung der
raumlichen Lage der Orbits zu eleichtern, kénnen
Projektionen der Bahn auf die (X,Y)- und die (Y,2)-
Koordinatenebenen gepunktet mitgezeichnet wer-
den.

Da der Wéarmeleitungszustand bzw. Ruhezustand
den "natlrlichen" Zustand des Systems darstellt,
wahlen wir in der Regel Anfangsbedingungen in der
Nahe des Ursprungs, simulieren also den Beginn der
Bewegung.

Die Integration wird mit dem Runge-K utta-Verfahren
4. Ordnung durchgefihrt ( PROCED URE RungeK ut-
ta). Die Grafiken werden mit der Prozedur Plot3d a-
stellt.

Untersuchung verschiedener Parameterberei-
che:

Fir R = 0 ist der Ruhezustand (Ursprung des Zu-
standsraums) einziger Fixpunkt. Er bleibt es fir Wer-
tevon R < 1, d.h. fur niedrigen Zustrom (Abb. 3). R
= 1 entspricht dem ersten kritischen Wert des Zu-
laufs, bei dem aufgrund einer sogenannten Stimnt
gabelbifurkation [7] der Fixpunkt im Ursprung insta-
bil wird und zwei neue Fixpunkte entstehen, die a-
ner Drehung des Rades in der einen und anderen
Richtung entsprechen.

Solange der Zustrom einen Wert von R = 1.125 nicht
Uberschreitet, handelt es sich um stabile Knoten:
Die Trajektorien eines aus der Ruhe, also X = 0 ge-
starteten Rades laufen je nach dem Drehsinn direkt
auf einen der beiden Fixpunkte zu. Der Zustands-
raum zerféllt sauber in zwel symmetrische Teile. Be-
findet sich eine Trajektorie erst einmal in einem Be-
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Abb. 3 R=0.9: Das Wasser bzw. das Rad bleibt in Ruhe
oder kommt schnell zur Ruhe, wenn es anfénglich in Be-
wegung war. Die Projektionen der Bahn auf die (X,Y)-
und die (Y,Z)- Koordinatenebenen sind gepunktet mitge-
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Abb. 4 R = 1.2: Das System gerét langsam in Konvekti-
on, verladt also den Nullpunkt, um langsam gegen einen
der beiden anderen Fixpunkte zu streben. Die Projektio-
nen der Bahn auf (X,Y)- und (Y,Z)- Ebene sind mitge-
zeichnet.

reich, so bleibt sie auch darin, solange der Zulauf
nicht zu grof3 wird. Dies entspricht dem Beibehalten
der einmal eingeschlagenen Drehrichtung (Abb.4).
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Abb. 5 R = 2.0: Das System gerét schneller in Rotation.
Zusétzlich treten zundchst Schwankungen in der Stro-
mungsgeschwindigkeit um den nun héheren Endwert auf,
die aber schnell abklingen.

Uberschreitet der Zustrom den Wert R = 1.125, so
wird der Fixpunkt erst nach einigem Herumspiralen
erreicht. Dem entspricht eine anféngliche Ungleich-
formigkeit der Drehgeschwindigkeit, die sich aber
mit der Anngherung an den Fixpunkt wieder abbaut
(Abb. 5).

Diese Ungleichférmigkeit wird mit zunehmendem R
immer ausgeprégter (Abb.6), bis sie bei einem Wert
von R = 11.3 zu einer Richtungsumkehr fuhrt. Im Zu-
standsraum auf3ert sich dies Verhalten folgenderma-
Ren: Die zun&chst in den linken Bereich hineinlau-
fende Trajektorie [auft bei R = 11.3 asymptotisch in
den Ursprung zuriick (homokline Verbindung [7]).
Bei Vergrofierung von R durchbricht sie die bislang
"undurchdringbare Wand" zwischen den beiden
Teilen des Zustandsraumes und landet spiralférmig
im anderen Fixpunkt (Abb.7).

