EvoPAD Summer School "Bioinformatics"

10-13. September 2019 K6 Seminarhotel, Kirschallee 6, 38820 Halberstadt

Principles of Nanopore Sequencing

Magnetic beads for efficient DNA binding

Minimal sharing

High range, high quality DNA for Nanopore (200-500kb)

Smart DNA prep (m) for MinION

Proteolytic Lysis of Tissue (1-100 mg)

- Cut the tissue into small pieces and place in a 1.5 ml tube 1.
- Add 400 µl Lysis Solution CBV and 40 µl Proteinase K 2.
- Vortex shortly and incubate at 55°C for (1-3 hs) in thermal shaker (1,200 rpm) 3.
- After lysis centrifuge 5 min (max speed), transfer supernatant to a new tube 4.
- Add 1 µl RNase A (10 mg/ml), digestion 10 min at RT, transfer to SE tube 5.

Binding DNA to SE Smart Extraction Macro Beads

- 6. Add 40 μ l Binding Optimizer and 350 μ l 2-Propanol in the SE tube
- 7. Place SE tube into a thermal shaker (3 min; 1,400 rpm)
- 8. Place SE tube into magnetic rack for separating the SE Macro Beads
- 9. Discard supernatant

Washing and removing of alcohol

- 10. Add 800 μl Wasching Solution LS (invert rack 5X)
- 11. Discard supernatant leaving SE tubes in magnetic rack
- 12. Add 800 μ l of 80% ethanol and wash beads (invert rack 5X) 2X
 - 13. Discard supernatant leaving SE tubes in magnetic rack Remove the ethanol (15 min)65°C in thermal cycler, lid open 400 rpm

Elution of DNA

14. Add 200 μ l – 1,000 μ l Elution Buffer (15 min)at 65°C, thermal cycler 1,000 rpm 15. Place SE tube into the magnetic rack and transfer DNA supernatant into a new tube

Quantify 1 μ l eluted sample

(15.) Average fragment size > 30 kb (electrophoresis)16. Input mass (Qubit 1 μg)

1D (directional) PCR-free gDNA

Prepare the DNA

- 1. 1 µg genomic DNA in a DNA LoBind tube
- 2. Adjust volume to 49μ l with Nuclease-free water
- 3. Mixing by inversion (avoid sharing)
- 4. Spin down briefly in a microfuge

End-prep and nick repair

- 5. Thaw DNA CS (DCS) at RT, spin down, mix by pipetting, place on ice
- 6. Prepare the NEBNext FFPE DNA Repair Mix and NEB Next End repair/dA-tailing Module reagents and place on ice (see 5.)

Magnetic beads and magnetic rack

2X

Clean and extract the repaired DNA

- 1. Resuspend the AMPure XP beads by vortexing
- 2. Transfer the DNA sample to a clean 1.5 ml DNA LoBind tube
- 3. Add 60 µl of resuspended AMPure XP beads to the end-prep reaction
- 4. Mix by flicking the tube
- 5. Incubat on a Hula mixer (rotating) for 5-15 min at RT
- 6. Prepare 500 μl of fresh 70% ethanol in Nuclease-free water
- 7. Spin down the sample and pellet on a magnet
- 8. Keep the tube on the magnet and pipette off the supernatant
- 9. Keep on magnet, wash beads with 200 μ l of freshly prepared 70% ethanol without disturbing the pellet
- 10. Remove the 70% ethanol using a pipette and discard
- 11. Spin down and place the tube back on the magnet
- 12. Pipette off any residual ethanol. Allow to dry for ca. 30 seconds
- 13. Remove tube from magnetic rack and resuspend pellet in 61 μl water
- 14. Incubate for 5 min at RT
- 15. Pellet the beads on a magnet until the eluate is clear and colourless
- 16. Remove and retain 61 μl of eluate into a clean 1.5 ml LoBind tube

- Safe stop point 4°C -

Quantify 1 μ l eluted sample using a Quibit fluorometer

Ligation of sequencing adapters

- 1. Spin down Adapter Mix (AMX) and T4 Ligase (E6056). Place on ice
- 2. Thaw Ligation Buffer (LNB) at RT, spin down and mix by pitpetting. Place on ice
- 3. Thaw the Elution Buffer (EB) at RT, mix by vortexing, spin down. Place on ice
- 4. To enrich DNA fragements of 3 kb or longer, thaw one tube of L Buffer (LFB) To retain DNA fragemts shorter than 3 kb, thaw one tube of S Buffer (SFB)
- 5. Mix by vortexing, spin down and place on ice

