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Chaos beim Wasserrad- 
ein einfaches mechanisches Modell für das Lorenzsystem 
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Beschreibung des Systems  

Das hier untersuchte Wasserrad ist ein dissipatives, 
nichtlineares System, das durch einen Antrieb in pe-
riodische und nichtperiodische Bewegungen ver-
setzt werden kann. Im Unterschied zu den vorher 
beschriebenen Systemen ist der Antrieb selbst je-
doch nicht periodisch, dem System kann daher von 
außen kein Zeitrhythmus aufgeprägt werden. Das 
Wasserrad muß seinen Rhythmus selbst finden, in-
dem es die erzwungenen Bewegungen mit den Sys-
temparametern und dem Energieangebot in Einklang 
bringt.. Man nennt ein solches System autonom.  

Das chaotische Wasserrad ist eine experimentell 

handhabbare Realisation des Lorenz-Systems, das 
nicht nur das erste, sondern auch das am besten un-
tersuchte Modell eines chaotischen Systems dar-
stellt. Edward Lorenz leitete dieses Modell zur Be-
schreibung des meteorologischen Phänomens ab, 
daß Schichten von Flüssigkeiten und Gasen spon-
tan regelmäßige Konvektionsmuster ausbilden kön-
nen, wenn die Temperaturdifferenz zwischen Ober- 
und Unterseite zwischen kritischen Werten liegt  

Die Bewegungsgleichungen  

Die Bewegung des Rades, ausgedrückt durch die 
zeitliche Änderung des Drehimpulses, wird zum ei-
nen durch das Drehmoment bestimmt, das der Was-
serinhalt m(ϕ) eines an der Felge (Radius r) ange-
brachten Behälters an der Stelle ϕ (gegen die Hori-
zontale gemessen) ausübt. Dem wirkt zum anderen 
ein Drehmoment aufgrund der als proportional zur 
Winkelgeschwindigkeit ω unterstellten Reibung 
entgegen. Da für den Antrieb die gesamte auf die 
einzelnen Behälter verteilte Wassermasse aus-
schlaggebend ist, denken wir uns die Wassermasse 
als kontinuierlich über alle Winkel ϕ verteilt. Diese 
Vereinfachung kommt der Annahme gleich, das Rad 
besitze unendlich viele Behälter mit unendlich vielen 
Abflüssen. Unter Vernachlässigung der Masse des 
Rades erhält man dann:  
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Trägheit  Antriebskraft  Reibung  

Dabei ist k eine Reibungskonstante und g die Erd-
beschleunigung. Der Strich über den Symbolen be-
zeichnet die Integration über das gesamte Winkelin-
tervall.  

Die zeitliche Änderung der Massenverteilung wird 
durch die Differenz aus Massengewinn und Mas-
senverlust der Behälter bestimmt. Der Verlust kann  

als proportional zum Wasserinhalt m(ϕ) der Behälter 
angesetzt werden. Die Wasseraufnahme nehmen wir 
als proportional zur Höhe der Gondeln bezüglich des 
unteren Radrandes an. Diese Näherung ist ziemlich 
grob, wenn das Wasser nur in der Mitte zugeführt 
wird, aber besser, wenn das Rad in einem gleichmä-
ßigen Regen steht.  
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 Massenänderung 

Abb: 1: Schematische Darstellung des Wasserrades  
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Gewinn        Verlust  

Dabei sind A und h positive Konstanten. Integrati-
on von Gleichung (2) über den Vollwinkel  
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zeigt, daß der gesamte Wasserzufluß konstant 
(=2πAr) ist und daß m  asymptotisch den Grenzwert 
2πAr/h annimmt. Nimmt man an, daß sich dieser 
Grenzwert bereits eingestellt hat, kann man Glei-
chung (1) in die Form bringen:  

)cos(
22 23 ϕ
π

ω
π

ω
m

Ar
gh

Ar
kh

dt
d







−−=   (4) 

Mit Hilfe von Gleichung (2) erhält man  
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und ebenso 
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Mit der linearen Koordinatentransformation  
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erhält man folgenden Satz von Differentialgleichun-
gen,  
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Dabei bedeutet ⋅ die Differentiation nach der trans-
formierten Zeit t'.  

Dieses Differentialgleichungssystem stellt einen 
Spezialfall des sogenannten Lorenz-Systems dar, 
welches eines der am meisten untersuchten chaoti-
schen Systeme ist. Nach einer kurzen Herleitung der 
Lorenz-Gleichungen werden wir mit ihrer Hilfe die 
Verhaltensmöglichkeiten des Wasserrades simulie-

ren und anschließend mit den experimentellen Er-
gebnissen vergleichen. 

Bewegungsfiguren des Wasserrads  

Um einen systematischen Überblick über die Ve rhal-
tensmöglichkeiten des Wasserrades zu erlangen, 
muß der Kontrollparameter durch den für das Sys-
tem relevanten Wertebereich "gefahren" werden. 
Dabei ist es zweckmäßig das Rad aus der Ruhe zu 
starten. Mit zunehmendem Wasserzufluß stellen 
sich nacheinander die folgenden Bewegungsfiguren 
ein:  

Ruhe: Bei sehr kleinem Zufluß rinnt das Wasser 
durch die Behälter hindurch, ohne daß sich an der 
Ruhestellung des Rades etwas ändert. Selbst wenn 
man dem Rad einen kurzen Anstoß gibt, kommt es 
sofort wieder zur Ruhe. Nimmt  der Zufluß zu, so 
kann das Wasser durch die relativ kleine Öffnung in 
den Behältern nicht so schnell wieder abfließen, und 
die Wasserhöhe steigt etwas an, zuerst in den obe-
ren Behältern. Solange die dadurch bedingte Kopf-
lastigkeit des Systems durch die Reibung ausgegli-
chen wird, bleibt das Rad in Ruhe bzw. kommt zur 
Ruhe.  

Drehung: Erst wenn der Zufluß einen ersten kriti-
schen Wert überschreitet, führt die Kopflastigkeit zu 
einer labilen Situation: Kleinste zufällige Schwan-
kungen in der Füllhöhe der Behälter genügen, um 
die Symmetrie des ruhenden Rades zu brechen. Es 
beginnt, sich in die eine oder andere Richtung zu 
drehen. Und wenn es erst einmalrotiert, dann bleibt 
es auch dabei: Der die Drehrichtung "auswürfelnde" 
Zufall wird gewissermaßen konserviert.  

Dreht sich das Rad beispielsweise nach links, dann 
bewegen sich gerade die stärker gefüllten Behälter 
auf der linken Seite des Rades herunter und die we-
niger gefüllten, weil zumindest teilweise wieder leer-
gelaufenen, Behälter auf der rechten Seite herauf. 
Dementsprechend ist aufgrund der größeren Masse 
auf der linken Radseite das linksdrehende Moment 
stets größer als das rechtsdrehende Moment. Folg-
lich stellt sich (beim hier vorausgesetzten relativ ge-
ringen Zustrom) eine stabile Drehbewegung ein. 
Kleine Schwankungen in der Wasserhöhe der Be-
hälter und damit im Verhältnis der Drehmomente zu-
einander werden stets wieder abgebaut, weil mit dem 
Wasserstand auch der Abfluß zunimmt.  

