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Symmetriebruch am schwimmenden Stab

H. Joachim Schlichting, Udo Bachhaus, , Ansgar Schlie

Symmetriebruch

Symmetrie bedeutet im weitesten Wortsinn Wie-
derholung von Gleichartigem. In dem MaRe, wie
wissenschaftliche Forschung mit dem Aufdecken
von RegelméRigkeiten in der Natur befal3t ist,
geht es so gesehen um die Suche nach Symmet-
rie. Die Symmetrie kann daher wohl mit Recht als
das wirkungsvollste Ordnungsprinzip insbesonde-
re der Naturwissenschaften angesehen werden.
Pierre Curie wies bereits gegen Ende des vorigen
Jahrhunderts darauf hin, dal Symmetriebetrach-
tungen geeignet sein konnen, auf neue Effekte
aufmerksam zu machen, wenn man sein Augen-
merk auf einen Symmetriebruch (dissymétrie)
richtet, den man bei bestimmten (physikalischen)
Vorgéngen vorfinden kann. Denn ,dieser Sym-
metriebruch muf sich in den Ursachen, die ihn
hervorgerufen haben, wiederfinden” [1]: Ein
Symmetriebruch verweist auf die Eigenschaft ei-
nes Systems, Zustande verschiedener Ordnung
einnehmen zu kénnen. Wesentlich ist dabei, dai3
er nach universellen GesetzméaRigkeiten organi-
siert ist, die fir den Phasenlibergang in einem
Ferromagneten ebenso zutreffen wie fiir die spon-
tane Entstehung von Bénardzellen auf einer von
unten geheizten Flissigkeitsschicht. Man spricht
daher auch allgemein von kritischen oder phasen-
Uibergangsahnlichen Phdnomenen [2].

Wir wollen uns die Universalitat bei phasentiber-
gangséhnlichen Vorgéngen zunutze machen und
an einem an sich vertrauten Phdnomen die Cha-
rakteristika eines Symmetriebruchs studieren. Bei
dem System handelt es sich um einen schwim-
menden Stab. Die Beobachtung, daB ein solcher
Stab je nach seiner eigenen oder der Dichte der
Flussigkeit, in der er schwimmt, verschiedene
Lagen einnehmen kann, bildet den Ausgangs-
punkt unserer Untersuchungen. Diese Beobach-
tung ist wiederholt Gegenstand vor allem didakti-
scher Uberlegungen gewesen [3-6]. Dabei wur-
den insbesondere die Bedingungen untersucht,
unter denen das System die eine oder die andere
Lage einnimmt. Uns interessiert im Sinne der vo-
rangegangenen Bemerkungen, wie der augen-
scheinlich mit einem Symmetriebruch verbunde-
ne Ubergang im einzelnen ablauft und welche u-
niversellen Verhaltensweisen dabei auftreten.

C’est la dissymétrie qui crée le phénomen

Pierre Curie

Das System

Unser System besteht aus einer Flussigkeit, in der
ein (langer) Stab schwimmt, dessen Querschnitt
ein gleichschenkliges Dreieck bildet. Wie man
sich leicht experimentell klarmachen kann, hangt
die Lage dieses Stabs vom Scheitelwinkel ® und
vom Dichteverhéltnis D zwischen Stab und Flus-
sigkeit ab: Ein schwerer in Wasser schwimmen-
der Holzstab (1-D << 1) mit mittlerem Scheitel-
winkel wird beispielsweise mit der Grundseite pa-
rallel zur Flussigkeitsoberflache (FO) nur wenig
aus dem Wasser herausragen. Demgegeniber
wird ein gleich geformter leichter Stab (D << 1)
mit der Grundseite parallel zur FO nur wenig ins
Wasser eintauchen.