Clean and extract the adapter-ligated DNA

- 7. Prepare the AMPure XP beads for use. Resuspend by vortexing
- 8. Add 40 μ l of resuspended AMPure XP beads to the reaction and flick tube
- 9. Incubate on Hula mixer for 5-45 min at RT
- 10. Spin down the sample and pellet on a magnet. Keep the tube on the magnet
- 11. Remove the supernatant using a pipett and discard
- 12. Wash the beads by adding either
 - 250 µl Long Fragment Buffer (LFB)
 - or 250 µl Short Fragment Buffer (SFB)
 - Flick the beads to resuspend, then return the tube to the magnetic rack
 - allow the beads to pellet
 - Remove the supernatant using a pipett and discard
- 13. Spin down and place the tube back on the magnet
- 14. Pipette off any residual supernatant
- 15. Allow to try for ca. 30 seconds
- 16. Remove the tube from the magnetic rack and resuspend pellet in 15 μ l EB buffer
- 17. Incubate for 10-30 min at 37°C
- 18. Pellet the beads on a magnet until the eluate is clear and colourless ¹⁶

2X

Quantify

19. Remove and retain 15 μ l of eluate (Lib) into a clean 1.5 μ l LoBind tube

- 20. Dispose of the pelleted beads
- 21. Quantify 1 μl eluted sample using a Quibit fluoromter

- 22. The prepared library is used for loading into the flow cell
- 23. Store the library on ice until ready to load

Loading strategy

Flow cell 1

MinION – Set up the MinION flow cell and host computer

- 1. Open the MinKNOW GUI from the desktop icon
- 2. Establish a local internet connection (firmware confirmation)
- 3. Turn off sleep mode of computer
- 4. Choose the flow cell type from the selector box (FLO-MIN106)
- 5. Click Start test
- 6. Check the number of active pores available in System History panel
 - should be >800 from 4 X 512

Priming and loading the SpotON flow cell

- 1. Thaw the Sequencing Buffer (SQB), Loading Beads (LB), Flush Tether (FLT) and Flush Buffer (FLB) at RT, place on ice
- 2. Mix the Sequencing Buffer (SQB) and Flush Buffer (FLB) tubes by vortexing
- 3. Spin down the Flush Tether (FLT) tube, mix by pipetting, return to ice
- 4. Open the lid of the nanopore sequencing device and slide the flow cell's priming port cover clockwise so that the priming port is visible

priming port

- Care must be taken when drawing back buffer from the flow cell. The array of pores must be covered by buffer at all time. Removing more than 20-30 μl damaging the pores in the array
- 6. After opening the priming port, check for small bubble under the cover Draw back a small volume to remove any bubble (a few μls)
- 7. Set a P1000 pipette to 200 μl
- 8. Insert the tip into the priming port
- 9. Turn the wheel until the dial shows 220-230 μ l, or until you see a small <u>yo</u>lume of buffer entering the pipette tip

Prepare the flow cell priming mix: add
 30 μl of thawed and mixed flush Tether (FLT) directly to the tube of thawed and mixed Flush Buffer (FLB), and mix by pipetting

11. Load 800 μl of the priming mix into the flow cell via the priming port

12. Awoid air bubbles, wait for 5 min

- 13. Throughly mix the content of the Loading Beads (LB) by pipetting The Loading Beads (LB) tube contains a suspension of beads. These beads settle very quickly. It is vital that they are mixed!!! immediately before use
- 14. In a new tube, prepare the library for loading as follows:

37.5 μl	Sequencing Buffer (SQB)	
25.5 μl	Loading Beads (LB), mixed immediately before use	
<u>12 µl</u>	DNA library	
75 μl		

15. Gently lift the SpotON sample port cover to make the SpotON sample port accessible

16. Load slowly!!! 200 μ l of the priming mix into the flow cell via the priming port!!!!! (NOT the SpotON sample port). Avoiding airbubles

- 17. Mix the prepared library gently by pipetting up and down just prior loading
- 18. Add 75 μ l of sample to the flow cell via the SpotON sample port in a dropwise fashion. Ensure each drop flows into the port before adding the next

19. Gently close the spotON sample port cover, making sure the bung enters the SpotON port, close the priming port and replace the MinION lid.

