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C´est la dissymétrie qui crée le phénomèn 

Pierre Curie  

 
Symmetriebruch  
Symmetrie bedeutet im weitesten Wortsinn Wie-
derholung von Gleichartigem. In dem Maße, wie 
wissenschaftliche Forschung mit dem Aufdecken 
von Regelmäßigkeiten in der Natur befaßt ist, 
geht es so gesehen um die Suche nach Symmet-
rie. Die Symmetrie kann daher wohl mit Recht als 
das wirkungsvollste Ordnungsprinzip insbesonde-
re der Naturwissenschaften angesehen werden. 
Pierre Curie wies bereits gegen Ende des vorigen 
Jahrhunderts darauf hin, daß Symmetriebetrach-
tungen geeignet sein können, auf neue Effekte 
aufmerksam zu machen, wenn man sein Augen-
merk auf einen Symmetriebruch (dissymétrie) 
richtet, den man bei bestimmten (physikalischen) 
Vorgängen vorfinden kann. Denn „dieser Sym-
metriebruch muß sich in den Ursachen, die ihn 
hervorgerufen haben, wiederfinden“ [1]: Ein 
Symmetriebruch verweist auf die Eigenschaft ei-
nes Systems, Zustände verschiedener Ordnung 
einnehmen zu können. Wesentlich ist dabei, daß 
er nach universellen Gesetzmäßigkeiten organi-
siert ist, die für den Phasenübergang in einem 
Ferromagneten ebenso zutreffen wie für die spon-
tane Entstehung von Bénardzellen auf einer von 
unten geheizten Flüssigkeitsschicht. Man spricht 
daher auch allgemein von kritischen oder phasen-
übergangsähnlichen Phänomenen [2].  

Wir wollen uns die Universalität bei phasenüber-
gangsähnlichen Vorgängen zunutze machen und 
an einem an sich vertrauten Phänomen die Cha-
rakteristika eines Symmetriebruchs studieren. Bei 
dem System handelt es sich um einen schwim-
menden Stab. Die Beobachtung, daß ein solcher 
Stab je nach seiner eigenen oder der Dichte der 
Flüssigkeit, in der er schwimmt, verschiedene 
Lagen einnehmen kann, bildet den Ausgangs-
punkt unserer Untersuchungen. Diese Beobach-
tung ist wiederholt Gegenstand vor allem didakti-
scher Überlegungen gewesen [3-6]. Dabei wur-
den insbesondere die Bedingungen untersucht, 
unter denen das System die eine oder die andere 
Lage einnimmt. Uns interessiert im Sinne der vo-
rangegangenen Bemerkungen, wie der augen-
scheinlich mit einem Symmetriebruch verbunde-
ne Übergang im einzelnen abläuft und welche u-
niversellen Verhaltensweisen dabei auftreten.  

Das System  
Unser System besteht aus einer Flüssigkeit, in der 
ein (langer) Stab schwimmt, dessen Querschnitt 
ein gleichschenkliges Dreieck bildet. Wie man 
sich leicht experimentell klarmachen kann, hängt 
die Lage dieses Stabs vom Scheitelwinkel Θ und 
vom Dichteverhältnis D zwischen Stab und Flüs-
sigkeit ab: Ein schwerer in Wasser schwimmen-
der Holzstab (1-D << 1) mit mittlerem Scheitel-
winkel wird beispielsweise mit der Grundseite pa-
rallel zur Flüssigkeitsoberfläche (FO) nur wenig 
aus dem Wasser herausragen. Demgegenüber 
wird ein gleich geformter leichter Stab (D << 1) 
mit der Grundseite parallel zur FO nur wenig ins 
Wasser eintauchen.  

Allgemein wollen wir die Lage des Stabes durch 
den Winkel f erfassen, den die Grundseite z mit 
der FO bildet (siehe Abb. 1). Die Gleichgewichts-
lage, die sich einstellt, wenn ein Kontrollparame-
ter (im vorliegenden Fall das Dichteverhältnis D 
oder der Scheitelwinkel Θ) variiert wird, sehen 
wir als Ordnungsparameter ϕ0 unseres Systems 
(vgl. z.B.[7]) an. Er wird durch ein Minimum der 
potentiellen Energie U des Systems bestimmt. 
Diese hängt unter der Voraussetzung, daß sich die 
Höhe des Flüssigkeitsspiegels mit der Eintauch-
tiefe des Stabes nicht merklich ändern möge, nur 
von der Differenz der Abstände des Schwerpunk-
tes des gesamten Stabes yk und des untergetauch-
ten Teilkörpers yf von der FO ab:  

( )fk yymgU −= . 