Dies entspricht der einmaligen Drehrichtungsénde-
rung des Rades, bevor es die stationdre Drehung er-
reicht.

Bel gleichem Parameterwert, also gleicher Tempera-
turdifferenz, aber anderen Anfangsbedingungen,
treten auch mehrfache Richtungsénderungen auf:

das Fluid verhélt sich anscheinend vollig regellos,
und es ist unmdglich vorherzusagen, welche Rotati-
onsrichtung sich schliefilich einstellen wird: R liegt
im vorchaotischen Parameterbereich.

Bei R = 15.9 erreicht das aus der Ruhe startende
System den Fixpunkt nicht mehr: Die Trgektorie
verbindet nun asymptotisch den Ursprung mit &-
nem instabilen Grenzzyklus (heterocline Verbindung
[7]) und pendelt bei groReren R-Werten unent-



schlossen zwischen positiven und negativen X
Werten hin und her. Wir kénnen rein qualitativ nicht
beurteilen, um was fur eine Bewegungsfigur es sich
dabei handelt. Die Untersuchung des Verhaltensim
Zustandsraum gibt uns jedoch eine eindeutige
Antwort: Wie aus heiterem Himmel, in Form einer
sogenannten Blue-Sky-Katastrophe [7], wird das
Endverhalten unseres Rades vom Chaos befallen (im

-2.4 t [s]

Abb. 8 R = 7.0: Die Schwankungen nach Einsetzen der
Konvektion werden heftiger und klingen langsamer ab.
Immer noch aber bleibt die einmal eingeschlagene Stro-
mungsrichtung, mit noch groRRerer Geschwindigkeit, erhal-
ten.

Einschwingverhalten kindigt sich dieser Um
schwung allerdings bereits an: man vergleiche die
Abbildungen 8 und 9). Noch aber kann das System
von geeigneten Startpunkten aus die das geordnete
Enderhalten reprasenti erenden Fixpunkte erreichen.

Mit zunehmendem R ziehen sich die beiden instabi-
len Grenzzyklen auf die zugehdrigen Fixpunkte -
sammen und erschweren deren Erreichen immer
mehr. Bei R = 19.5 schliefdich falen die Zyklen mit
den Fixpunkten zusammen (Hopf-Bifurkation [7] ).
Dieser Zustromwert entspricht dem endgultigen

Abschied von der reguléren Drehung, die nun von
keinem Startwerte aus mehr erreicht werden kann. In
dem Interval 15.9 < R < 19.5 koexistieren jedoch bei-
de Typen von Grenzverhalten: Das eingeschwunge-
ne System erweist sich als relativ unempfindlich ge-

11,1 4
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Abb. 7 R = 15.0: Die Schwankung beim Verlassen des
Ursprunges ist so heftig, dal? sich die Rotationsrichtung
nach einmaligem Ausschlag umkehrt. Die Konvergenz

genlber stetigen Verdnderungen von R: Erst bei

Uberschreiten der Intervallgrenze kippt das System
aus dem chaotischen Verhalten in die regulére Dre-
hung oder umgekehrt (Hysterese).

Der Beginn der chaotischen Bewegung bedeutet fiir
Wasserrad, dal’ damit die Vorhersagbarkeit der Be-
wegungen im einzelnen nicht mehr gegeben ist. Be-
trachtet man das chaotische Verhalten im Zustands-
raum, so erkennt man, daf? der Verlauf einzelner Tra-
jektorien im Detail nicht vorhersagbar ist. Globa ge-
sehen bleiben die Trajektorien jedoch auf ein be-
stimmtes Gebiet beschrénkt, das sich durch den so-
genannten Lorenz- Attraktor charakterisieren 1&f3t
(Abb.9).