Data strategy

Data deposited: /Library/MinKNOW/data

- 1. Double-click the MinKNOW icon 💭 at the desktop to open the MinKNOW GUI
- 2. Choose the flow cell type from the selector box. Then check "Available" box FLO-MIN106
- 3. Click the **"New Experiment"** button at the bottom left of the GUI

On the new experiment popup screen, select the running parameters for your Experiment from the individual tabs

Output settings – FASTQ: The number of basecalls that MinKNOW will write in a single file. By default this is set to 4000 Output settings – FAST5: The number of files that MinKNOW will write to a single folder. Default 4000

Basecalling tab to ON – if using basecalling via MinKNOW (abalone) Basecalling tab to Off – if using basecalling via guppy later

Allow the script to run to completion

The MinKNOW Experiment page will indicate the progress of the script This can be accessed through the "Experiment" tab (top right of the screen) Monitor messages in the message panel in the MinKNOW GUI

Wash Kit (EXP-WSH002) – to re-using flow cells

Solution A1000 μl2 tubes12X sequesters the library strands from membraneSolution B500 μl4removes the sequestered library refreches FCStorage Buffer1600 μl4

- 1. Open the priming port cover to check that buffer is continuous
- 2. Ensure that the SpotON sample loading port is closed
- 3. Gilson P1000 adding 150 µl Solution A through priming port
- 6. Wait 10 min
- 7. Add 150 µl Solution B
- 8. Start a new MinKNOW experiment

Later use

- 7. Slowly add 500 μl of Storage Buffer through priming port
- 8. Close priming port. Remove buffer from the waste section of the flow cell through either of waste ports
- 9. Store flow cell at 4-8°C

pore active/512

Server access

ssh -p 40044extern@retrogenomics2.uni-muenster.depassword:eXtern01location:/home/extern

Transfer > server (<u>terminal client</u>)

scp -o "Port 40044" -r /Users/juergenschmitz/Desktop/Transfer/*.* extern@retrogenomics2.uni-muenster.de:/home/extern/data/coati/fast5

source client

Transfer < server (<u>terminal clien</u>)

scp -o "Port 40044" extern@retrogenomics2.uni-muenster.de:/home/extern/data/coati/fast5/*.* /Users/juergenschmitz/Desktop/Transfer

	source server	target client		
<pre>ssh = secure shell network protocol scp = secure copy protocol -o = option -r = copy all files in a folder recursively</pre>	VPN: zmbeprak ZMBE.2019n	33		

target server

UNIX commands: mc

visual shell

🔎 💁 👘 juergenschmitz — mc [extern@retrogenomics2-work]:~/data/coati — ssh -p 40044 extern@retrogenomics2.uni-muenster.de — 202×31										
Left File	Command Options Right									
-T -N / /RM /fast5 /fastq /output_canu /output_guppy	Name	S UP	Ize Modify time -DIR Sep 6 19:40 2 2 Sep 3 20:19 6 6 Sep 4 10:00 6 6 Sep 5 15:43 3 3 Sop 8 13:50 46 46 Sep 8 14:17	<pre>~ ~/oata/coatl/outp n / mar.contigs.fasta</pre>	ut_canu	Yame .		Size Modify time UPDIR Sep 4 11:30 636240K Sep 8 13:58		
/output_canu	nalau ang kang lina tina Eutom	- 61	643G/6696G (97%)	mar.contigs.fasta				— 6543G/6696G (97%) —		
nint: want to do co extern@retrogenomic 1Help	s2-work:~/data/coati> 2Menu 3View	dEdit 5	Сору	RenMov	7Mkdir	8Delete	9 <mark>PullDn</mark>	1000it		

FAST5 files

Data out of Oxford Nanopore Technology (ONT) Raw electronical signal in HDF5 (Hierachical Data Format) Main data: "squiggles" = pico-amp measurements at micropores

