In cooperation with

Modified Siloxanes as Electrolytes for Application in Lithium-Ion Batteries

Steffen Jeschke, Zhongxiang Jiang, Sarah M. Seidel and Hans-Dieter Wiemhöfer

e-mail: s.jeschke@wwu.de

Institute of Inorganic and Analytical Chemistry, Corrensstr. 28/30, 48149 Münster, Germany

Introduction

Siloxanes desired due to their:

- low linearization energy (1.3 kJ/mol) and low rotation barrier (2.5 kJ/mol) of Si-Obonds in backbone,
- low glass transition temperatures and non-toxicity,

WESTFÄLISCHE

Münster

WILHELMS-UNIVERSITÄT

- easy accessibility as starting materials; mostly industrial by-products,
- versatile chemical modification possibilities; e.g. preparation of free-standing solid polymer electrolytes, liquid additives and electrolytes, ionic liquids.

Electrostatic potentials (ESP) mapped on total electron density (isoval = 0.002).

Synthesis of Carbamate-modified Disiloxanes

Electrochemical Characterization

Electrochemical potentials <i>vs.</i> Li/Li ⁺ and calculated HOMO/LUMO values according to MOPAC2009.			Ionic conductivities for electrolyte solutions of 1 with LiTFSI.			
	1	2		L-5	L-10	L-1
Oxidation potential/V	4.5	4.8	Content of LiTFSI/wt %	5	10	15
Reduction potential/V	0	0	Conductivity σ (90 °C)/S cm ⁻¹	1.4 × 10 ⁻³	1.0 × 10 ⁻³	1.2 ×
HOMO/eV	-9.5	-9.3	Conductivity σ (20 °C)/S cm ⁻¹	2.7 × 10 ⁻⁴	1.6 × 10 ⁻⁴	1.4 ×
LUMO/eV	0.9	1.0	Conductivity σ (-20 °C)/S cm ⁻¹	2.5 × 10 ⁻⁵	1.1 × 10 ⁻⁵	6.3 ×

Application in porous PVDF-HFP Frameworks

- Porous PVDF-HFP membrane prepared by phase inversion (acetone/water).
 - degree of crystallinity X_c =36 %; porosity ϕ =51%.
- Activated gel electrolyte membranes M-X by soaking them in corresponding

1	2	ethylene carbonate (EC, 3)	dimethyl carbonate (DMC, 4)
ESP _{max} = -0.0789	ESP _{max} = -0.0695	$ESP_{max} = -0.0685$	$ESP_{max} = -0.0594$
μ _{calc} = 4.76 D	μ _{calc} = 2.14 D	μ _{calc} = 5.34 D	$\mu_{calc} = 0.30 D$
ε _r = 28	ε _r = 7	ε _r = 90	$\varepsilon_r = 3$

- Geometries optimized at B3LYP/6-311G(d,p) level of theory.
- Gibbs Free energies of solvation ΔG_{B} and solvent-solute interactions ΔE_{M} of solvation structures $[Li(S)_{n=1-4}]^+$ (S = **1** - **4**) computed.
- Natural bond order analysis: $n(O) \rightarrow \sigma^*(Si C)$ hyperconjugation in Si-O-bond favors SiCH₂–H···Li⁺ interactions.

FTIR spectra of a porous PVDF-HFP membrane of 8 µm thickness as a pure porous membrane, gel membrane with pure 1, and gel electrolyte membrane M-15. a) Full spectra; b) Details of the fingerprint region with marked integrals (black frames) used for FTIR mapping of disiloxane (1), TFSIanion, amorphous framework (*) and its α phase (α).

SEM images and corresponding EDX spectra of the porous membranes. a) dry PVDF-HFP framework. b) gel electrolyte membrane **M-5**.

electrolyte solutions of **1** L-X (X=5, 10, 15 wt % of LiTFSI).