Abb. 9 R = 24.0: Beide Fixpunkte auf}erhalb des Ur-
sprunges sind instabil. Das System kann ihnen zwar na-
hekommen. Jedoch schaukeln sich die Schwankungen jetzt
immer so weit auf, dal’3 eine Richtungsumkehr efolgt:
Weder konvergiert die Trajektorie gegen einen Fixpunkt,
noch schliefdt se sich. Es ist unmdglich, die Bahn detail-
liert vorherzusagen: Die Bewegung ist chaotisch. (Wegen
der Ubersichtlichkeit ist diesmal nur die Projektion auf die
(X,Y)-Ebene mitgezeichnet.)
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Abb. 10: Bei R = 100 treten periodische Schwankungen
mit Richtungsdnderungen auf: das System schwingt peri-
odisch: Trajektorie mit (X,Y)-Projektion.

8.5

Abb. 11: Periodenverdopplung bel Verkleinerung von R
aus dem nachchaotischen Bereich (R = 91): Trajektorie mt
(X,Y)-Projektion

Bei der Betrachtung dieses schonen filigranen Ge-
bildes kann man Regelméliigkeiten erkennen, die
dem im starken Regen chaotisch tanzenden Rad di-
rekt wohl schwerlich anzusehen sind. Ein chaoti-
scher Attraktor ist somit eine Art Rontgenaufnahme
eines Systems, das wir ansonsten in Form von Fo-
tos oder durch direkte Beobachtung nur "von au-

Abb. 8: Chaotischer Einschwingvorgang im vorchaoti-
schen Parameterbereich (R = 15.0)



Ben" kennen. Sicherlich ist ein derartiger Einblick in
das Innenleben eines Wasserrades nicht gerade
sehr aufregend. Fir das Verstandnis komplexer Sys-
teme, fur die das Wasserrad nur einen anschauli-
chen Zugang darstellt, kann sich der Roéntgenblick
auf chaotische Attraktoren jedoch lohnen. Jeden-
falls zeichnen sich Anwendungen und Nutzen der
Chaosforschung in vielen Gebieten ab.

Die weitere Erhéhung von R bringt zunéchst nichts
Aufregendes. Erst bei dem sehr hohen Wert von R =
100 schliefdt sich hinter dem choatischen Bereich
wieder ein reguldres Verhalten an: das System
schwingt periodisch (Abb.10). In vielen Verdffentli-
chungen Uber das Lorenz-System wird dieses Ver-
halten gar nicht mehr diskutiert, weil das System in
diesem Bereich als Modell der Bénard- Konvektion
maldlos Uberstrapaziert wird. Untersucht man, wie
diese hoch geordnete Bewegung aus dem Chaos
entsteht, findet man nach Verkleinerung von R bei R
= 91 eine Schwingung mit zwei unterschiedlichen
sich abwechselnden Anmplituden(Abb.11). Die Bahn
im Zustandsraum schlief3t sich erst nach zwei Um
laufen (Periodenverdopplung).

i Yorturbulenter Bereich

)

! Ursprungsattraktor | 5955557
EREETTEd | Imei Punktattraktoren H

i Iwel Punktattraktoren i
("Spiralen™)

Hysterese

Chagtischer Bereich

! Feigenbaum-Szenariun

Abb. 12: Ubersicht tber das Verhalten des Lorenzsystems

im gesamten Bereich des Parameters R (bei R s = 240).

Bei weiterer Verkleinerung von R versinkt das Sys-
tem nach weiteren Periodenverdopplungen wieder
im Chaos (Feigenbaum-Szenario ) fur den Ubergang
von regulérem zu chaotischem Verhalten).

( Es sei bereits hier angemerkt, dal3 diese Feinheiten
sich alerdings an unserer groben Realisierung des
Wasserrads nicht reproduzieren lassen. Sie versin-
ken sozusagen im Rauschen - und zwar nicht nur im
Rauschen des herabstromendes Wassers.)