FASTQ files

@0243e9e9-5442-4df3-aa14-fdfd6d2ba214 flow_cell_id=FAK33926 protocol_group_id=Maria1 sample_id=maria1 ATCAGTATTGCTTCGGTTACGTATTGCTGGCAGCAGGTGCGGGCGTACTTCAGCCTGGCGTTCTGTGACTTCTGCCTTAAGTTT + '-8#.,(+%%+1631:66#0(:,54<96<564593-14)+&()&*&%\$)*+-7>50%3++02-23>999:9788>9<:;05/,&++<<89<6-.*'(2,+3;1)</pre>

@ ... = sequence identifier and description

- ACTG ... = sequence
- + = separator

```
!) 3 =... = quality value
```

 ASCII
 p

 !
 1

)
 0.1

 3
 0.01

 =
 0.001

 H
 0.0001

Probability of incorrect base

FASTA files

>coati_FAK34099_9e4d2b4f8a8663b7a95159919ce03578e435d1d4_0 ATCAGTATTGCTTCGGTTCGGTTACGTATTGCTGGCAGCAGGTGCGGGCGTACTTCAGCCTGGCGTTCTGTGACTTCTGCCTTAAGTTT

>... = header

ACTG ... = sequence

Transfer FASTQ to FASTA: sed -n '1~4s/^@/>/p;2~4p' INFILE.fastq > OUTFILE.fasta

Guppy basecalling

Adapter Strand Trimming:Removal of sequencing adapterInput:.fast5 files containing raw dataOutput:.fast5 and FASTQ files basecalled

Command line (server):

source fast5

.

output

guppy_basecaller --input_path <u>/home/extern/data/coati/fast5/</u> --save_path <u>/home/extern/data/coati/</u>output_guppy -config/appl/src/guppy/ont-guppy-cpu/data --flowcell FLO-MIN106 --kit SQK-LSK109 --num_callers 10 --recursive

guppy config file	used flowcell	used kit	# threads	including subfolders

Canu assembly

Reads-to-contigs (derive consensus sequences) Input: .fastq or fasta Output: .fasta

Command line:

> 6X coverage	1 node	genome size	memory/threads restrictions	MinION settings	save folder
<u> </u>			·		<u> </u>

canu stopOnLowCoverage=6 useGrid=false genomeSize=2.4g maxMemory 256 maxThreads 24 correctedErrorRate=0.16 -p coatiCANU -d /home/extern/data/coati/output_canu -nanopore-raw /home/extern/data/coati/fastq/for_coati/ *.fastq

save folder	data folder
<pre>10 days - 56 threads - 521 Gb Finished on Sat Sep 7 19:43:48 2019 (10 seconds) with 6100.424 GB Finished stage 'generateOutputs', reset canuIteration Assembly 'mar' finished in '/data/projects/ASSEMBLY/nasenbaer' Summary saved in 'mar.report' Sequences saved: Contigs -> 'mar.contigs.fasta' Unitigs -> 'mar.unitigs.layout' Unitigs -> 'mar.contigs.gfa' Graphs saved: Contigs -> 'mar.contigs.gfa' Unitigs -> 'mar.unitigs.gfa'.</pre>	O.6 Gb contigs – O.6 Gb unique readsdrwxrwxr-x2 juergen userdrwxrwxr-x2 juergen userdrwxrwxr-x2 juergen userdrwxrwxr-x2 juergen userdrwxrwxr-x1 juergen user-rw-rw-r1 juerg

NCBI

SNCBI Resources 🗵 How	то 🖂			maglet My NCBI Sign Ou				
SNCBI National Center for Biotechnology Information	Databases 📀			Search				
NCBI Home	Welcome to NCBI			Popular Resources				
Resource List (A-Z)	The National Center for Biotechnol	ogy Information advances science an	d health by providing access to	PubMed				
All Resources	biomedical and genomic information	n.		Bookshelf				
Chemicals & Bioassays	About the NCBI Mission Orga	nization NCBI News Blog		PubMed Central				
Data & Software				PubMed Health				
DNA & RNA	Submit	Download	Learn	BLAST				
Domains & Structures	Deposit data or manuscripts	Transfer NCBI data to your	Find help documents, attend a	Nucleotide				
Genes & Expression	into NCBI databases	computer	class or watch a tutorial	Genome				
Genetics & Medicine		-		SNP				
Genomes & Maps				Gene				
Homology				Protein				
Literature				PubChem				
Proteins								
Sequence Analysis	Develop	Analyze	Research	NCBI Announcements				
Taxonomy	Lise NCBI APIs and code	Identify an NCBI tool for your	Explore NCBI research and	New video on the NCBI YouTube				
Training & Tutorials	libraries to build applications	data analysis task	collaborative projects	channel: Viral resources at NCBI				
Variation		o	1	In the newest video on the NCBI YouTube channel. Viral resources at				
		8%	<u></u>	NCBI to assist Louisiana State University in South and Southeast regional genomics backathon				