Drehung mit Hindernissen: Wird der Wasserzulauf 
weiter hochgeregelt, so stellt sich das stationäre 
Gleichgewicht zwischen Zufluß und Abfluß bei ei-
nem entsprechend höheren Wasserstand in den Be-
hältern ein. Solange dabei ein gewisser zweiter kriti-
scher Wert nicht überschritten wird (siehe unten), 
landet das Rad zwar stets wieder in einer stationä-
ren, nun aber schnelleren, Drehbewegung - aller-
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dings mit zunehmendem Zufluß immer unwilliger: 
Die Bewegung wird zu Beginn, als Folge eines 
Wechsels zwischen starken Beschleunigungen und 
Abbremsungen, nicht nur immer ungleichförmiger, 
sondern braucht auch immer mehr Zeit, um die Figur 
der stationären Drehung zu erreichen.  

Wodurch wird diese Ungleichförmigkeit bedingt? 
Mit wachsendem Zustrom nimmt das aus der Ruhe 
startende System zunächst viel Wasser auf, wo-
durch das linksdrehende Moment und infolgedes-
sen die Drehgeschwindigkeit eine starke Zunahme 
erfahren. Dadurch geraten zum einen die Behälter 
weiter in den rechten Bereich des Rades, bevor sie 
wesentlich an Wasser eingebüßt haben. Zum ande-
ren verringert sich die Verweilzeit der Behälter im 
Zustrombereich, wodurch die Wasseraufnahme ver-
ringert wird. Ersteres führt zu einer Zunahme des 
rechtsdrehenden, letzteres zu einer Abnahme des 
linksdrehenden Moments, beides zusammen also zu 
einer Abbremsung des Rades. Die unmittelbare Fol-
ge davon ist aber ein erneutes Anwachsen der 
Drehgeschwindigkeit, wenn auch auf einen kleine-
ren Wert als beim vorhergehenden Umlauf.  

Drehung mit Richtungswechsel: Vergrößert man den 
Zulauf weiter, so kommt es zur ersten Richtungsum-
kehr des Rades: Die stark angefüllten Behälter des 
linken Radbereichs sausen dann derart schnell in 
den rechten Bereich, daß im linken Bereich nicht 
rechtzeitig ein genügendes Gegengewicht geschaf-
fen werden kann, um die schweren Behälter über 
den Umkehrpunkt zu befördern. Aber nach dem be-
währten Prinzip "einmal ist keinmal" mündet auch 
diesmal die Bewegung in eine stationäre Drehung 
ein, allerdings mit umg ekehrtem Drehsinn.  

Chaos: Erst wenn die Zuflußrate einen dritten kriti-
schen Wert überschreitet, leitet die Richtungsum-
kehr eine neue Bewegungsfigur ein. Weder bleibt es 
bei einer einmaligen Änderung der Drehrichtung, 
noch kommt es auch nach längerer Zeit wieder zu 
einer stationären Drehung.  

Naiverweise würde man erwarten, daß sich das Sys-
tem nach diesem Symmetriebruch auf eine gleich-
förmige Schwingung einpendelt, bei der sich die 
Richtungsumkehr periodisch wiederholt. Dies ist 
vorerst jedoch nicht der Fall. Das Rad nimmt statt-
dessen eine Bewegungsfigur ein, die man nicht ein-
fach beschreiben kann, weil auch nach längerer Zeit, 
also im Endzustand, völlig unregelmäßige Wechsel 
zwischen ungleichförmigen Schwingungen und 
Drehungen auftreten, und die daher mit einem Wort 
als chaotisch zu bezeichnen ist.  

Günstige Bedingungen für Chaos: Qualitativ kann 
man nicht mehr veranschaulichen, warum sich keine 
regelmäßige Bewegungsfigur mit Richtungswech-
seln, sondern eine chaotische einstellt. Wir können 

uns aber plausibel machen, warum gerade nach die-
sem Symmetriebruch Chaos auftreten kann.  

Wesentlich für das Entstehen von Chaos ist das 
Vorhandensein von sensitiven Punkten [3], an de-
nen kleinste Störungen qualitative Verhaltensände-
rungen bewirken können. Im vorliegenden Fall ist 
der "Überschlagspunkt" des Rades sensitiv. An ihm 
wird jeder Behälter vorbeigeführt und dahingehend 
überprüft, ob er passieren kann oder "zurückgewie-
sen" werden muß. Im regulären Parameterbereich ist 
die Überprüfung eine reine Formalität, denn die je-
weilige Bewegungsfigur ist so eindeutig determi-
niert, daß z.B. kleine Unterschiede in der Masse, die 
die Behälter durch Zufallsschwankungen während 
der Rundreise stets annehmen, keine Rolle spielen. 
Demgegenüber sind in gewissen Parameterberei-
chen selbst kleinste Schwankungen entscheidend 
dafür, ob es zum Überschlag oder zur Bewegungs-
umkehr kommt: Dadurch wird der Bewegungsablauf 
gewissermaßen durch den den Schwankungen an-
haftenden Zufall bestimmt, was nur zu einem chaoti-
schen, unvorhersehbaren Ve rhalten führen kann.  

Schwingung: Steigert man den Wasserzulauf noch 
weiter, so wird schließlich doch noch alles wieder 
regulär: Die Bewegung endet in einer stabilen regu-
lären Schwingung.  

Dynamik des Wasserrads 

Ob der soeben beschriebene Symmetriebruch, zu 
dem sich die Drehung aufgrund der Zunahme des 
Wasserzuflusses aufgeschaukelt hat, den Beginn 
einer regulären oder einer chaotischen Bewegungs-
figur einläutet, kann- wie gesagt- durch rein qualita-
tive Überlegungen im Anschauungsraum nicht mehr 
ausgemacht werden. Die Beantwortung der Frage 
setzt eine quantitative Analyse des Ve rhaltens des 
Wasserrades voraus.  