Dabei ist m die Masse des Stabes, g die Erdbe-
schleunigung. Da der Stab als lang vorausgesetzt 
wurde und daher in Längsrichtung keine Verän-
derungen zeigt, können wir uns auf eine Betrach-
tung der dreieckigen Stirnfläche beschränken. 
Der Einfachheit halber berechnen wir zunächst 
die Koordinaten xsk , ysk bzw. xsf, ysf des Schwer-
punkts der gesamten bzw. untergetauchten Stirn-
fläche bezüglich eines mit dem Dreieck fest ver-
bundenen Koordinatensystem (Abb. 1 ), auf die 
sich yk bzw. yf dann durch eine einfache Trans-
formation zurückführen läßt.  

Man sieht sofort: xsk = z/2; ysk = h/3 , mit z = 2s 
sin(Θ/2) und h2 = s2 - z2/4.  
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Bei der Ermittlung von xsf und ysf hat man vier 
topologisch verschiedene Situationen gesondert 
zu betrachten, je nachdem ob 1. die Grundseite, 2. 
die Ecke zwischen Grundseite und Schenkel, 3. 
eine Schenkelseite oder 4. die Ecke zwischen den 
Schenkeln eingetaucht ist.  

Zu Abbildung 1: xsf und ysf berechnen wir (gem. 
Abb. 1) als das mit den Flächen Ad und At ge-
wichtete Mittel aus den Schwerpunktskoordinaten 
xsd , ysd, xst und yst des Dreiecks und Trapezes, in 
die untergetauchte Fläche Af zerlegt werden 
kann: 

( )
f

tstdsdsf A
AxAxx 1

+= ,

( )
f

tstdsdsf A
AyAyy 1

+= .  

Dabei sind:  

( )( )
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2
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2
tan Θ⋅=ba  , 

 
2

tan Θ=t  ,  

ϕξ sin=  , 

 
2

cosΘ=w  ,     εsin=k  

Zu Abbildung 2: In diesem Fall müssen die 
Schwerpunktskoordinaten eines Dreiecks berech-
net werden: 

grzxsf −−=
2
1

 , 

hysf 3
1

=  

γsin⋅=ah  ,  

 
Abb. 2: Skizze zur Erläuterung der verwendeten 
Symbole im Fall 2 

 
Abb. 1 : Skizze zur Erläuterung der verwendeten 
Symbole im Fall 1. 
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 Zu 3.: Die untergetauchte Fläche hat die Form 
eines Vierecks, dessen Schwerpunktskoordinaten 
aus den Koordinaten des Schwerpunktes der ge-
samten und der nicht untergetauchten Fläche be-
rechnet werden: 

 
Abb.3: Skizze zur Erläuterung der verwende-
ten Symbole im Fall 3 
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f

sdsk
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Dabei ist: 

zhA
2
1

=   

DzhAf 2
1

=  , 

( ) zhDA
2
110 −= . 

Die Koordinaten xsd und ysd können wie im Fall 2. 
bestimmt werden, wenn für den Winkel ϕ der 
Winkel 180-ϕ und für die Fläche As die Fläche 
A0 gesetzt wird 

⎟
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Zu 4.: Die eingetauchte Fläche hat wieder die 
Form eines Dreiecks, dessen Schwerpunkt analog 
zu Fall 3. bestimmt wird:  

f
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x 0−

= ,
f
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y 0−

=  

mit zhA
2
1

= , 

 DzhAf 2
1

= , 

 ( ) zhDA
2
110 −= . 