NanoPipe

PhyDE

<u>File Edit Taxa Searc</u>	:h V <u>i</u> ew Help Plugins									
alignment					labal 🖌 AT	Pro Pro Alived	Mode: Align			
PhyDE 0.994					CG	tein tein	Mode: Aligi	10	•	
The character sets										
+ sel - sel	Name		Set Description						Visible	Color
	remA		8815-9648							
New Delete	clpP		9649-10527						V	
Chift Apply	infA		10528-10896						V	
олис Арріу	J matK		10897-12783						V	
Go to	ndhA		12784-13914						V	
	nunb		13913-134/4						~	
							<u> </u>			
# Name &	8930 8940	8950 8960	8970	8980	8990	9000	9010	59950	59960	
1 Acoamer	GATTTACTCCCCTCCCA			G T A T T T T T T G C C	C T G G T G G G T C T	CTCTCTCATTTA.	ATAAGAG	CAGACTT -	G G T C	GCAACCC
3 Amborella	CATTGACTT	····TATCTTGCATCTA	A	G T T T T T C T G C C	CTGGGGAATTT	CTCTATCATTTA	ATAAAAG	CAGACTT	G G C	ACAACCC
4 Anethum	CATTCAACCOTOTTTA- ·	· · · · TATCTTGCATCTA	T <mark>A</mark>	g t <mark>a</mark> t t t t t g <mark>c c</mark>	C T G G T G G A T T T	C T C T C T C A T T T A.	A T A A A A G	CAGACTT-	G G T (ACAACCC
5 Arabidopsis	CATTCATTC TT	···· TATTTTCTATCTA	T A	G T C T T T T T G C C	CTGGTTGATCT	CTCTCTGCTGTA.	ATAAAAG	CAGACTT -	G G T /	ACAACCC
6 Atropa 7 Brarrian				GTATTTTGCC	C T G G T G G A T T T	CTTTCTCAGTTA.	ATAAATG	CAGACTG -	GGT	ACAACCC
8 Buxus	CATTCACTTCCCT	. TATCTTCCATCTA	T A	6 T T T T T T T G C C	CTGGTGGATCT	CTCTCTCATTTA	ATAAATG	TAGACTT	G G T	ACAACCC
9 Calycanthus	CATTGACTCCCTTCCCA.	· · · · TATCTTGCATCTA	T <mark>A</mark>	6 T T T T T T T G <mark>C C</mark>	C T G G T G G A T C T	C T C T C T C A T T T A	CCAAAAG	CCGACTT-	G G T (GAAAACC
10 Chloranthus	AATCGACCCCCCTCCCATT	CCCATATCTTGCATCTA	T A	G T <mark>A</mark> T T G T T G <mark>C C</mark>	CTGGTGGATTT	CTCTTTCATTTA.	AGAAATG	CAGACTT -	<mark>G G T</mark> (GCAACCC
11 Citrus 12 Coffee	CATCCATTCCCCTTAGA··		TAGTATTTGTA	GTATTTTGCC	C T G G T G G A T C C	CTCTCTCATTTA.	ATAAAAG	CCGGGCTT.	· · GGT	ACAACAC
13 Cucumis	CATTTCTTCCTCTTCTA	···· TATCTTACATCTA	A	G T A T T T T T T G C C	CTGGTGGATCT	CTCTCTCATTTA	ATAAAAG	TCGACTT	G G T /	GCAACCC
14 Cycas	C A T T A G C T T C C C T A C G A	· · · · TACCTTGCATGTC	Γ 🗛	G T <mark>a T T C C T G C C</mark>	C T G G G G A A T C T	C T A T T T C A T T C C .	AGAAAGG	TAGACTT-	G G T	ATAACCC
15 Daucus	CATTCACCTCTCTTTA··	···· TATCTTGCATCTA	T <mark>A</mark>	G T <mark>A</mark> T T T T T G <mark>C C</mark>	C T G G T G G A T T T	CTCTCTCATTTA.		CAGACTT -	••• <mark>6 6 T</mark>	ACAACCC
16 Dioscorea	CATTGATTCCATACCA··			G T A T T T T T T G C C	CTGGTGGGTCT	CTCTCTCATTTA.		CAGACTT-	GGT	
18 Ehretia	TATTCACTCCCCTTTTC	· · · · TATCTTCCATCTA	A	GTATTTTGCC	CTGGTGGATTT	CTCTCTCATTTA	ATAAAAG	CAGACTT	G G T	ACAACCC
19 Elaeis	C C T T G G T C T C C C T C C C A	····TATATTTCATCCA	T <mark>A</mark>	A T A T T T T T G C C	C T G G T G G G T C T	CTCTCTCATTTA.	ATAAATG	CAGACTT -	G G T	ACAACCC