Genau genommen - und das ist einer der zentralen 
Punkte der Chaosforschung - wird ein sehr viel ge-
ringerer Anspruch erhoben: Es bleibt bei einer quali-
tativen Betrachtung. Allerdings findet sie nicht im 
Anschauungsraum sondern im Zustandsraum (vgl. 
z.B.[3]) statt. Das setzt zwar die quantitative Lösung 
der Bewegungsgleichung des Wasserrads voraus, 
aber es genügt, daß die Bewegungsgleichungen nur 
die wesentlichen Merkmale des Systems erfassen. 
Auf Details kommt es bei der Modellierung nicht an; 
das Problem kann durch Näherungen stark verein-
facht werden. Im vorliegenden Fall ist die Situation 
deshalb besonders einfach, weil die Bewegungs-
gleichungen- wie oben gezeigt- auf die Lorenz-
Gleichungen zurückgeführt werden können, deren 
Dynamik in den vergangenen Jahren ausführlich 
diskutiert worden ist.  
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Das Lorenz-System  

Der Meteorologe E. N. Lorenz [5] beschäftigte sich 
1963 im Zusammenhang mit dem Problem der Wet-
tervorhersage mit den Wärmetransportvorgängen in 
der Atmosphäre, die dadurch angeregt werden, daß 
die Luft am Erdboden erwärmt wird, oben aber in 
Verbindung steht mit einem Wärmereservoir niedri-
ger Temperatur, dem Weltraum.  

Wie man aus Beobachtungen von Wolkenbildun-
gen weiß, treten dabei sowohl unregelmäßige, chao-
tische, als auch hochgeordnete Transportphänome-
ne (Bénard-Konvektion) auf. Letztere zeigen sich 
z.B. eindrucksvoll in den sogenannten Wolkenstra-
ßen, die eine über viele Kilometer fast translation-
sinvariante Struktur darstellen.  

Das Phänomen wird modelliert durch die Schicht ei-
nes Fluids mit der Dicke h, die der Schwerkraft un-
terliegt und außerdem oben und unten den konstan-
ten Temperaturen T1 und T0 = T1 + ∆T > T1 ausge-
setzt ist.  

Setzt man die Konvektionsströmung als translation-
sinvariant (∂/∂y ≡ 0) und quellenfrei (∆⋅v = 0) vor-
aus, dann kann man ihr Geschwindigkeitsfeld als 
Rotation eines skalaren Potentials ψ(x,z,t) schreiben:  
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Lorenz (siehe z.B. [6]) führte neben ψ die Variable  
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als Maß für die Abweichung des Temperaturprofils 
von der Linearität ein. Er entwickelte die beiden Va-
riablen in eine doppelte Fourier-Reihe in x und z und 
berücksichtigte nur die drei wichtigsten Koeffizien-
ten, eine Näherung, die sicher nur in der Nähe der 
kritischen Temperaturdifferenz gerechtfertigt ist, bei 
der das Fluid in Konvektionsbewegung gerät. Auf-
grund dieser Näherung läßt sich ψ darstellen als  
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wobei der dimensionslose Geometriefaktor a das Sei-
tenverhältnis einer Konvektionszelle angibt. An-
schaulich bedeutet das die Beschränkung auf Lö-
sungen mit dem folgenden Strömungsbild (für X ≠ 
0):  

Eine solche Konvektionsstruktur stellt sich ein, 
wenn eine Flüssigkeits- oder Gasschicht von unten 
geheizt wird. Zunächst wird die Wärme durch  

Wärmeleitung auf die Flüssigkeitsschicht übertra-
gen, durch Wärmeleitung an die Flüssigkeitsober-
fläche transportiert und dort abgegeben. Über-
schreitet der Wärmestrom jedoch eine bestimmte kri-
tische Größe, so wird die Symmetrie des Wärme-
transportvorgangs plötzlich gebrochen. Neben der 
Wärmeleitung tritt der sehr viel effektivere Mecha-
nismus der Konvektion auf. Der Auftrieb der er-
wärmten und daher spezifisch leichteren Flüssigkeit 
wird dann auf einmal größer als die die Bewegung 
hindernde Reibung und führt zum Einsetzen einer 
Bewegung. Die aufsteigende wärmere wird durch 
nachströmende kältere Flüssigkeit ersetzt, die so-
dann ihrerseits erwärmt wird, aufsteigt, an der Flüs-
sigkeitsoberfläche Wärme an die kältere Umgebung 
abgibt, wieder absinkt, bis sie schließlich, erneut er-
wärmt, den Kreis abermals durchläuft. Bei passen-
den Randbedingungen organisiert sich das Kreis-
laufgeschehen in einem hochgeordneten Muster 
von Konvektionsrollen. Der Drehsinn dieser Rollen 
wird durch kleinste zufällige Bewegungen (Fluktua-
tionen) während des Symmetriebruchs festgelegt.  

Lorenz setzte seinen Ansatz für ω und Θ in ein Diffe-
rentialgleichungssystem ein, das er durch Kombina-
tion von Navier-Stokes-Gleichung, Wärmeleitungs-
gleichung und Kontinuitätsgleichung erhielt. Er ge-
langte dadurch zu dem bereits oben erwähnten Sys-
tem nichtlinearer Differentialgleichungen, den soge-
nannten Lorenz- Gleichungen:  

Abb. 2: Typisches Strömungsbild bei der Bénard-
Konvektion  
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Dabei haben die auftretenden Konstanten folgende 
Bedeutung:  

• σ = Verhältnis der in der Strömung durch Rei-
bung erzeugten Wärme zur fortgeleiteten Wär-
me (Prandtl-Zahl). Bei der Untersuchung des 
Lorenz-Systems ist es üblich, den Wert für kal-
tes Wasser (σ = 10) einzusetzen.  

• b = Geometriefaktor, der ein Maß für die Form 
der Konvektionsrollen ist. Meist wird er auf den 
Wert gesetzt, für den Konvektion beim kleinst-
möglichen Wert von ∆T einsetzt (b = 8/3).  

• R ~ ∆T ist ein Maß für die Temperaturdifferenz, 
das so normiert ist, daß Konvektion bei R = 1 
einsetzt.  

Die auftretenden Koordinaten haben folgende Be-
deutung:  

• X(t) ist ein Maß für die Strömungsgeschwin-
digkeit in den Konvektionsrollen:  

• v (x,z,t) ~ X(t), insbesondere also X = 0    
⇔    v = 0.  

• Das Vorzeichen von X beschreibt den Um-
laufsinn der Konvektionsströmung.  

• Y(t) und Z(t) beschreiben die Abweichung des 
Temperaturfeldes von dem Fall, der sich bei rei-
ner Wärmeleitung einstellt (homogen in X- und 
linear in Z-Richtung).  

• Y(t) beschreibt insbesondere die horizontale 
Temperaturverteilung. Es ist ein Maß für den 
Temperaturunterschied zwis chen aufsteigenden 
und absinkenden Volumenelementen.  

• Y=0 ⇒ T ist homogen in x-Richtung.  

• X ⋅ Y > 0 ⇒ Aufsteigende Volumenelemen-
te sind wärmer als absinkende.  

• Z(t) beschreibt zusätzlich die vertikale Abwei-
chung von der Linearität.  

Ähnlichkeiten zwischen Wasserrad 
und Bénard-Konvektion  

Die Äquivalenz zwischen Lorenzsystem und Was-
serrad liegt auf der Hand:  

Der Antrieb der Bewegung besteht in der Gewichts-
zunahme von  

Volumenelemente infolge von Wärmeabgabe bzw. 
Wasseraufnahme in Anwesenheit der Schwerkraft . 

