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Auch das kleinste Licht hat ein Atmosphärchen 
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Das Phänomen 1) 

Als der Lehrer den Schülerinnen und Schülern eine 
in einem Glasgefäß schwimmende brennende Kerze 
präsentiert, sind einige von ihnen doch erstaunt. Sie 
waren der Meinung, daß eine Kerze "schwerer" als 
Wasser sei. Nun sehen sie, daß die Kerze 
schwimmt, auch wenn sie dabei nur ein wenig aus 
dem Wasser herausschaut (Abb. 1). Angesichts die-
ser Situation äußert ein Schüler die Vorhersage: 
"Lange brennt die nicht mehr". Er meint, das Was-
ser würde die Flamme zum Erlöschen bringen, so-
bald die Kerze bis zum Wasserrand abgebrannt sei. 
Im anschließenden Unterrichtsgespräch macht man 
sich jedoch klar, daß die Kerze durch das Abbren-
nen leichter und daher stets aus dem Wasser heraus-
schauen wird. Wie weit wird sie herausschauen? 
Ein Schüler meint, immer gleich weit. Eine Schüle-
rin schließt daraus messerscharf: Dann müßte die 
Kerze schließlich über dem Wasser schweben. Es 
dauert einige Zeit, bis jeder diese scharfsinnige 
Schlußfolgerung durchschaut. 

Die Tatsache, daß die Kerze in der aufrechten Stel-
lung nicht stabil ist und hier nur durch die gläserne 
Führung daran gehindert wird, in die "liegende" 
stabile Lage überzugehen, soll hier nicht themati-
siert werden. Sie ist eine eigene Untersuchung wert 
[1]. Kerzen, die in beliebigen Gefäßen brennender-
weise schwimmen sollen, müssen daher kurz und 
dick sein. Teelichter sind beispielsweise ideale 
Schwimmkerzen. 

Wie weit schaut die Kerze aus dem Was-

ser? 

Um diese Frage zu beantworten, muß erst einmal 
begründet werden, daß eine Kerze überhaupt aus 
dem Wasser herausschaut. Kerze und Wasser unter-
liegen der Schwerkraft. Wenn die Kerze ins Wasser 
eintaucht, muß sie ihrem eintauchenden Volumen 
entsprechend Wasser verdrängen. Das auf diese 
Weise angehobene Wasser wirkt seinerseits "ver-
drängend" auf die Kerze zurück. Die Eintauchtiefe 
der Kerze ist der Kompromiß zwischen beiden Ten-

                                                           
1 Die folgenden Ausführungen beziehen sich teilweise auf ent-
sprechende Unterrichtsbeobachtungen in einer 9. Realschulklas-
se. 

denzen: Die Schwerkraft der Kerze Fk und des ver-
drängten und dadurch angehobenen Wassers FW 
halten sich die Waage (Archimedisches Prinzip): 

FK = FW 

mK g = mW g 

Dabei ist g die Erdbeschleunigung; mW = ρW VW ist 
die Masse des durch die Kerze verdrängten Wassers 
vom Volumen VW = Ax mit dem Querschnitt A und 
der Höhe x. mK = ρK VK ist die Masse der Kerze 
vom Volumen VK = A h mit dem Querschnitt A und 
der Höhe h. Durch Einsetzen in obige Formel kann 
man die Eintauchtiefe bestimmen: 

x = h ρK /ρW . Man sieht sofort, daß das Verhältnis 
x/h = ρK /ρW konstant ist. Die Kerze wird also, wäh-
rend sie abbrennt, in diesem Verhältnis oberhalb 
und unterhalb der Wasseroberfläche kürzer. 

Umgekehrt gibt x/h den Zahlenwert der Dichte der 
Kerze an. In unserem Beispiel taucht die Kerze der 
Länge h = 13,7cm, x = 12cm ins Wasser ein; sie be-
sitzt demnach eine Dichte ρK = 0,876 g/cm

3. 

Wie lange schwimmt die Kerze? 

Leuchtet unsere Schwimmkerze auch noch nach 5 
Stunden? Um diese Frage beantworten zu können, 

 

Abb. 1: Die Schwimmkerze taucht nur etwa 12% aus 
dem Wasser heraus 



 

Praxis der Naturwissenschaften - Physik 43/4, 15 (1994) 

 

 2 

muß man wissen, wie schnell sie abbrennt. Geht 
man davon aus, daß sie gleichmäßig abbrennt, was 
bei gleichbleibender Flamme stets der Fall ist, so 
genügt es zu wissen, wieviel Masse die Kerze in ei-
ner bestimmten Zeit verliert. Wir lassen die Kerze 
einige Zeit auf einer empfindlichen Waage brennen 
und bestimmen den Massenverlust. In unserem Fall 
wird die Kerze in 117,5 Minuten 10 g leichter. Der 
Massenverlust pro Zeiteinheit beträgt b = 1,4 mg/s. 
Da b konstant ist, gilt dies für beliebige Zeiten t: 

m(t)/t = b. 