Properties of PVDF-HFP gel electrolyte membranes.							
	M-5	M-10	M-15				
Thickness dry/µm	36	35	34				
Thickness soaked/µm	54	46	43				
Electrolyte uptake ΔW	248 %	181 %	160 %				
Tortuosity r _{eff}	2.36	3.96	5.18				
Conductivity σ (90 °C)/S cm ⁻¹	2.7 × 10 ⁻⁴	1.8 × 10 ⁻⁴	1.8 × 10 ⁻⁴				
Conductivity σ (20 °C)/S cm ⁻¹	5.2 × 10 ⁻⁵	1.8 × 10 ⁻⁵	1.2 × 10⁻⁵				

LiTFSI Lithium-bis(trifluoromethylsulfonyl)imide

- Coherent anti-Stokes Raman scattering (CARS) confocal microscopy images a) Representative optical slice of the surface of a dry, porous PVDF-HFP membrane visualized by exciting the C–H vibration at *v*=1430 cm⁻¹.
- b) Representative optical slice beneath the surface of M-5 visualized by exciting the C=O vibration of **1** at \tilde{v} =1730 cm⁻¹.
- c) 3D reconstruction of stacked optical slices of excited C=O vibrations of sample **M-5** to depict a 3D image section of a 12 µm subsurface depth.

Scale bars in relative intensity units; voxel size: 142 × 142 × 420 nm.

7,5 15 22,5 30 37,5

FTIR microscope mapping of a PVDF-HFP gel electrolyte membrane M-15.

- a) Chemical mapping of PVDF-HFP (\tilde{v} =865– 890 cm⁻¹).
- b) SO₂ group in the TFSI-anion (\tilde{v} =1325–
- 1375 cm⁻¹), C=O group (\tilde{v} =1715–1770 cm⁻¹ region).
- stretching and N-CO-O c) Si–O–Si symmetric stretching vibrations (\tilde{v} =1020– 1100 cm⁻¹ region).
- d) Ratio of the integrated areas between \tilde{v} =865–890 cm⁻¹ (PVDF-HFP) and 1715– 1770 cm⁻¹ (**1**).
- e) Ratio of the integrated areas between \tilde{v} =865–890 cm⁻¹ (PVDF-HFP) and 1325– 1375 cm⁻¹ (TFSI).

Leica TCS SP8 CARS confocal platform Label Free Imaging

f) Ratio of the integrated areas between \tilde{v} =1715–1770 (**1**) and 1325–1375 cm⁻¹ (TFSI).

Bundesministerium

für Bildung

und Forschung

AU: arbitrary absorbance unit.

Outlook

- **PSx-PEO3** Polymeric additive to influence the pore frequency and size of **PVDF-HFP** membrane.
- Concept of *double active* separators:
 - 1. Increased uptake of liquid electrolyte (1M LiTFSI in EC/DMC
 - 1:1) up to 500 % by addition of polysiloxane.
 - 2. Polyether functionalities contribute to ionic transport.
- Reduced degree of crystallinity, increased ionic conductivity (20 wt % PSx-PEO3: 6.4 × 10⁻⁴ S cm⁻¹ at 20 °C).

Proof of concept

- Synthesis of carbamate-modified polysiloxanes
- as polymeric additives.
- Interpenetrating networks composed of porous PVDF-HFP and modified polysiloxanes.

Prof. Dr. Hans-Dieter Wiemhöfer

Westfälische Wilhelms-Universität Institute of Inorganic and Analytical Chemistry Corrensstr. 28/30, D-48149 Münster

References

- S. Jeschke, A.-C. Gentschev and H.-D. Wiemhöfer, *Chem. Commun.*, 2013, **49**, 1190–1192.
- S. Jeschke, M. Mutke, Z. Jiang, B. Alt and H.-D. Wiemhöfer, ChemPhysChem, 2014, DOI: 10.1002/cphc.201400065.
- S. Jeschke, C. Mück-Lichtenfeld and H.-D. Wiemhöfer, Phys. Chem. Chem. Phys., 2012, in revision.
- S. M. Seidel, S. Jeschke, P. Vettikuzha and H.-D. Wiemhöfer, *Chem. Commun.*, 2014, submitted.

Funding: We would like to thank the DFG, the BMWi and BMBF for financial support within our projects. DFG Deutsche Forschungsgemeinschaft

Sundesministerium

und Technologie

für Wirtschaft