Allgemein wollen wir die Lage des Stabes durch
den Winkel f erfassen, den die Grundseite z mit
der FO bildet (siehe Abb. 1). Die Gleichgewichts-
lage, die sich einstellt, wenn ein Kontrollparame-
ter (im vorliegenden Fall das Dichteverhéltnis D
oder der Scheitelwinkel ®) variiert wird, sehen
wir als Ordnungsparameter @, unseres Systems
(vgl. z.B.[7]) an. Er wird durch ein Minimum der
potentiellen Energie U des Systems bestimmt.
Diese héngt unter der Voraussetzung, daf sich die
Hohe des Flussigkeitsspiegels mit der Eintauch-
tiefe des Stabes nicht merklich &ndern mdge, nur
von der Differenz der Abstande des Schwerpunk-
tes des gesamten Stabes y, und des untergetauch-
ten Teilkorpers y; von der FO ab:

U=mg(y, - v,)-

Dabei ist m die Masse des Stabes, g die Erdbe-
schleunigung. Da der Stab als lang vorausgesetzt
wurde und daher in Langsrichtung keine Veréan-
derungen zeigt, kdnnen wir uns auf eine Betrach-
tung der dreieckigen Stirnflache beschranken.
Der Einfachheit halber berechnen wir zunéchst
die Koordinaten Xg , Ysk bZW. X, Vst des Schwer-
punkts der gesamten bzw. untergetauchten Stirn-
flache beziiglich eines mit dem Dreieck fest ver-
bundenen Koordinatensystem (Abb. 1 ), auf die
sich yx bzw. y; dann durch eine einfache Trans-
formation zuriickfiihren 1aRt.

Man sieht sofort: X = z/2; yg = /3, mit z = 2s
sin(®/2) und h? = s* - 7%/4,



Bei der Ermittlung von xg und yg hat man vier
topologisch verschiedene Situationen gesondert
zu betrachten, je nachdem ob 1. die Grundseite, 2.
die Ecke zwischen Grundseite und Schenkel, 3.
eine Schenkelseite oder 4. die Ecke zwischen den
Schenkeln eingetaucht ist.

Zu Abbildung 1: X und yg berechnen wir (gem.
Abb. 1) als das mit den Flachen A4 und A; ge-
wichtete Mittel aus den Schwerpunktskoordinaten
Xsd » Ysd» Xt UN Y des Dreiecks und Trapezes, in
die untergetauchte Flache As zerlegt werden
kann:

FG

Abb. 1 : Skizze zur Erlauterung der verwendeten
Symbole im Fall 1.

1
Xsi =(Xsd Ad + XstAt)A_’

f

1
Y :(st Ay + ystAt)A_'

f

Dabei sind:
z (z-2tb+c))
Xg =5t ———F~—
2 6
Ysd :E'
boly |2 |2, (zew=Dkh)
2t V2t {2t (k-2téw)
a:b-tang,
2
t:tang,
2
E=sing ,

® )
W=COSE , k=sing

Zu Abbildung 2: In diesem Fall missen die
Schwerpunktskoordinaten eines Dreiecks berech-
net werden:
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1
X =z—§r—g :
1
=—h
ysf 3
h=a-siny ,

FC

Abb. 2: Skizze zur Erlauterung der verwendeten
Symbole im Fall 2

1 1
g=-m, m=e-=r
3 2

G
e=a-sin—,
2

sin

sing

e Dzhsino
siny sing

Zu 3.: Die untergetauchte Flache hat die Form
eines Vierecks, dessen Schwerpunktskoordinaten
aus den Koordinaten des Schwerpunktes der ge-
samten und der nicht untergetauchten Flache be-
rechnet werden:

FO

Abb.3: Skizze zur Erlauterung der verwende-
ten Symbole im Fall 3

_ XskA_ Xsd AO
f - L]
s Af



_ yskA_ ysdAO
Y =— —— —
Af
Dabei ist:
Azizh
2
A, 1 Dzh ,
2
1
A =(1- D)Ezh.

