Forschungsgemeinschaft

沙教RTG 2220 EvoPAD

From Idea to Publishing

Course
1.-4. July 2019

Interaction with
 a covariate

Factorial experiments

E.g., here fertilizer is a factor, with 2 levels (fertilizer type A and B).

Fully-crossed design:

All combinations of factors are implemented.
2.

1 -factor design with 3 levels of the factor (type of cultivation) This can answer the questions:
a) Does fertilizer affect plant growth?
b) Does pesticide affect plant growth?
c) Do fertilizer and pesticide differ in their effect on plant growth?

2-factor design with 3 levels of the 1st factor (fertilizer type) and 2 of the 2nd factor (pesticide use)
This can answer the questions:
a) Do the fertilizers diffor in their effect on plant growth?
D) Does pesticide aflect growth rate?
c) Does the effect of pesticides depend on the type of fertilizer?

Simpson's Paradox

Measurements: Inaccuracy and imprecision

Accurate and precise

Precise but inaccurate

Accurate but imprecise

Imprecise and inaccurate

Randomization and Split－plot designs

Full randomization

Ploughing types

Pesticide types

Split plot

B	B
A	A
C	C

C	A
B	B
A	C

Three designs for sampling 50 conifer trees

a)

50 trees all from the same forest. Excellent information about that forest but no information on other conifer forests.
b)

5 trees from each of 10 forests. Fair information of a good sample of different conifer forests.
c)

10 trees from each of 5 forests. Good information on a fair sample of different conifer forests.