Der Wärmeabgabe an der Oberfläche beim Lorenz-
System entspricht beim Wasserrad der Wasser-
zufluß von oben. Die Wärmeleitung innerhalb der 
Flüssigkeit ist der Wasserabgabe von oberen Behäl-
tern in untere, die Wärmeaufnahme an der Flüssig-
keitsunterseite ist dem Wasserverlust durch die 
Abflußlöcher des Rades in das untere  

Auffangbecken analog. Bei geringer Temperaturdif-
ferenz, entsprechend einem schwachen Regen, tut 
sich hier wie dort nichts. Die Flüssigkeit bzw. das 
Rad bleiben in Ruhe. Der Symmetriebruch, durch 
den die Flüssigkeit vom Zustand der Ruhe in den 
der Bewegung übergeht, findet sich ebenfalls beim 
Wasserrad wieder. Die sich infolgedessen einstel-
lende Drehbewegung des Wasserrades beschreibt 
bis in Details das Verhalten einer Konvektionswalze.  

Weitergehende Analogien gibt es allerdings nicht 
mehr. Zwar geht auch die Bénard- Konvektion bei 
genügender Erhöhung der Temperatur in Turbulenz 
über, aber die Tiefenstruktur dieser Turbulenz hat 
nichts mehr mit den wohlorganisierten chaotischen 
Vorgängen zu tun, die wir beim Wasserrad beobach-
ten und die schließlich durch ein reguläres Schwin-
gen abgeschlossen werden. Das ist auch nicht ver-
wunderlich. Während das Lorenz-Modell für die Be-
schreibung der Bénard- Konvektion nur nähe-
rungsweise gültig ist (in der Umgebung von R = 1), 
gibt es - wie die obige Herleitung zeigt - eine solche 
Einschränkung für ein Wasserrad mit unendlich vie-
len Behältern nicht. Da ein solches theoretisches 
Wasserrad von einem mit nur wenigen Behältern 
nicht grundsätzlich verschieden ist, können wir er-
warten, daß die Verhaltensmerkmale von Wasserrad 
und Lorenz-System qualitativ übereinstimmen.  

Der Lorenz-Attraktor  

Bei der Untersuchung des Lorenz-Systems werden 
meist die Parameter σ ( = 10 ) und b ( = 8/3 ) konstant 
gehalten und das Verhalten des Systems in Abhän-
gigkeit vom Parameter R untersucht. Der Vergleich 
von Gl. (7) und (10) zeigt jedoch zunächst, daß beim 
Wasserrad b = 1 gesetzt werden muß. Interessiert 
man sich für das Verhalten des Wasserrades in Ab-
hängigkeit vom Wasserzufluß A bei konstantem 
Reibungskoeffizienten und unveränderten Ausfluß-
löchern (h = const, k = const), dann kann man die 
beiden anderen Parameter s und R nicht unabhängig 
voneinander variieren:  
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Um beim Einsetzen des chaotischen Verhaltens ähn-
liche Parameterwerte zu haben wie üblich, wählen 
wir  



 6

σR = 240  

Das entspricht einer Zeitkonstante für den Wasse-
rausfluß von τ = 1/h = 3.5s.  

Die qualitative Übereinstimmung im chaotischen 
Verhalten der beiden Systeme läßt sich nur schwer 
durch einen direkten Vergleich der experimentellen 
und theoretischen Daten erkennen. Hier kann allen-
falls die "Form" der Geschwindigkeit- Zeit-
Diagramme entsprechende Hinweise geben. Charak-
teristischer sind indessen die sogenannten Attrak-
toren im Zustandsraum des Systems, die das End-
verhalten in einem bestimmten Parameterbereich rep-
räsentieren.  

Einfache Eigenschaften der Lorenz-
Gleichungen  

Im folgenden werden deshalb die Ergebnisse, die 
aus einer Auswertung der Lorenz-Gleichungen her-
vorgehen, im Zustandsraum dargestellt und den im 
Anschauungsraum auftretenden Bewegungen zu-
geordnet . Einige einfache Eigenschaften lassen sich 
bereits analytisch ableiten:  

• Das Gleichungssystem spiegelt die Symmetrie 
des zugrundeliegenden physikalischen Prob-
lems gegenüber einer Änderung des Drehsinns:  

),,(),,(

),,(),,(

ZYXZYX

ZYXZYX
&&&&&& −−→

⇒−−→
 

Zustände, die sich nur im Rotationssinn unter-
scheiden, sind gleichwertig.  

• Das System hat folgende Fixpunkte:  

FP1 = (0,0,0);  

FP2,3 = )1),1(),1(( −−− RRbRb  

• R < 1: Nur FP1 existiert und ist stabil: 
Bei niedriger Temperaturdifferenz ist 
die reine Wärmeleitung bzw. der Ruhe-
zustand des Rades das einzig mö gliche 
Endverhalten. Das Fluid bzw. das Rad 
bleibt in Ruhe, bzw. kommt zur Ruhe, 
wenn es anfänglich in Bewegung war.  

• 1 < R < σ (σ+b+3)/(σ-b-1): FP1 ist in-
stabil, aber FP2 und FP3 sind stabil. 
Wegen σR = const = c und b = 1 läßt 
sich der zweite Teil der Bedingung um-
schreiben und numerisch auswerten:  

2R3 – cR2 + cR + c2 > 0  ⇔  R < 19,5 
oder R > 113,5 

Anzumerken ist, daß wegen der Kopplung zwischen 
σ und R im Unterschied zum üblicherweise behan-
delten Fall des Lorenzmodells (σ = 10, b= 3/8 ) bei 

sehr hohen Wasserströmen (R > 113.5) die Fixpunk-
te wieder stabil werden. Bei mittleren und sehr ho-
hen Wasserströmen nimmt das Rad eine stabile 
Rollbewegung ein.  

• R > σ(σ+b+3)/(σ-b-1) ⇔ 19.5 < R < 113.5: Alle 
drei Fixpunkte sind instabil. Bei großen Was-
serströmen unterhalb einer Grenze von R = 
113.5 kann das Endverhalten nicht ohne weite-
res vorhergesagt werden (Chaos ).  

Simulation des Systemverhaltens  

Weitere Aussagen sind analytisch schwierig zu ge-
winnen. Das Differentialgleichungssystem wird da-
her numerisch integriert und das Systemverhalten 
grafisch dargestellt. Bei der Darstellung der zeitli-
chen Entwicklung genügt es, sich auf X(t)-
Diagramme zu beschränken, weil der Koordinate X 
die anschaulichste Bedeutung zukommt und außer-
dem die Y(t)- und Z(t)-Diagramme sehr ähnlich aus-
sehen. Der Zusammenhang zwischen den Koordina-
ten wird als Trajektorie im Zustandsraum dargestellt. 
Um bei diesen Diagrammen die Vo rstellung der 
räumlichen Lage der Orbits zu erleichtern, können 
Projektionen der Bahn auf die (X,Y)- und die (Y,Z)-
Koordinatenebenen gepunktet mitgezeichnet wer-
den.  