Die Koordinaten Xsg und ysg kénnen wie im Fall 2.
bestimmt werden, wenn fiir den Winkel ¢ der
Winkel 180-¢ und fir die Flache A die Flache
Ap gesetzt wird

X L r(1+ sin QMJ ,
3

2sind
1 siny sing
=—r—" -7
=3 sins

Zu 4.: Die eingetauchte Flache hat wieder die
Form eines Dreiecks, dessen Schwerpunkt analog
zu Fall 3. bestimmt wird:

&

Abb.4: Skizze zur Erlauterung der Symbole fir
Fall 4.

— XskA_stAO — yskA_ystO
A, e A,

sf

mit A= izh,
2

A 1 Dzh,
2

A, =(1- D)%zh.

Die Koordinaten x5, und ys, werden dann wie un-
ter Fall 1. bestimmt, wobei fir ¢ der Winkel
180°-¢ und flr A¢ die Flache A, gesetzt wird.
AuRerdem ist eine Anderung bei der Bestimmung
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der x-Koordinate des Schwerpunktes des Drei-
ecks ABC zu beachten:

Xy = L z—g

sd 2 '
Da wir zur Bestimmung des Potentials U den Ab-
stand der Schwerpunkte S, und S; zur FO benéti-
gen, mul3 noch eine entsprechende Koordinaten-
transformation durchgefiihrt werden, d.h. es gilt:

U =mg(yx-yr)
mit Yk= Ysk COSP - Xsk SINQ

sowie Y= Vst COSQ - Ysk SING .

Gleichgewichtsverhalten

Variation der Flussigkeitsdichte

Die Lage des Stabes, beschrieben durch den
Gleichgewichtswinkel ¢o, wird bestimmt durch
die Minima der potentiellen Energie U. Wir be-
trachten zundchst, wie sich ¢, bei einem Stab
vom Querschnitt eines gleichseitigen Dreiecks (
® = 60°) in Abhéngigkeit von D andert. Es zeigt
sich, daB das Potential bei kleinem D ein ausge-
pragtes Minimum bei ¢ = 0° besitzt, das Dreieck
also mit der Grundseite parallel zur FO
schwimmt. Mit wachsendem D taucht der Korper
zunachst unter Beibehaltung seiner Lage lediglich
etwas tiefer in die Flussigkeit ein. Dabei wird das
Minimum bei zunehmend flacher. Bei D ~ 0.43
wird die Lage des Stabes plétzlich instabil, was
sich im Potentialverlauf dadurch bemerkbar
macht, daB das urspriingliche Minimum zu einem
relativen Maximum wird und rechts davon zwei
neue Minima auftreten (Abb. 5).

Diese so genannte Bifurkation verlangt dem Sys-
tem eine Entscheidung fiir eines der beiden Mi-
nima ab, die durch kleinste Stérungen (Fluktuati-
onen) getroffen wird und damit einen Symmetrie-

9=80°
0,24 D=06

" o4
—B0 30 0 30 eall

Abb. 5: Das Potential als Funktion der Lage ¢
im Bereich von —60° bis +60° fir verschiedene
Dichteverhéltnisse D. Die Minima wurden mit-
einander verbunden, um die Bifurkation zu ver-
anschaulichen



bruch bedingt: Der Stab dreht sich nach links o-
der nach rechts in ein neues Minimum ¢q = 0°
hinein.

Eine weitere Zunahme von D flihrt zu einem wei-
teren Drehen des Stabes, bis er sich plétzlich bei
D ~ 0.55 mit einer anderen Seite parallel zu FO
stellt. Diesem ,,Zuriickspringen® in die urspriing-
liche Symmetrie entspricht eine Wiedervereini-
gung zweier Minima bei @, = 60°. Eine weitere
Zunahme von D fihrt zu einer Stabilisierung der
Lage verbunden mit einem weiteren Eintauchen
des Stabs in die Flussigkeit. Diese Symmetriedn-
derungen zeigen eine weitgehende Analogie mit
Phasenlibergangen 2. Art, wie wir sie z.B. von
einem Ferromagneten bei Uberschreitung der Cu-
rie-Temperatur kennen (vgl.[2] ).