Die Koordinaten xsv und ysv werden dann wie un-
ter Fall 1. bestimmt, wobei für ϕ der Winkel 
180°-ϕ und für Af die Fläche A0 gesetzt wird. 
Außerdem ist eine Änderung bei der Bestimmung 

der x-Koordinate des Schwerpunktes des Drei-
ecks ABC zu beachten: 

gzxsd −=
2
1 . 

Da wir zur Bestimmung des Potentials U den Ab-
stand der Schwerpunkte Sk und Sf zur FO benöti-
gen, muß noch eine entsprechende Koordinaten-
transformation durchgeführt werden, d.h. es gilt:  

U = mg( yk - yf )  

mit yk= ysk cosϕ - xsk sinϕ  

sowie  yf= ysf cosϕ - ysk sinϕ .  

Gleichgewichtsverhalten  

Variation der Flüssigkeitsdichte  
Die Lage des Stabes, beschrieben durch den 
Gleichgewichtswinkel ϕ0, wird bestimmt durch 
die Minima der potentiellen Energie U. Wir be-
trachten zunächst, wie sich ϕ0 bei einem Stab 
vom Querschnitt eines gleichseitigen Dreiecks ( 
Θ = 60° ) in Abhängigkeit von D ändert. Es zeigt 
sich, daß das Potential bei kleinem D ein ausge-
prägtes Minimum bei ϕ = 0° besitzt, das Dreieck 
also mit der Grundseite parallel zur FO 
schwimmt. Mit wachsendem D taucht der Körper 
zunächst unter Beibehaltung seiner Lage lediglich 
etwas tiefer in die Flüssigkeit ein. Dabei wird das 
Minimum bei zunehmend flacher. Bei D ≈ 0.43 
wird die Lage des Stabes plötzlich instabil, was 
sich im Potentialverlauf dadurch bemerkbar 
macht, daß das ursprüngliche Minimum zu einem 
relativen Maximum wird und rechts davon zwei 
neue Minima auftreten (Abb. 5). 

 
Abb.4: Skizze zur Erläuterung der Symbole für 
Fall 4. 

Diese so genannte Bifurkation verlangt dem Sys-
tem eine Entscheidung für eines der beiden Mi-
nima ab, die durch kleinste Störungen (Fluktuati-
onen) getroffen wird und damit einen Symmetrie-

 
Abb. 5: Das Potential als Funktion der Lage ϕ 
im Bereich von –60° bis +60° für verschiedene 
Dichteverhältnisse D. Die Minima wurden mit-
einander verbunden, um die Bifurkation zu ver-
anschaulichen 
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bruch bedingt: Der Stab dreht sich nach links o-
der nach rechts in ein neues Minimum ϕ0 ≠ 0° 
hinein.  

Eine weitere Zunahme von D führt zu einem wei-
teren Drehen des Stabes, bis er sich plötzlich bei 
D ≈ 0.55 mit einer anderen Seite parallel zu FO 
stellt. Diesem „Zurückspringen“ in die ursprüng-
liche Symmetrie entspricht eine Wiedervereini-
gung zweier Minima bei ϕ0 = 60°. Eine weitere 
Zunahme von D führt zu einer Stabilisierung der 
Lage verbunden mit einem weiteren Eintauchen 
des Stabs in die Flüssigkeit. Diese Symmetrieän-
derungen zeigen eine weitgehende Analogie mit 
Phasenübergängen 2. Art, wie wir sie z.B. von 
einem Ferromagneten bei Überschreitung der Cu-
rie-Temperatur kennen ( vgl.[2] ).  

Das wird besonders deutlich, wenn man den als 
Ordnungsparameter fungierenden Gleichge-
wichtswinkel als Funktion des Kontrollparame-
ters D aufträgt (Abb. 6 ): Erniedrigt man D wie-
der, nachdem der Stab in die Lage ϕ0 ≠ 0° hinein-
gekippt ist, so werden dieselben Lagen in umge-
kehrter Richtung durchlaufen. Hat man jedoch D 
soweit erhöht, daß der Stab bereits wieder in die 
der ursprüngliche Symmetrie entsprechende Lage 
(ϕ0 = 60°) gekippt ist (s.o.), so hängt es wiederum 
vom Zufall ab, ob derselbe „Rückweg“ einge-
schlagen wird oder ob sich der Stab in derselben 
Richtung weiterdreht, um die der Ausgangslage 
äquivalente Lage bei ϕ0 = 120° einzunehmen. Die 
den beiden Symmetrieänderungen entsprechen-
den Bifurkationen sind gewissermaßen gegenein-
ander geschaltet.  