Da der Wärmeleitungszustand bzw. Ruhezustand 
den "natürlichen" Zustand des Systems darstellt, 
wählen wir in der Regel Anfangsbedingungen in der 
Nähe des Ursprungs, simulieren also den Beginn der 
Bewegung.  

Die Integration wird mit dem Runge-Kutta-Verfahren 
4. Ordnung durchgeführt ( PROCEDURE RungeKut-
ta). Die Grafiken werden mit der Prozedur Plot3d er-
stellt.  

Untersuchung verschiedener Parameterberei-
che:  

Für R = 0 ist der Ruhezustand (Ursprung des Zu-
standsraums) einziger Fixpunkt. Er bleibt es für Wer-
te von R < 1, d.h. für niedrigen Zustrom (Abb. 3). R 
= 1 entspricht dem ersten kritischen Wert des Zu-
laufs, bei dem aufgrund einer sogenannten Stimm-
gabelbifurkation [7] der Fixpunkt im Ursprung insta-
bil wird und zwei neue Fixpunkte entstehen, die ei-
ner Drehung des Rades in der einen und anderen 
Richtung entsprechen. 

Solange der Zustrom einen Wert von R = 1.125 nicht 
überschreitet, handelt es sich um stabile Knoten: 
Die Trajektorien eines aus der Ruhe, also X = 0 ge-
starteten Rades laufen je nach dem Drehsinn direkt 
auf einen der beiden Fixpunkte zu. Der Zustands-
raum zerfällt sauber in zwei symmetrische Teile. Be-
findet sich eine Trajektorie erst einmal in einem Be-
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reich, so bleibt sie auch darin, solange der Zulauf 
nicht zu groß wird. Dies entspricht dem Beibehalten 
der einmal eingeschlagenen Drehrichtung (Abb.4 ).  

Überschreitet der Zustrom den Wert R = 1.125, so 
wird der Fixpunkt erst nach einigem Herumspiralen 
erreicht. Dem entspricht eine anfängliche Ungleich-
förmigkeit der Drehgeschwindigkeit, die sich aber 
mit der Annäherung an den Fixpunkt wieder abbaut 
(Abb. 5).  

Diese Ungleichförmigkeit wird mit zunehmendem R 
immer ausgeprägter (Abb.6), bis sie bei einem Wert 
von R = 11.3 zu einer Richtungsumkehr führt. Im Zu-
standsraum äußert sich dies Verhalten folgenderma-
ßen: Die zunächst in den linken Bereich hineinlau-
fende Trajektorie läuft bei R = 11.3 asymptotisch in 
den Ursprung zurück (homokline Verbindung [7]). 
Bei Vergrößerung von R durchbricht sie die bislang 
"undurchdringbare Wand" zwischen den beiden 
Teilen des Zustandsraumes und landet spiralförmig 
im anderen Fixpunkt (Abb.7).  

Dies entspricht der einmaligen Drehrichtungsände-
rung des Rades, bevor es die stationäre Drehung er-
reicht.  

Bei gleichem Parameterwert, also gleicher Temp era-
turdifferenz, aber anderen Anfangsbedingungen, 
treten auch mehrfache Richtungsänderungen auf: 

das Fluid verhält sich anscheinend völlig regellos, 
und es ist unmöglich vorherzusagen, welche Rotati-
onsrichtung sich schließlich einstellen wird: R liegt 
im vorchaotischen Parameterbereich.  

Bei R = 15.9 erreicht das aus der Ruhe startende 
System den Fixpunkt nicht mehr: Die Trajektorie 
verbindet nun asymptotisch den Ursprung mit ei-
nem instabilen Grenzzyklus (heterocline Verbindung 
[7]) und pendelt bei größeren R-Werten unent-

 

Abb. 4: R = 1.2: Das System gerät langsam in Konvekti-
on, verläßt also den Nullpunkt, um langsam gegen einen 
der beiden anderen Fixpunkte zu streben. Die Projektio-
nen der Bahn auf (X,Y)- und (Y,Z)- Ebene sind mitge-
zeichnet.  

 

Abb. 5: R = 2.0: Das System gerät schneller in Rotation. 
Zusätzlich treten zunächst Schwankungen in der Strö-
mungsgeschwindigkeit um den nun höheren Endwert auf, 
die aber schnell abklingen.  

Abb. 3: R = 0.9: Das Wasser bzw. das Rad bleibt in Ruhe 
oder kommt schnell zur Ruhe, wenn es anfänglich in Be-
wegung war. Die Projektionen der Bahn auf die (X,Y)-
und die (Y,Z)- Koordinatenebenen sind gepunktet mitge-
zeichnet.  
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schlossen zwischen positiven und negativen X-
Werten hin und her. Wir können rein qualitativ nicht 
beurteilen, um was für eine Bewegungsfigur es sich 
dabei handelt. Die Untersuchung des Ve rhaltens im 
Zustandsraum gibt uns jedoch eine eindeutige 
Antwort: Wie aus heiterem Himmel, in Form einer 
sogenannten Blue-Sky-Katastrophe [7], wird das 
Endverhalten unseres Rades vom Chaos befallen (im 

Einschwingverhalten kündigt sich dieser Um-
schwung allerdings bereits an: man vergleiche die 
Abbildungen 8 und 9). Noch aber kann das System 
von geeigneten Startpunkten aus die das geordnete 
Enderhalten repräsentierenden Fixpunkte erreichen.  

Mit zunehmendem R ziehen sich die beiden instabi-
len Grenzzyklen auf die zugehörigen Fixpunkte zu-
sammen und erschweren deren Erreichen immer 
mehr. Bei R = 19.5 schließlich fallen die Zyklen mit 
den Fixpunkten zusammen (Hopf-Bifurkation [7] ). 
Dieser Zustromwert entspricht dem endgültigen 

Abschied von der regulären Drehung, die nun von 
keinem Startwerte aus mehr erreicht werden kann. In 
dem Intervall 15.9 < R < 19.5 koexistieren jedoch bei-
de Typen von Grenzverhalten: Das eingeschwunge-
ne System erweist sich als relativ unempfindlich ge-

genüber stetigen Veränderungen von R: Erst bei 
Überschreiten der Intervallgrenze kippt das System 
aus dem chaotischen Verhalten in die reguläre Dre-
hung oder umgekehrt (Hysterese).  

Der Beginn der chaotischen Bewegung bedeutet für 
Wasserrad, daß damit die Vorhersagbarkeit der Be-
wegungen im einzelnen nicht mehr gegeben ist. Be-
trachtet man das chaotische Verhalten im Zustands-
raum, so erkennt man, daß der Verlauf einzelner Tra-
jektorien im Detail nicht vorhersagbar ist. Global ge-
sehen bleiben die Trajektorien jedoch auf ein be-
stimmtes Gebiet beschränkt, das sich durch den so-
genannten Lorenz- Attraktor charakterisieren läßt 
(Abb.9).  