Das wird besonders deutlich, wenn man den als
Ordnungsparameter ~ fungierenden  Gleichge-
wichtswinkel als Funktion des Kontrollparame-
ters D auftrégt (Abb. 6 ): Erniedrigt man D wie-
der, nachdem der Stab in die Lage ¢o = 0° hinein-
gekippt ist, so werden dieselben Lagen in umge-
kehrter Richtung durchlaufen. Hat man jedoch D
soweit erhoht, dall der Stab bereits wieder in die
der urspriingliche Symmetrie entsprechende Lage
(o = 60°) gekippt ist (s.0.), so hangt es wiederum
vom Zufall ab, ob derselbe ,Riickweg“ einge-
schlagen wird oder ob sich der Stab in derselben
Richtung weiterdreht, um die der Ausgangslage
aquivalente Lage bei ¢y = 120° einzunehmen. Die
den beiden Symmetriednderungen entsprechen-
den Bifurkationen sind gewissermalien gegenein-
ander geschaltet.

Bricht man jedoch die dreizéhlige Drehsymmetrie
des Stabes von Anfang an, indem man mit einem
Stab von nur gleichschenkligem Querschnitt star-
tet, so treten zwei verschiedene neue Effekte auf,
je nachdem ob der Scheitelwinkel ® < 60° oder ®
> 60° ist. Im ersten Fall verschwindet die zweite
Bifurkation. Der von ¢, =0° ausgehende Weg
wird zu einer Art EinbahnstraRe ( Abb. 7), weil es
(von sehr groflen Stérungen abgesehen) keinen
Rickweg gibt. Das ist auch anschaulich klar: Hat
sich der Stab erst einmal auf einen der langen
Schenkel gelegt, so pendelt er mit zu- und ab-
nehmendem D nur noch zwischen dieser und der
Lage hin und her, in der die Grundseite aus der
Flussigkeit (parallel zur FO) ragt. Im Fall ® > 60°
erreicht man den Zustand, in dem sich auBer der
langen Grundseite ein Schenkel parallel zur FO
stellt, Gberhaupt nicht (Abb. 8).

Variation des Scheitelwinkels

Halt man D konstant und variiert stattdessen den
Scheitelwinkel ® (z.B. indem man entsprechende
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Holzstabe mit verschiedenem @ in die Flissigkeit
setzt), so erhalt man u.a. Symmetriebriiche, die
Phaseniibergdngen 1. Art analog sind [5]. Die
Analogie ist vollstandig, wenn man in der Néhe
von D = 0.5 experimentiert. (Sie ist allerdings ex-
perimentell wohl kaum zu verifizieren.)
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Il 6=60° _?‘
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Abb.6: Der Gleichgewichtswinkel als Funktion
von D. Bei einem kritischen Wert von D treten
plétzlich zwei Minima auf (Nur ein Ast ge-
zeichnet)
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Abb.7: Unterschreitet ® die symmetrische Situa-
tion von 60°auch nur geringflgig, so kann die

Ausgangslage @,=0° nicht wieder erreicht wer-
den

wlly

D:ﬁ F D.‘B g
Abb.8: Bei Staben mit ® > 60° gibt es nur eine
Bifurkation. Dieses Verhalten entspricht dem ei-
nes klass. Phaseniibergangs am ehesten



Typisch daflir ist das Auftreten einer Hysterese
im @o-@-Diagramm (Abb. 9): Je nachdem, ob ®
vergrofRert oder verkleinert wird, tritt der Sym-
metriebruch friher oder spater auf. In Abb. 10
wurde der entsprechende Potentialverlauf darge-
stellt. Bei groferen Abweichungen von D = 0.5
verschwindet die Hysterese wieder (Abb. 11-12),
und es stellt sich (wenigstens in begrenzten Be-
reichen) wieder ein Verhalten ein, das den obigen
modifizierten Phasenubergdngen 2. Art infolge

e 1,

1601 =049 ‘,X%.