Bricht man jedoch die dreizählige Drehsymmetrie 
des Stabes von Anfang an, indem man mit einem 
Stab von nur gleichschenkligem Querschnitt star-
tet, so treten zwei verschiedene neue Effekte auf, 
je nachdem ob der Scheitelwinkel Θ < 60° oder Θ 
> 60° ist. Im ersten Fall verschwindet die zweite 
Bifurkation. Der von ϕ0 =0° ausgehende Weg 
wird zu einer Art Einbahnstraße ( Abb. 7), weil es 
(von sehr großen Störungen abgesehen) keinen 
Rückweg gibt. Das ist auch anschaulich klar: Hat 
sich der Stab erst einmal auf einen der langen 
Schenkel gelegt, so pendelt er mit zu- und ab-
nehmendem D nur noch zwischen dieser und der 
Lage hin und her, in der die Grundseite aus der 
Flüssigkeit (parallel zur FO) ragt. Im Fall Θ > 60° 
erreicht man den Zustand, in dem sich außer der 
langen Grundseite ein Schenkel parallel zur FO 
stellt, überhaupt nicht (Abb. 8). 
 
Variation des Scheitelwinkels  
Hält man D konstant und variiert stattdessen den 
Scheitelwinkel Θ (z.B. indem man entsprechende 

Holzstäbe mit verschiedenem Θ in die Flüssigkeit 
setzt), so erhält man u.a. Symmetriebrüche, die 
Phasenübergängen 1. Art analog sind [5]. Die 
Analogie ist vollständig, wenn man in der Nähe 
von D = 0.5 experimentiert. (Sie ist allerdings ex-
perimentell wohl kaum zu verifizieren.)  

 
Abb.6: Der Gleichgewichtswinkel als Funktion 
von D. Bei einem kritischen Wert von D treten 
plötzlich zwei Minima auf (Nur ein Ast ge-
zeichnet) 

Abb.7: Unterschreitet Θ die symmetrische Situa-
tion von 60°auch nur geringfügig, so kann die 
Ausgangslage ϕ0=0° nicht wieder erreicht wer-
den

 
Abb.8: Bei Stäben mit Θ > 60° gibt es nur eine 
Bifurkation. Dieses Verhalten entspricht dem ei-
nes klass. Phasenübergangs am ehesten 
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Typisch dafür ist das Auftreten einer Hysterese 
im ϕ0-Θ-Diagramm (Abb. 9): Je nachdem, ob Θ 
vergrößert oder verkleinert wird, tritt der Sym-
metriebruch früher oder später auf. In Abb. 10 
wurde der entsprechende Potentialverlauf darge-
stellt. Bei größeren Abweichungen von D = 0.5 
verschwindet die Hysterese wieder (Abb. 11-12), 
und es stellt sich (wenigstens in begrenzten Be-
reichen) wieder ein Verhalten ein, das den obigen 
modifizierten Phasenübergängen 2. Art infolge 

der Variation der Dichte ähnlich ist. 

Um sich einen Überblick über alle Verhaltens-
möglichkeiten eines Stabs bei Variation eines Pa-
rameters zu verschaffen, ist es zweckmäßig, sich 
die entsprechenden Potentialverläufe über den ge-
samten Winkelbereich anzusehen (z.B. Abb. 13 
und 14) 

Experimente  
Zum Abschluß sollen einige Hinweise zur expe-
rimentellen Darstellung der Symmetriebrüche an-
gegeben werden. Dabei beschränken wir uns auf 
Versuche, die mit einfachen Mitteln gewisserma-
ßen freihand möglich sind.  