 

Abb. 6: R = 7.0: Die Schwankungen nach Einsetzen der 
Konvektion werden heftiger und klingen langsamer ab. 
Immer noch aber bleibt die einmal eingeschlagene Strö-
mungsrichtung, mit noch größerer Geschwindigkeit, erhal-
ten.  

 

Abb. 7: R = 15.0: Die Schwankung beim Verlassen des 
Ursprunges ist so heftig, daß sich die Rotationsrichtung 
nach einmaligem Ausschlag umkehrt. Die Konvergenz  
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Bei der Betrachtung dieses schönen filigranen Ge-
bildes kann man Regelmäßigkeiten erkennen, die 
dem im starken Regen chaotisch tanzenden Rad di-
rekt wohl schwerlich anzusehen sind. Ein chaoti-
scher Attraktor ist somit eine Art Röntgenaufnahme 
eines Systems, das wir ansonsten in Form von Fo-
tos oder durch direkte Beobachtung nur "von au-

Abb. 8: Chaotischer Einschwingvorgang im vorchaoti-
schen Parameterbereich (R = 15.0)  

 

Abb. 9: R = 24.0: Beide Fixpunkte außerhalb des Ur-
sprunges sind instabil. Das System kann ihnen zwar na-
hekommen. Jedoch schaukeln sich die Schwankungen jetzt 
immer so weit auf, daß eine Richtungsumkehr erfolgt: 
Weder konvergiert die Trajektorie gegen einen Fixpunkt, 
noch schließt sie sich. Es ist unmöglich, die Bahn detail-
liert vorherzusagen: Die Bewegung ist chaotisch. (Wegen 
der Übersichtlichkeit ist diesmal nur die Projektion auf die 
(X,Y)-Ebene mitgezeichnet.)  

 

Abb. 10: Bei R = 100 treten periodische Schwankungen 
mit Richtungsänderungen auf: das System schwingt peri-
odisch: Trajektorie mit (X,Y)-Projektion.  

 

Abb. 11: Periodenverdopplung bei Verkleinerung von R 
aus dem nachchaotischen Bereich (R = 91): Trajektorie mt 
(X,Y)-Projektion  
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ßen" kennen. Sicherlich ist ein derartiger Einblick in 
das Innenleben eines Wasserrades nicht gerade 
sehr aufregend. Für das Verständnis komplexer Sys-
teme, für die das Wasserrad nur einen anschauli-
chen Zugang darstellt, kann sich der Röntgenblick 
auf chaotische Attraktoren jedoch lohnen. Jeden-
falls zeichnen sich Anwendungen und Nutzen der 
Chaosforschung in vielen Gebieten ab.  

Die weitere Erhöhung von R bringt zunächst nichts 
Aufregendes. Erst bei dem sehr hohen Wert von R = 
100 schließt sich hinter dem choatischen Bereich 
wieder ein reguläres Verhalten an: das System 
schwingt periodisch (Abb.10). In vielen Veröffentli-
chungen über das Lorenz-System wird dieses Ve r-
halten gar nicht mehr diskutiert, weil das System in 
diesem Bereich als Modell der Bénard- Konvektion 
maßlos überstrapaziert wird. Untersucht man, wie 
diese hoch geordnete Bewegung aus dem Chaos 
entsteht, findet man nach Verkleinerung von R bei R 
= 91 eine Schwingung mit zwei unterschiedlichen 
sich abwechselnden Amplituden(Abb.11). Die Bahn 
im Zustandsraum schließt sich erst nach zwei Um-
läufen (Periodenverdopplung). 

Bei weiterer Verkleinerung von R versinkt das Sys-
tem nach weiteren Periodenverdopplungen wieder 
im Chaos (Feigenbaum-Szenario ) für den Übergang 
von regulärem zu chaotischem Verhalten).  

( Es sei bereits hier angemerkt, daß diese Feinheiten 
sich allerdings an unserer groben Realisierung des 
Wasserrads nicht reproduzieren lassen. Sie versin-
ken sozusagen im Rauschen - und zwar nicht nur im 
Rauschen des herabströmendes Wassers.)  

Bei weiterer Variation des Parameters R erweist sich 
das Verhalten des Lorenz- Systems als noch wesent-
lich vielfältiger. Man kann deshalb daran fast alle 
Phänomene demonstrieren und untersuchen, die für 
chaotische Systeme typisch sind, z.B. lokale (Hopf-
Bifurkation) und globale (homokline und heterokline 
Verbindung) Bifurkationen und verschiedene Über-
gänge ins Chaos (neben dem Feigenbaum-Szenario 
und der Blue-Sky-Katastrophe z.B. den intermittie-
renden Übergang). Die Details solcher Übergänge 

werden z.B. in [4] und [7] ausführlich dargestellt. Da 
sie jedoch am Wasserrad praktisch nicht mehr be-
obachtbar sind, beschränken wir uns hier auf die 
Übersicht in Abb.12).  

Experimentelle Ergebnisse  

Aufbau und Konstruktion des Was-
serrades  

Bei einem normalen Wasserrad sind die schaufelar-
tigen Behälter fest am Radkranz fixiert. Ihre Öffnung 
zeigt daher auf der einen Seite nach oben und auf 
der anderen Seite nach unten. Diese systembedingte 
Unsymmetrie hat eine eindeutige Drehrichtung des 
Rades zur Folge, wenn es einem Wasserstrom aus-
gesetzt ist.  

Werden die Behälter jedoch, wie Gondeln eines Rie-
senrades drehbar gelagert, so angebracht, daß ihre 
Öffnung immer nach oben zeigt, und sorgt man au-
ßerdem dafür, daß das Wasser durch eine kleine 
Öffnung im Boden der Behälter wieder abfließt, so 
dreht sich das Rad in der einen oder anderen Rich-
tung. Darüberhinaus können neben der einfachen 
Drehung weitere, teilweise sehr komplizierte Bewe-
gungsfiguren auftreten, die man der einfachen Was-
serradkonstruktion von vornherein nicht zutraut. 
Erst eine nähere Betrachtung der am Rad auftreten-
den physikalischen Vorgänge vermag diesen Sach-
verhalt aufzuklären .  