Setzt man den oben berechneten Wert für m ein, so 
erhält man m (t) = ρK A h (t) = b t. Aufgelöst nach 
h(t): 

h (t) = b t/ρK A, mit A = 3,78 cm
2. 

Damit läßt sich unsere Frage beantworten. Nach t = 

6 h = 3600 s ist die Kerze 7,6 cm kürzer, also noch 
6,1 cm lang. Sie ragt demnach noch 0,75 cm aus 
dem Wasser heraus. 

Schwimmkerze in Salzwasser 

Wie lange die Kerze schwimmt, bis sie völlig abge-
brannt ist, kann nicht ohne weiteres berechnet wer-
den. Denn meistens bleibt ein vorher schlecht ein-
zuschätzender Rest Wachs übrig. Ganz abgesehen 
davon ist im vorliegenden Fall das Problem zu be-
rücksichtigen, daß nach Meinung der Schülerinnen 
und Schüler der brennende Docht in der Schlußpha-
se z. B. aufgrund eines unregelmäßigen Abbrands 
Kontakt mit dem Wasser bekommen könnte. In Er-
innerung an den Einfluß der Dichte der Flüssigkeit 
auf die Eintauchtiefe schlägt eine Schülerin vor, die 
Kerze in Salzwasser schwimmen zu lassen: "Dann 
guckt sie weiter heraus und brennt länger." 

Ihr Vorschlag wird in die Tat umgesetzt. Das Was-
ser wird durch eine konzentrierte Salzwasserlösung 
ersetzt. Man kann mit bloßem Auge erkennen, daß 
das Verhältnis x/h sich zugunsten des aus dem Was-
ser herausschauenden Teils h - x verändert. x hat 
sich, wie leicht nachgemessen werden kann, um 0,7 
cm auf 11,3 cm verkürzt. Ein Blick auf die Formel 
x/h = ρK/ρW zeigt, daß dies ein direktes Maß für die 
veränderte Dichte des Wassers ist. Unsere Kerze 
kann als Dichtemesser angesehen werden. Setzt 
man die veränderten Werte für x und h ein, so be-
rechnet man für die Dichte des Salzwassers ρSW = 
1,06 g/cm

3. Mit anderen Worten 6% der Masse des 
Salzwassers besteht aus im Wasser gelöstem Salz. 

Die bessere Tragfähigkeit von Salz, die hier in Ges-
talt der auftauchenden Kerze unmittelbar anschau-
lich wird, kennt man übrigens vom Schwimmen in 
Salzwasser, das etwa eine Dichte von 1,03 g/cm3 
besitzt. Im Toten Meer enthält das Wasser sogar 
etwa 30% Salz. Der Mensch kann daher bequem 

"auf" der Wasseroberfläche liegen. Er taucht nur 
etwa zu 2/3 ins Wasser ein. Übrigens wird in Dich-
temessern, sogenannte Aräometern, tatsächlich die 
Eintauchtiefe eines Stabes bekannter Dichte ausge-
nutzt. Wir benutzen unsere Kerze für weitere Dich-
temessungen, z. B. von Spiritus, Öl u. ä. 

Am Ende "erfriert" die Kerze 

Nach diesem Umweg über die Kerze als Dichtemes-
ser kommen wir zur Frage nach der Brenndauer der 
Kerze zurück. Zunächst wird abgeschätzt, wie lange 
die Kerze brennen würde, wenn kein Wachs übrig 
bliebe. Diese maximale Brennzeit t beträgt t = ρA 

h/b, in unserem Fall also 9 Stunden. Solange kann 
man natürlich nicht warten. Es wird beschlossen, 
die Kerze in kleinste Scheiben zu zerschneiden und 
den Brennvorgang auf die interessante Endphase zu 
beschränken. 

Dabei zeigt sich, daß die Kerze in keinem Fall 
durch hereinbrechendes Wasser gefährdet ist. Der 
Docht höhlt die Kerze gleichsam aus. Ursache für 
diesen unerwarteten Vorgang ist die Tatsache, daß 
das kalte Wasser durch Wärmeleitung dem Wachs 
sehr viel Energie entzieht und dadurch ein Ab-
schmelzen der Randschichten der Kerze verhindert. 
Die Verflüssigung des Wachses ist aber notwendig, 
damit das Wachs im Docht aufsteigen und verbrannt 
werden kann. 