Bei weiterer Variation des Parameters R erweist sich
das Verhalten des Lorenz- Systems al's noch wesent-
lich vielfaltiger. Man kann deshalb daran fast ale
Phanomene demonstrieren und untersuchen, die fur
chaotische Systeme typisch sind, z.B. lokale (Hopf-
Bifurkation) und globale (homokline und heterokline
Verbindung) Bifurkationen und verschiedene Uber-
gange ins Chaos (neben dem FeigenbaumSzenario
und der Blue-Sky-Katastrophe z.B. den intermittie-
renden Ubergang). Die Details solcher Ubergange
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werden z.B. in [4] und [7] ausfihrlich dargestellt. Da
sie jedoch am Wasserrad praktisch nicht mehr be-
obachtbar sind, beschranken wir uns hier auf die
Ubersicht in Abb.12).

Experimentelle Ergebni sse

Aufbau und Konstruktion des Was-
serrades

Bel einem normalen Wasserrad sind die schaufelar-
tigen Behalter fest am Radkranz fixiert. I|hre Offnung
zeigt daher auf der einen Seite nach oben und auf
der anderen Seite nach unten. Diese systembedingte
Unsymmetrie hat eine eindeutige Drehrichtung des
Rades zur Folge, wenn es einem Wassarstrom aus-
gesetzt ist.

Werden die Behélter jedoch, wie Gondeln eines Rie-
senrades drehbar gelagert, so angebracht, dal3 ihre
Offnung immer nach oben zeigt, und sorgt man au-
Rerdem dafir, dal? das Wasser durch eine kleine
Offnung im Boden der Behalter wieder aflief}t, so
dreht sich das Rad in der einen oder anderen Rich-
tung. Darlberhinaus kénnen neben der einfachen
Drehung weitere, teilweise sehr komplizierte Bewe-
gungsfiguren auftreten, die man der einfachen Was-
serradkonstruktion von vornherein nicht zutraut.
Erst eine nahere Betrachtung der am Rad auftreten-
den physikalischen Vorgange vermag diesen Sach-
verhalt aufzukléren .

Das Wasserrad |afit sich beispielsweise durch das
Laufrad eines Fahrrads (A = 0,56m) realisieren. Die-
ses wird so eingespannt, daf? die Drehachse parald
zum Erdboden steht. An der Felge werden z.B. zwolf
Behalter (Hohe: 53mm; Durchmesser der kreisférmi-
gen Grundflache: 105mm) befestigt. Hierzu wird die
Felge des Rades in gleichen Abstanden angebohrt.
Die Bohrungen dienen als Halterungen fir Strickna-
deln, an denen die Behélter leicht drehbar befestigt
sind. Die Behélter sind mit einem Leck versehen. Da
das Systemverhalten empfindlich von der GroRe
dieser Offnungen abhéngt, kommt es mal3geblich
auf die Wahl des Offnungsdurchmessers an. Fiir die
hier dargestellte Versuchsserie wurde ein Offnungs-
durchmesser von 3.5 mm gewahlt. Rekonstruktion
von Attraktoren

Die durch den Luftwiderstand und die Achsreibung
gegebene Dampfung erweist sich als zu klein fir die
Versuchsdurchfiihrung. Deshalb wird ein Faden um
die Radnabe gelegt, dessen Spannung mit Hilfe von
Gewichten variiert werden kann. Kontroll- und Ord-
nungsparameter: Welche der verschiedenen Bewe-
gungsfiguren auftritt, wird durch die jeweilige Ein-
stellung der Parameter bestimmt, also jener von au-
Ren kontrollierbaren Grof3en, die nicht schon durch