20 Eucalyptus	CATTTCTTCCTCTT L ·	·		V F L P	W W I	S L S F	NK	RL		T T
21 Ginkgo 22 Glycine	CATTCATTCCCTTCTA.				W G I			RL	- G	
23 Gossypium	CATTCACTCCCCTTCTA	· · · · TATCTTGCATCTA	T A	GTATTT L P	W W I	S CTCTCATTTA.	ATAAAAG	CAGACTT -	G G T	ACAACCC
24 Helianthus	C A T T C A C T C C T C T T T T A	····TATCTTGTATCTA	r <mark>c</mark>	G T A T T T L P	W W I	S C T C T T A T T T C.	AAAAAG	CAGACTT-	<mark>G G T</mark> /	ACAACCC
25 Hordeum	CATTGCCTTCTTTACTA · ·	···· TATCTTGTATTTA	C	GTACTT L P	W G V	S TCCTCATTTA.	ACAAATG	CAGACTT -	· · GGT	ACAACCC
20 Illicium 27 Inomosa	CATTCACTCCTCTTTTC.					S TTCTCATTTA		CAGACTT		ACAACCC
28 Jasminum	CATTCACTCCTCTTTG	· · · · TATTTGCATCTA	A	GTCTTTL P	w w i	SCTCTCATTTA	CGAAAAG	CAGACTT-	G G T	ACAACCC
29 Lactuca	CATTCACTCCTCTTTTA	· · · · TATCTTGCATCTA	T A	ATATTT L P	W W I	S C T C T C A T T T C.	AAAAAG	CAGACTT-	G G T /	ACAACCC
30 Liriodendron	CATTGACTCCCCTCCCA	···· TATCTTGCATCTA	A	GTCTTTL P	W W I	S ATCTCATTTA.	ATAAAG	CCGACTTG	GTGGAC	GAAAACC
31 Lotus 32 Medicago	CATTCATTCCCCTTCTA	····TGTCTTACATCTA	A	GTCTTT L P		S TTTACATTTA.	AGAAAAG	CAGACTT	G G T	ACAACTC
33 Musa	CATCGGCCTCCCTCCA··	· · · · TATCTCGCATCTA	r A	GTATTT L P	w w v	S TTCTCATTA.	ATAAATG	CAGACTT-	G G T	ACAACCC
34 Nicsyl	CATTCACTCCTCTTTTC	···· TATCTTGCATCTA	T <mark>A</mark>	G T A T T T L P		S T T C T C A G T T A.	A T A A A T G	CAGACTG-	G G T /	ACAACCC
35 Nictab	C A T T C A C T C C T C T T T T C · ·			G T A T T T T T T G C C	C T G G T G G A T T T	CTTTCTCAGTTA.	ATAAATG	CAGACTG -	· · GGT	ACAACCC
37 Nuphar	CATTGAATCCC.L.P.			V.F.L.P	W. G. I.	S.L.S.F.	N	R	G.	
38 Nymphaea	CATTGAATCCC.L.P. · ·	· · · · . Y . . L . . A S . .		. V F L P	W G I	S	NK	R L	· · . G .	. T T
39 Oenothera /	A A T T C C T T C C G . L L . · ·	· · · · . Y L T A		. V F F P	W W I	S	N <mark>.</mark> KG	<mark>.</mark> . R L	••.G.	. T T . <mark>.</mark>
40 Oryza 41 Ronov	CATTGCCTTCT.FL.··	····		V.L.L.P	W G V	S. F. S. F	N.K.C	. R L . ·	· · . G .	
42 Passiflora	CATTTACCTCT.IL.	· · · · · · · · · · · · · · · · · · ·		. V F L P	W W I .	S. E. L. E.	K.K.S	. R V	G.	İTLİTİ.
43 Pelargonium	GAACCACCCCC <mark>.F.</mark> L	· · · ·	1 <mark>.</mark>	. V F L P		S L E F	к к	<mark>.</mark> . R L	· · . G .	
44 Phalaenopsis	CATTGGCTTCC.L.P.+	· · · · · · · · · · · · · · · · · · ·		. I F L P	W W V	S L S F	N	. R L	· · . G .	
46 Pinus 46 Piner									· · . G .	
47 Populus	CATTCATTCCC.L.L.			. V F L P		S.F.F.S.F.F.	N.K.S	. R L	G .	TITI
48 Ranunculus	CATTTAACCCC <mark>.L.</mark> .L.	· · · ·	1 <mark>.</mark>	. V F L S	W S I	S., F., S., F.,	кк. <mark>.</mark> s	<mark>.</mark> . R L	G .	
49 Saccharum		Y	I <mark>.</mark>	. V L L P		S.F.F.S.F.F.	N K. C	R.L	· · . G .	a a na a a a a a a a a a a a a a a a a
							P *	•	-	
Sel: 16-23[8] : 9010-5	09903[00954] NC: 1	laxa. 68 / chars: 85590								