Das Ende der brennenden Kerze findet ziemlich ab-
rupt statt. Eine Untersuchung des übriggebliebenen 
schalenförmigen Stummels zeigt warum? Der Bo-
den des Stummels ist hauchdünn. Der in dieser Haut 
endende Docht ist nur noch durch eine dünne 
Wachsschicht vom kalten Wasser getrennt. Das 
Wasser entzog dem Wachs nunmehr auch in unmit-
telbarer Dochtnähe so viel Wärme, daß die von der 
Flamme ausgehende Wärme zu einer Verflüssigung 

Abb. 2: Höhenregulierung einer Kerze, wie sie in alten 
Laternen vorkommt 
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des Wachses nicht mehr ausreichte. Die brennende 
Kerze "erfror" gewissermaßen, so daß der Docht 
plötzlich im Trockenen stand und ausging. 

Wie eine Wägung der übriggebliebenen Wachsmas-
se ergab, hätte sie nur noch für einige Minuten 
Brenndauer gereicht, so daß die obige Abschätzung 
bereits ziemlich gut ist. 

Regelmechanismen 

Indem die Schwimmkerze während des Abbrennens 
nach und nach aus dem Wasser auftaucht, bleibt die 
Flamme in etwa auf derselben Höhe. Während der 
gesamten Brenndauer von 9 Stunden, in der die 
Kerze etwa um 13 cm kürzer wird, sinkt die Flam-
me nur etwa um 1,7 cm. Das Phänomen des Auf-
triebs sorgt hier also in bestimmtem Umfang auf 
selbsttätige Weise zur Einregelung der Flammenhö-
he. 

Als dieser Punkt im Unterricht angesprochen wurde 
brachten die Schülerinnen und Schüler zwei weitere 
Beispiele der selbsttätigen Einregelung einer be-
stimmten Höhe. 

In manchen alten Laternen, z. B. zur Beleuchtung 
einer Kutsche (Abb. 2) kommt es darauf an, die 
Flamme möglichst auf einer Höhe zu halten. Die 
Kerze wird dazu gegen den Widerstand einer 
Schraubenfeder in eine Hülse gedrückt und mit ei-
nem Deckel fixiert, der nur die Spitze der Kerze 
samt Docht hervorschauen läßt. Brennt die Kerze, 
so wird das Wachs in der Nähe der Flamme weich 
und wird etwas aus der Hülsenöffnung herausge-
drückt. Auf diese Weise wird in dem Maße Wachs 
nachgeliefert, in dem es verbrennt mit dem er-
wünschten Effekt, daß die Kerzenflamme immer auf 
gleicher Höhe bleibt unabhängig von der Länge der 
Kerze. 

Der Wirkung einer Feder verdankt sich auch der 
zweite hier angesprochene Regelmechanismus. Es 
handelt sich um Tragvorrichtungen von Tabletts, 
wie man sie z. B. in Mensen und anderen Großkü-
chenbetrieben findet. Wie groß der Tablettstapel 
auch sein mag, der sich auf dem Träger befindet. 
Die Tabletts bleiben in etwa stets auf derselben Hö-
he, so daß man die Tabletts bequem ablegen oder 
abnehmen kann. Wenn ein Tablett entfernt wird, 
werden die restlichen Tabletts um die durch die 
Entnahme des Tabletts verringerte Höhe angeho-
ben. Umgekehrt sinkt der Stapel entsprechend, 
wenn ein Tablett hinzugefügt wird. Entsprechendes 
gilt, wenn man eine beliebige Anzahl von Tabletts 
auf einmal entnimmt oder hinzufügt. 

Die Feder muß also so auf das Tablett abgestimmt 
sein, daß es sich gerade um soviel ausdehnt oder 
zusammenzieht, wie der entnommenen oder hinzu-
gefügten Masse entspricht. Die Federkonstante D 

muß unabhängig von der Höhe des anfliegenden 
Gegenstandes sein. Sei m = ρT A h die Masse der 
Tabletts mit der Fläche A und der Höhe h. Dann 
muß die entsprechende Gewichtskraft mg gerade 
gleich der elastischen Kraft der Feder D h sein: 

ρTAhg = Dh. 

Kürzt man durch h, so sieht man, daß die Federkon-
stante nur von der Fläche A der Tabletts und dem 
Material (ρT) abhängt. 
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