die Konstruktion des Systems selbst festgelegt
sind. Die Parameter unseres Wasserrads sind der
Zustrom des Wassers, der den Abfluf3 bestimmende
Querschnitt der Locher und die Reibung. Da von
diesen Parametern der Zuflufl3 am einfachsten zu va-
riieren ist, benutzen wir ihn als Kontrollparameter
und legen sowohl die Reibung als auch die Grolze
der Abflul3locher fest. Die sich jeweilseinstellenden
Bewegungsfiguren werden durch sogenannten
Ordnungs- oder Gestaltparameter, die Winkelge-
schwindigkeit des Wasserrades, erfaldt. Zur Bestim:
mung der Winkelgeschwindigkeit w wird die Bewe-
gung des Rades durch einen Bewegungsmef3wand-
ler in eine Spannung umgewandelt, die je nach Wahl
dem zuriickgelegten Winkelintervall, der Geschwin-
digkeit oder der Beschleunigung proportional ist
(vgl. [8]). Die vom Mef3wandler erzeugten Spannun-
gen missen dann von einem Analog-Digital-
Wandler in digitale Sgnale umgesetzt werden, die
mit einem Computer weiter verarbeitet und gra-
phisch dargestellt werden konnen.

Rekonstruktion von Attraktoren

Die Bewegungen des Wasserrades werden im Zu-
standsraum dargestellt, der durch die drei generali-
sierten Koordinaten des Lorenz-Systems aufge-
spannt wird. Auf einfache Weise |&l3t sich allerdings
nur die Winkelgeschwindigkeit w experimentell e-
fassen. Mit Hilfe einesin [9] und [10] beschriebenen
Verfahrens gelingt es jedoch, den Attraktor des Sy s-
tems aus der Mefreihe einer Variablen, in unserem
Fall also der Winkelgeschwindigkeit, zu rekonstruie-
ren.

Durch eine Messung sei eine Folge %, %, ... von
Werten der Variablen x bekannt. Mittels der Folge x

kann dann folgendermaBBen ein Orbit x, im n-
dimensionalen Zustandsraum erstellt werden:

)(i :(xiy)Q+ma)Q+2mu . -1Xi+nm)

l.a. muid bei dieser Vektorbildung jedoch darauf ge-
achtet werden, dal3 benachbarte Komponenten x|
und X . n in der Mef3reihe weder einen zu grof3en
noch einen zu kleinen zeitlichen Abstand voneinan-
der haben durfen. Im ersten Fall korrellieren die Wer-
te bei chaotischen Bewegungen nicht mehr mitein-
ander, im zweiten wird der Attraktor auf der Diago-
nalen "zusammengequetscht”. Die richtige Wahl
von m erhét man in der Praxis durch Versuch und
Irrtum.

Auf der Grundlage dieses Konstruktionsprinzips
haben wir die im weiteren auftretenden Attraktoren
erstellt; und zwar fir das LorenzSystem aus be-
rechneten X-Werten, fur das Wasserrad aus gemes-
senen Werten fur die Winkelgeschwindigkeit.
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Abb. 13: Das Wasserrad kommt zur Ruhe (R = 8 cm®/s).
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Abb. 14: Beginn einer stationdren Drehbewegung beim
Wasserrad (R= 20cn/s).

Ergebnisse und Vergleich mit der
Computersimulation

Ein wesentliches Ziel der experimentellen Untersu-
chung besteht darin zu demonstrieren, daf3 die Lo-
renz-Gleichungen das Verhalten des Wasserrades zu
beschreiben vermogen. Dabei zeigt sich insbeson-
dere, dal3 das Rad in Abhangigkeit vom Zufluf3 ent-
weder zur Ruhe kommt, sich stationér dreht, chaoti-
sche Drehbewegungen ausfiihrt oder regelmaliig
schwingt.

Im folgenden werden Mef3ergebnisse zunéchst in
Geschwindigkeits-Zeit-Diagrammen dargestellt, in
denen positive Werte einer Drehung des Rades im
Uhrzeigersinn entsprechen.

a) Das System kommt zur Ruhe: Wenn man den
Wasserzulauf R klein genug wéhlt (bis R » 15 cn/s)
und das Rad manuell in Bewegung setzt, so kommt
diese Bewegung schnell zur Ruhe. Die Analogie
zwischen beiden Systemen wird durch Vergleich der
Abbildungen 3 und 14 deutlich. Leider ist den
Mel3werten ein Rauschen Uberlagert, das auf ein
ungleichméfdiges Angreifen der Reibung, insbeson-
dere aber auf eine schlechte Digitalisierung der
Mef3werte zurtickgef ihrt werden kann.



b) Gleichférmige Drehbewegungen als stabile Zu-
stande : Bei einem Wasserzulauf von R » 20 cn/s
ist der Ruhezustand nicht mehr stabil. Das Rad be-
ginnt, sich in einer durch zuféllige Schwankungen
bestimmten Richtung zu drehen, und nimmt unter
abklingenden Schwankungen eine feste Drehge-
schwindigkeit an (vgl. Abb.14 und 5).