Das Wasserrad läßt sich beispielsweise durch das 
Laufrad eines Fahrrads (∅ = 0,56m) realisieren. Die-
ses wird so eingespannt, daß die Drehachse parallel 
zum Erdboden steht. An der Felge werden z.B. zwölf 
Behälter (Höhe: 53mm; Durchmesser der kreisförmi-
gen Grundfläche: 105mm) befestigt. Hierzu wird die 
Felge des Rades in gleichen Abständen angebohrt. 
Die Bohrungen dienen als Halterungen für Strickna-
deln, an denen die Behälter leicht drehbar befestigt 
sind. Die Behälter sind mit einem Leck versehen. Da 
das Systemverhalten empfindlich von der Größe 
dieser Öffnungen abhängt, kommt es maßgeblich 
auf die Wahl des Öffnungsdurchmessers an. Für die 
hier dargestellte Versuchsserie wurde ein Öffnungs-
durchmesser von 3.5 mm gewählt. Rekonstruktion 
von Attraktoren  

Die durch den Luftwiderstand und die Achsreibung 
gegebene Dämpfung erweist sich als zu klein für die 
Versuchsdurchführung. Deshalb wird ein Faden um 
die Radnabe gelegt, dessen Spannung mit Hilfe von 
Gewichten variiert werden kann. Kontroll- und Ord-
nungsparameter: Welche der verschiedenen Bewe-
gungsfiguren auftritt, wird durch die jeweilige Ein-
stellung der Parameter bestimmt, also jener von au-
ßen kontrollierbaren Größen, die nicht schon durch 

Abb. 12: Übersicht über das Verhalten des Lorenzsystems 
im gesamten Bereich des Parameters R (bei R s = 240).  
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die Konstruktion des Systems selbst festgelegt 
sind. Die Parameter unseres Wasserrads sind der 
Zustrom des Wassers, der den Abfluß bestimmende 
Querschnitt der Löcher und die Reibung. Da von 
diesen Parametern der Zufluß am einfachsten zu va-
riieren ist, benutzen wir ihn als Kontrollparameter 
und legen sowohl die Reibung als auch die Größe 
der Abflußlöcher fest. Die sich jeweils einstellenden 
Bewegungsfiguren werden durch sogenannten 
Ordnungs- oder Gestaltparameter, die Winkelge-
schwindigkeit des Wasserrades, erfaßt. Zur Bestim-
mung der Winkelgeschwindigkeit w wird die Bewe-
gung des Rades durch einen Bewegungsmeßwand-
ler in eine Spannung umgewandelt, die je nach Wahl 
dem zurückgelegten Winkelintervall, der Geschwin-
digkeit oder der Beschleunigung proportional ist 
(vgl. [8]). Die vom Meßwandler erzeugten Spannun-
gen müssen dann von einem Analog-Digital-
Wandler in digitale Signale umgesetzt werden, die 
mit einem Computer weiter verarbeitet und gra-
phisch dargestellt werden können.  

Rekonstruktion von Attraktoren 

Die Bewegungen des Wasserrades werden im Zu-
standsraum dargestellt, der durch die drei generali-
sierten Koordinaten des Lorenz-Systems aufge-
spannt wird. Auf einfache Weise läßt sich allerdings 
nur die Winkelgeschwindigkeit w experimentell er-
fassen. Mit Hilfe eines in [9] und [10] beschriebenen 
Verfahrens gelingt es jedoch, den Attraktor des Sys-
tems aus der Meßreihe einer Variablen, in unserem 
Fall also der Winkelgeschwindigkeit, zu rekonstruie-
ren.  

Durch eine Messung sei eine Folge x1,  x2, ... von 
Werten der Variablen x bekannt. Mittels der Folge xi 
kann dann folgendermaßen ein Orbit 

iξ
r

 im n-

dimensionalen Zustandsraum erstellt werden:  

iξ
r

 = (xi, xi + m , xi + 2m , . . ., xi + nm)  

I.a. muß bei dieser Vektorbildung jedoch darauf ge-
achtet werden, daß benachbarte Komponenten xj 
und xj  +  m in der Meßreihe weder einen zu großen 
noch einen zu kleinen zeitlichen Abstand voneinan-
der haben dürfen. Im ersten Fall korrellieren die Wer-
te bei chaotischen Bewegungen nicht mehr mitein-
ander, im zweiten wird der Attraktor auf der Diago-
nalen "zusammengequetscht". Die richtige Wahl 
von m erhält man in der Praxis durch Ve rsuch und 
Irrtum.  

Auf der Grundlage dieses Konstruktionsprinzips 
haben wir die im weiteren auftretenden Attraktoren 
erstellt; und zwar für das Lorenz-System aus be-
rechneten X-Werten, für das Wasserrad aus gemes-
senen Werten für die Winkelgeschwindigkeit.  

Ergebnisse und Vergleich mit der 
Computersimulation  

Ein wesentliches Ziel der experimentellen Untersu-
chung besteht darin zu demonstrieren, daß die Lo-
renz-Gleichungen das Verhalten des Wasserrades zu 
beschreiben vermögen. Dabei zeigt sich insbeson-
dere, daß das Rad in Abhängigkeit vom Zufluß ent-
weder zur Ruhe kommt, sich stationär dreht, chaoti-
sche Drehbewegungen ausführt oder regelmäßig 
schwingt.  

Im folgenden werden Meßergebnisse zunächst in 
Geschwindigkeits-Zeit-Diagrammen dargestellt, in 
denen positive Werte einer Drehung des Rades im 
Uhrzeigersinn entsprechen.  

a) Das System kommt zur Ruhe: Wenn man den 
Wasserzulauf R klein genug wählt (bis R ≈ 15 cm3/s) 
und das Rad manuell in Bewegung setzt, so kommt 
diese Bewegung schnell zur Ruhe. Die Analogie 
zwischen beiden Systemen wird durch Vergleich der 
Abbildungen 3 und 14 deutlich. Leider ist den 
Meßwerten ein Rauschen überlagert, das auf ein 
ungleichmäßiges Angreifen der Reibung, insbeson-
dere aber auf eine schlechte Digitalisierung der 
Meßwerte zurückgeführt werden kann.  

Abb. 14: Beginn einer stationären Drehbewegung beim 
Wasserrad (R= 20cm/s).  

Abb. 13: Das Wasserrad kommt zur Ruhe (R = 8 cm3/s).  
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b) Gleichförmige Drehbewegungen als stabile Zu-
stände : Bei einem Wasserzulauf von R ≈ 20 cm3/s 
ist der Ruhezustand nicht mehr stabil. Das Rad be-
ginnt, sich in einer durch zufällige Schwankungen 
bestimmten Richtung zu drehen, und nimmt unter 
abklingenden Schwankungen eine feste Drehge-
schwindigkeit an (vgl. Abb.14 und 5).  

Wie beim Lorenz-System stellt sich bei Erhöhung 
des Zulaufs unter stärkeren Schwankungen eine 
größere Endgeschwindigkeit ein.  

c) Vorturbulenz: Stellt man den Wasserzulauf auf R 
≈ 32 cm3/s ein, dann beginnt das Rad sofort, sich 
heftig zu drehen. Es dreht sich jedoch zunächst mit 
schwankender Winkelgeschwindigkeit und wechselt 
häufiger seine Drehrichtung, bevor es sich auf eine 
stabile stationäre Drehbewegung einpendelt. Der 
Drehsinn dieser sich letztlich einstellenden Bewe-
gung kann nicht vorhergesagt werden (vgl. Abb. 8 
und 15).  