UCSC comparative genomics

Generate 2-way genome alignments

(←) → ୯ @	i retrogenomics.uni-	muenster.de/too	ls/twoway/generate	e/index.pl?			☑ ★	Q Suchen	lii\	1	00	
🍖 RepeatMasker Web 🌘	🔁 Erste Schritte 🔅 Meistb	esucht G Google	GPAC Carage	y 🖨 n-way 🍈 PRI	DE 🛅 MedEvol	SNCBI	Senome Genome	Browser FAQ	🚺 linguae - Englisc	h 🕝	Grammarly	>>
	-		Re	trogenomics WWU	Muenster							
About Tools Intern												\bowtie
	2-way				×					2	019/09/08	14:54
Z- VV ay					Previous Requ	uests						
Genome- Alignments	ID							The id o	of a previous requ	est		
Abaut					Target Dat	ta						
D About	Upload file	Distribution	12					Fasta f	ile with repeats m	asked in	lowercase	
Run the Pipeline								letters	(max 4GB)			
Goto N-Way	or select clade a	nd species	Select a clade		Select a spec	cies		-				
Species Overview					Query Dat							
View All Requests	Upload file	Distribution	Im		Query Du	a		Fasta f	ile with repeats m	asked in	lowercase	
Contact	opioud inc	Distribution						letters	(max 4GB)	uskeu m	towercuse	
Your Previous Runs/Views	s or select clade a	nd species	Select a clade		Select a spec	cies		•				
					Additional Para	meters						
	Title							Job title	2			
	Min Length		100					Min se	quence length (m	inimum 5	(0)	
		[+] Input Parameters (Click to see/change)										
	OK Reset											
	Please note, dep	ending on your d	ata the run can take	hours or even days!								
							© Ret	rogenomics W	NU Muenster			

coati

MS_GP

human

Ec3

RepeatMasking

./repeatmasker -nolow -xsmall -pa 10 -species mammalia /home/extern/coati/RM

./repeatmasker -nolow -xsmall -pa 10 -species rodentia /home/extern/guinea_pig/RM

./repeatmasker -nolow -xsmall -pa 10 -species human /home/extern/human/RM

./RepeatFinder.pl -f <input file in multiple fasta format> -i <identification name>

FUN AHEAD

GGTTGTTTCTGTTGGTGCTGATATTGCTTAAGAAGCCAAGGC