120 4

- =

40 ' 80 ' @  ep

Abb. 9: Auftreten einer Hysterese im ¢0-0-
Diagramm fiir D = 0,49

Abb. 10: Ausschnitt aus dem Potentialverlauf fir
einen Phaseniibergang 1. Art

¥ [o]

120 4

a0

50 Gb a4

Abb. 11: Fir groBere Abweichungen von D =
0,5 wird die Hysterese kleiner

der Variation der Dichte &hnlich ist.

Um sich einen Uberblick tber alle Verhaltens-
mdglichkeiten eines Stabs bei Variation eines Pa-
rameters zu verschaffen, ist es zweckmaRig, sich
die entsprechenden Potentialverlaufe tber den ge-
samten Winkelbereich anzusehen (z.B. Abb. 13
und 14)
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Experimente

Zum AbschluB sollen einige Hinweise zur expe-
rimentellen Darstellung der Symmetriebriiche an-
gegeben werden. Dabei beschranken wir uns auf
Versuche, die mit einfachen Mitteln gewisserma-
Ren freihand mdglich sind.

Zur Demonstration der kontinuierlichen Symmet-
riebriiche (Variation der Dichte) empfiehlt es
sich, einen exakt gearbeiteten Holzstab geeigneter
Dichte zu benutzen. Als Flissigkeit bietet sich
Wasser an, das mit Hilfe von Salz oder Zucker in
der Dichte variiert werden kann. Zucker hat den
Vorteil, da® man durch Erwdrmen des Wassers
und kréftiges Ruhren (Magnetrihrer), relativ
stark konzentrierte Ldsungen, also relativ grofe
Dichten herstellen kann. Nachteile sind die ex-
treme Klebrigkeit und Temperaturabhdngigkeit,
die dem Experimentator einiges Geschick abver-
langen. Unter diesen Bedingungen haben wir die
theoretisch erwarteten Symmetriebrechungen zu-
mindest qualitativ verifizieren kénnen.

CANIN
150 | D=04

120+

50 60 0 er
Abb. 12: Die Hysterese verschwindet schlieBlich
ganz

0 60 120 180 240 300 @[

Abb. 13: Der vollstandige Potentialverlauf D =
0,4

Zur Darstellung der Symmetriebriiche bei Varia-
tion des Scheitelwinkels kommt man vermutlich
nicht umhin, verschiedene Holzstabe mit unter-
schiedlichen Scheitelwinkeln nacheinander in die
jeweilige Flussigkeit zu legen. Auch hier wird
man sich i.a. auf qualitative Ergebnisse beschran-
ken miissen.



Fazit

Symmetriebriiche sind Erscheinungen, die bereits
an einfachen Systemen. lhre Bedeutung liegt zum
einen in der Universalitat ihres Auftretens. Vollig
verschiedene Systeme wie Ferromagneten,
schwimmende Stébe, Stehpendel [7], aber auch

t
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Abb. 14: Der vollstdndige Potentialverlauf fir @
=75°

Okosysteme u.4. zeigen ein qualitativ analoges
Verhalten. (Eine Sammlung von Freihandversu-
chen findet man in [8]). Daher reicht i.a. die le-
diglich qualitative experimentelle Darstellung der
Symmetriebriiche aus. Zum anderen sind Sym-
metriebriiche Erscheinungen, die zum Versténd-
nis von Vorgangen in der Umwelt von Bedeutung
sind [9]. Einfache Systeme wie der schwimmende
Stab konnen helfen, diese Vorgdnge zu veran-
schaulichen und modellméRig zu erfassen.
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