Wie beim Lorenz-System stellt sich bei Erhéhung
des Zulaufs unter starkeren Schwankungen eine
grofRere Endgeschwindigkeit ein.

¢) Vorturbulenz Stellt man den Wasserzulauf auf R
» 32 cn/s ein, dann beginnt das Rad sofort, sich
heftig zu drehen. Es dreht sich jedoch zundchst mit
schwankender Winkelgeschwindigkeit und wechselt
haufiger seine Drehrichtung, bevor es sich auf eine
stabile stationdre Drehbewegung einpendelt. Der
Drehsinn dieser sich letztlich einstellenden Bewe-
gung kann nicht vorhergesagt werden (vgl. Abb. 8
und 15).

In den unter a) und b) beschriebenen Kontrollpara-
meterbereichen war das den MeBwerten Uberlagerte
Rauschen nahezu von der gleichen Gréf3enordnung
wie das Uberstrichene Geschwindigkeitsintervall. B-
ne Attraktorrekonstruktion nach der oben beschrie-

benen Methode fihrte deshalb zu keinen befriedi-
genden Ergebnissen. Im vorturbulenten Bereich
wird jedoch ein doppelt so grofles Geschwindig-
keitsintervall (berstrichen, so daf3 die Rekonstrukti-
on brauchbare Resultate liefern sollte.

Die Diagramme in Abb. 16 zeigen Trgektorien im
Zustandsraum des Lorenz- Systems bzw. des Expe-
riments im vorchaotischen Bereich. Beide Trajekto-
rien wurden aus einer Folge von X-Werten nach
dem oben beschriebenen Verfahren rekonstruiert.
Beim LorenzSystem wurden die X-Werte im Ab-
stand Dt = 0.02s ( = Integrationsschrittweite ) aufge-
nommen und fir die Vektorbildung m = 5 gewahit.
Die entsprechenden Werte fir das Wasserrad be-
trugen Dt » 0.05 sund m = 10.

% [Grad/s]
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Abb. 17: Chaotische Drehbewegungen des Wasserrades
(R=38cms)

Rechte Maustaste driicken!
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Abb. 16: Aus einer Folge von X-Werten rekonstruierte
Orbitsim Zustandsraum &) Lorenz-System ( R = 15.0), b)
Wasserrad (R = 32 cm®/s)

Abb. 18 Aus einer Folge von X-Werten rekonstruierte
Attraktoren in Theorie und Experiment. & Lorenz-
System (R = 24), b) Wasserrad (R = 40 cm®/s)



Die Trajektorien des Einschwingverhaltens spiegeln
bereits die typische Form des Lorenz-Attraktors
wieder: Die Transienten bewegen sich zundchst in
Auswartsspiralen um den einen Fixpunkt, ehe sie
sich dann dem anderen zuwenden. Erst wenn sie bei
einem dieser Wechsel einem der Fixpunkte nahe ge-
nug kommen, werden sie von diesem angezogen
und spiralen auf ihn zu.

d) Chaos Oberhalb eines gewissen kritischen Wer-
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Abb. 19: Entwicklung chaotischer Orbits im Experiment
bei Steigerung des Wasserzulaufs

tes fur den WasserzufluR stellt sich keine stationére
Drehbewegung mehr ein. Das Rad dreht sich mit
schwankender Geschwindigkeit und wechselt in un-
vorhersagbarer Weise den Drehsinn. Die Frage je-
doch, ob dieses Chaos dem von den Lorenz
Gleichungen erzeugten entspricht, 183t sich durch
Vergleich der Abbildungen 9 und 17 nicht befriedi-
gend beantworten, auch wenn die Gemeinsarkeiten
der dargestellten Bewegungen auf der Hand liegen.