Zur Demonstration der kontinuierlichen Symmet-
riebrüche (Variation der Dichte) empfiehlt es 
sich, einen exakt gearbeiteten Holzstab geeigneter 
Dichte zu benutzen. Als Flüssigkeit bietet sich 
Wasser an, das mit Hilfe von Salz oder Zucker in 
der Dichte variiert werden kann. Zucker hat den 
Vorteil, daß man durch Erwärmen des Wassers 
und kräftiges Rühren (Magnetrührer), relativ 
stark konzentrierte Lösungen, also relativ große 
Dichten herstellen kann. Nachteile sind die ex-
treme Klebrigkeit und Temperaturabhängigkeit, 
die dem Experimentator einiges Geschick abver-
langen. Unter diesen Bedingungen haben wir die 
theoretisch erwarteten Symmetriebrechungen zu-
mindest qualitativ verifizieren können.  

 
Abb. 9: Auftreten einer Hysterese im ϕ0-Θ-
Diagramm für D = 0,49 

 
Abb. 10: Ausschnitt aus dem Potentialverlauf für 
einen Phasenübergang 1. Art 

Abb. 12: Die Hysterese verschwindet schließlich 
ganz 

 
Abb. 13: Der vollständige Potentialverlauf D = 
0,4 

 
Abb. 11: Für größere Abweichungen von D = 
0,5 wird die Hysterese kleiner 

Zur Darstellung der Symmetriebrüche bei Varia-
tion des Scheitelwinkels kommt man vermutlich 
nicht umhin, verschiedene Holzstäbe mit unter-
schiedlichen Scheitelwinkeln nacheinander in die 
jeweilige Flüssigkeit zu legen. Auch hier wird 
man sich i.a. auf qualitative Ergebnisse beschrän-
ken müssen.  
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Fazit  [9] Schlichting, H.J.: Zu Phasenübergängen. Phy-
sik und Didaktik 16/2, 163 (1988).  

Symmetriebrüche sind Erscheinungen, die bereits 
an einfachen Systemen. Ihre Bedeutung liegt zum 
einen in der Universalität ihres Auftretens. Völlig 
verschiedene Systeme wie Ferromagneten, 
schwimmende Stäbe, Stehpendel [7], aber auch 

Ökosysteme u.ä. zeigen ein qualitativ analoges 
Verhalten. (Eine Sammlung von Freihandversu-
chen findet man in [8]). Daher reicht i.a. die le-
diglich qualitative experimentelle Darstellung der 
Symmetriebrüche aus. Zum anderen sind Sym-
metriebrüche Erscheinungen, die zum Verständ-
nis von Vorgängen in der Umwelt von Bedeutung 
sind [9]. Einfache Systeme wie der schwimmende 
Stab können helfen, diese Vorgänge zu veran-
schaulichen und modellmäßig zu erfassen.  

 

 
Abb. 14: Der vollständige Potentialverlauf für Θ 
= 75° 

Literatur  
[ 1 ] Curie, P.: Sur la symétrie dans les phénomè-
nes physique, symétrie d'un champs électrique et 
d'un champs magnetique. J. de Physique 3, 393 
(1894).  

[2] Rodewald, B.: Phasenübergangsähnliche Phä-
nomene in der Mechanik. PdN-Ph 32/2, 35 
(1983).  

[3] Berge, O.E.: Wie schwimmt eine quadratische 
Säule. MNU 32, 214 (1979).  

[4] Bergold, H.: Überraschungen mit dem 
schwimmenden Balken. Physik und Didaktik 3, 
175 (1978).  

[5] Wode, D.: Zum Schwimmverhalten einer 
quadratischen Säule. MNU 34/1, 18 (1981).  

[6] Delbourgo, E.: The floating plank. Am. J. 
Phys. 55/9, 799 (1987).  

[7] Schlichting, H.J., Rodewald, B.: Zum kriti-
schen Verhalten eines invertierten Pendels. Phy-
sik und Didaktik 15/1, 38 (1977).  

[8] Rodewald, B., Schlichting, H.J.: Ein Spiel-
zeug zur Veranschaulichung von Katastrophen in 
Ökosystemen. NiU-P/C 33/8, 294 (1984).  


	Symmetriebruch am schwimmenden Stab
	Symmetriebruch 
	Das System 
	Gleichgewichtsverhalten 
	Variation der Flüssigkeitsdichte 
	Variation des Scheitelwinkels 


	Experimente 
	Fazit 
	Literatur 