In den unter a) und b) beschriebenen Kontrollpara-
meterbereichen war das den Meßwerten überlagerte 
Rauschen nahezu von der gleichen Größenordnung 
wie das überstrichene Geschwindigkeitsintervall. Ei-
ne Attraktorrekonstruktion nach der oben beschrie-

benen Methode führte deshalb zu keinen befriedi-
genden Ergebnissen. Im vorturbulenten Bereich 
wird jedoch ein doppelt so großes Geschwindig-
keitsintervall überstrichen, so daß die Rekonstrukti-
on brauchbare Resultate liefern sollte.  

Die Diagramme in Abb. 16 zeigen Trajektorien im 
Zustandsraum des Lorenz- Systems bzw. des Exp e-
riments im vorchaotischen Bereich. Beide Trajekto-
rien wurden aus einer Folge von X-Werten nach 
dem oben beschriebenen Verfahren rekonstruiert. 
Beim Lorenz-System wurden die X-Werte im Ab-
stand ∆t = 0.02s ( = Integrationsschrittweite ) aufge-
nommen und für die Vektorbildung m = 5 gewählt. 
Die entsprechenden Werte für das Wasserrad be-
trugen ∆t ≈ 0.05 s und m = 10.  

 

Abb. 16: Aus einer Folge von X-Werten rekonstruierte 
Orbits im Zustandsraum a) Lorenz-System ( R = 15.0), b) 
Wasserrad (R = 32 cm3/s)  

 

Abb. 18: Aus einer Folge von X-Werten rekonstruierte 
Attraktoren in Theorie und Experiment. a) Lorenz-
System (R = 24 ), b) Wasserrad (R = 40 cm3/s)  

Abb. 17: Chaotische Drehbewegungen des Wasserrades 
(R = 38 cm3/s)  
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Die Trajektorien des Einschwingverhaltens spiegeln 
bereits die typische Form des Lorenz-Attraktors 
wieder: Die Transienten bewegen sich zunächst in 
Auswärtsspiralen um den einen Fixpunkt, ehe sie 
sich dann dem anderen zuwenden. Erst wenn sie bei 
einem dieser Wechsel einem der Fixpunkte nahe ge-
nug kommen, werden sie von diesem angezogen 
und spiralen auf ihn zu.  

d) Chaos: Oberhalb eines gewissen kritischen Wer-

tes für den Wasserzufluß stellt sich keine stationäre 
Drehbewegung mehr ein. Das Rad dreht sich mit 
schwankender Geschwindigkeit und wechselt in un-
vorhersagbarer Weise den Drehsinn. Die Frage je-
doch, ob dieses Chaos dem von den Lorenz-
Gleichungen erzeugten entspricht, läßt sich durch 
Vergleich der Abbildungen 9 und 17 nicht befriedi-
gend beantworten, auch wenn die Gemeinsamkeiten 
der dargestellten Bewegungen auf der Hand liegen.  

Hier hilft wiederum nur die Rekonstruktion der zu 
den X-t-Diagrammen gehörigen Attraktoren. Der 
Vergleich beider Phasendiagramme (Abb.18) macht 
die gute Übereinstimmung zwischen Theorie und 
Experiment deutlich: Die Trajektorien winden sich in 
Auswärtsspiralen um den jeweiligen Fixpunkt, bis 
sie schließlich zum anderen Fixpunkt überwechseln, 
wo das gleiche Szenarium erneut beobachtet werden 
kann.  

Eine zusätzliche Übereinstimmung beider Systeme 
kann in der Entwicklung chaotischer Trajektorien bei 
weiterer Steigerung der jeweiligen Kontrollparameter 

entdeckt werden. Für das Lorenz-System existiert 
nämlich für festes R eine Obergrenze, die festlegt, 
wie oft ein Orbit höchstens um jeweils einen Fix-
punkt rotieren kann. Diese Obergrenze nimmt nach 
dem Auftreten des chaotischen Attraktors im theo-
retischen System zunächst kontinuierlich mit größer 
werdendem Kontrollparameter ab (vgl. [6], [4], [7]). 
Im X-t-Diagramm macht sich dieses dadurch be-

merkbar, daß die mittlere Zahl sowie das Maximum 
der Zahl der Schwingungen oberhalb bzw. unterhalb 
der t-Achse geringer wird. Die X-t-Diagramme in 
Abb. 19 sind ein Indiz dafür, daß sich diese Entwick-
lung auch im Experiment abzeichnet.  

e) Reguläre Schwingungen: Aus der Simulation des 
Lorenz-Modells sind bei sehr hohen Werten von R 
reguläre Schwingungen zu erwarten. Wir empfinden 
es daher als eine Art krönenden Abschluß, daß un-
ser Wasserrad diese Erwartung erfüllt, als gäbe es 
nichts Selbstverständlicheres auf der Welt. Da die 
Bewegungsgleichung - wie wir gesehen haben - 
nach einigen Umformungen direkt auf die Lorenz-
Gleichungen führte, war dies aber auch zu erwarten. 
Die Schwingung bleibt solange stabil, bis das Was-
ser über den Rand der Behälter fließt, und das Sys-
tem damit den Gültigkeitsbereich des Modells ver-
läßt (Abb. 20).  

 

Abb. 15 : Vorchaotischer Einschwingvorgang beim Was-
serrad ( R = 32 cm3/s )  

 

Abb. 19: Entwicklung chaotischer Orbits im Experiment 
bei Steigerung des Wasserzulaufs  

 

Abb. 20: Geschwindigkeits-Zeit-Diagramm und rekon-
struierter Attraktor nachchaotischer regulärer Schwingun-
gen des Wasserrades ( R= 40 cm3/s)  
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Schlußbemerkungen  

Das beschriebene Wasserrad ist zum einen ein ein-
fach herstellbares Gerät , an dem sich wesentliche 
Eigenschaften chaotischer Systeme experimentell 
untersuchen lassen. Es ein anschauliches Modell 
für das berühmte Lorenz-System dar: Die Bewe-
gungsgleichungen des Wasserrads lassen sich 
nämlich mit nur geringfügigen Idealisierungen auf 
die Lorenz-Gleichungen reduzieren. Es erfüllt daher 
die Lorenz- Gleichungen wesentlich besser als die 
Bénard-Konvektion, die nur in einem sehr kleinen 
Parameterbereich zutreffend beschrieben wird. Da 
das Lorenz-System inzwischen als eine Art Paradig-
ma zur Einführung in den Bereich chaotischer Sys-
teme angesehen werden muß, stellt das Wasserrad 
eine Möglichkeit dar, die wesentlichen aus der Simu-
lation hervorgehenden Verhaltensmerkmale mit kon-
kreten Phänomenen zu verknüpfen und auf diese 
Weise das Lorenz-System mit Leben zu erfüllen.  
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