Hier hilft wiederum nur die Rekonstruktion der zu
den X-t-Diagrammen gehdrigen Attraktoren. Der
Vergleich beider Phasendiagramme (Abb.18) macht
die gute Ubereinstimmung zwischen Theorie und
Experiment deutlich: Die Trajektorien winden sich in
Auswartsspiralen um den jeweiligen Fixpunkt, bis
sie schlieffdlich zum anderen Fixpunkt tUberwechseln,
wo das gleiche Szenarium erneut beobachtet werden
kann.

Eine zusitzliche Ubereinstimmung beider Systeme
kann in der Entwicklung chaotischer Trgjektorien bei
weiterer Steigerung der jeweiligen Kontrollparameter

entdeckt werden. FUr das Lorenz-System existiert
namlich fir festes R eine Obergrenze, die festlegt,
wie oft ein Orbit hochstens um jeweils énen Fix
punkt rotieren kann. Diese Obergrenze nimmt nach
dem Auftreten des chaotischen Attraktors im theo-
retischen System zunéchst kontinuierlich mit grofer
werdendem Kontrollparameter ab (vgl. [6], [4], [7]).
Im X-t-Diagramm macht sich dieses dadurch ke-

Abb. 20: Geschwindigkeits-Zeit-Diagramm und rekon-
struierter Attraktor nachchaotischer regulérer Schwingun-
gen des Wasserrades ( R= 40 cm®/s)

merkbar, dal3 die mittlere Zahl sowie das Maximum
der Zahl der Schwingungen oberhalb bzw. unterhalb
der tAchse geringer wird. Die %t-Diagramme in
Abb. 19 sind ein Indiz dafUr, daf3 sich diese Entwick-
lung auch im Experiment abzeichnet.

€) Regulare Schwingungen: Aus der Simulation des
LorenzModells sind bei sehr hohen Werten von R
reguldre Schwingungen zu erwarten. Wir empfinden
es daher als eine Art krénenden Abschlu3, daf3 un-
ser Wasserrad diese Erwartung erfiillt, als gabe es
nichts Selbstversténdlicheres auf der Welt. Da die
Bewegungsgleichung - wie wir gesehen haben -
nach einigen Umformungen direkt auf die Lorenz
Gleichungen fuhrte, war dies aber auch zu erwarten.
Die Schwingung bleibt solange stabil, bis das Was-
ser Uber den Rand der Behalter flief3t, und das Sys-
tem damit den Glltigkeitsbereich des Modells ver-
|&R’t (Abb. 20).



SchluRbemerkungen

Das beschriebene Wasserrad ist zum einen ein ein-
fach herstellbares Gerét , an dem sich wesentliche
Eigenschaften chaotischer Systeme experimentell
untersuchen lassen. Es ein anschauliches Modell
fir das berthmte Lorenz-System dar: Die Bewe-
gungsgleichungen des Wasserrads lassen sich
namlich mit nur geringfligigen ldealisierungen auf
die LorenzGleichungen reduzieren. Es erfillt daher
die Lorenz Gleichungen wesentlich besser als die
Bénard-Konvektion, die nur in einem sehr kleinen
Parameterbereich zutreffend beschrieben wird. Da
das Lorenz-System inzwischen als eine Art Paradig-
ma zur Einfihrung in den Bereich chaotischer Sys-
teme angesehen werden mul, stellt das Wassarad
eine Moglichkeit dar, die wesentlichen aus der Simu-
lation hervorgehenden V erhaltensmerkmale mit kon-
kreten Phanomenen zu verknipfen und auf diese
Weise das L orenz-System mit Leben zu erfiillen.
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