

Characterization of *semi*-interpenetrating Polymer Electrolytes containing PVDF-HFP and Ether-modified Polysiloxane for LIB Application

Eva Cznotka, Steffen Jeschke and Hans-Dieter Wiemhöfer

e-mail: eva.cznotka@wwu.de

Institute of Inorganic and Analytical Chemistry, Corrensstr. 28/30, 48149 Münster, Germany

Introduction

<u>Semi-interpenetrating</u> polymer <u>networks</u> (sIPN) merge the properties of their constituting ingredients to form solid polymer electrolytes (SPEs) for thin-film application in lithium-ion batteries:

- <u>Polysiloxane</u>
 - Highly flexible Si–O-bonds in backbone, low glass transition temperature,
 - versatile chemical modification possibilities; e.g. ether

(*net*-PVDF-HFP)-*sipn*-PSx

✓ Free-standing membrane,

Fast & Easy-to-prepare,

 \checkmark < 10 µm thickness viable.

lon-conducting,

Computational Investigation

- Simplified small molecules 3 5 to imitate domains of
- different polarity in *semi*-IPN:
- Geometries pre-optimized with MM3 force-field,
- DFT-optimized with B97D/6-311G(d,p) in gas phase.
- Computation of pairings 5-X (X = 3 5) to clarify

functionalities for ion transport.

Poly(vinyl fluoride-hexafluoropropylene) (PVDF-HFP)

- Commercially available co-polymer,
- Semi-crystalline, thermoplastic, dielectric properties,
- Valuable for membrane preparation (e.g. ultrafiltration). 🖌

Synthesis of Ether-modified PSx

Reactions proceeded efficiently leading to formation of polysiloxane-*comb*-propyloxymethoxytriglycol **PSx**.

Morphological Analysis

- Porous (*net*-PVDF-HFP)-*sipn*-PSx membrane prepared by solution casting technique
- Porosity $\Phi = 26$ %, degree of crystallinity X_c = 10 %. X_c decreases with increasing amounts of PSx indicating that the formation of the PVDF-HFP α -phase is inhibited by PSx. Homogeneous distribution of PSx across (*net*-PVDF-HFP)*sipn*-PSx membranes.

interactions between present domains.Comparing interaction-induced frequency shiftsfrom experimental and computational set up.

2nd derivative FTIR spectra to identify interaction-induced frequency shifts in (*net*-PVDF-HFP)-*sipn*-PSx electrolytes.

δ [in MPa ^{1/2}], ΔG [kcal mol ⁻¹].					
Polymer (X)	δ	R _a	∆G <mark>5−X</mark> ∆GBSSE		
PDMS (3)	16.6	13.1	9.4		
PEO (4)	20.3	4.1	6.3		
PVDF-HFP (5)	22.8	-	5.9		

FTIR microscope mapping of (*net*-PVDF-HFP)-*sipn*-PSx membrane.

- a) Chemical mapping of PVDF-HFP (sum of α-phase ũ = 980-970 and β-phase 890-865 cm⁻¹).
 b) Chemical mapping of PSx (sum of C–H stretching ũ = 2950-2750 and O–CH₃ stretching 1150-1070 cm⁻¹).
 - c) Map of the ratio of integrated areas between

SEM and SEM-EDX images of porous membranes.

DSC data of	i semi-IP	N with me	elting po	int (T _{m-PVDF-HF}	_P), glass	
transition te	mperatur	e (T _{g-PSx}),	heat of	fusion (ΔH_m)	and the d	egree
of crystallin	ity (X _c).					
PVDF-HFP	PSx	LiTFSI	$T_{g}-PSx}$	T _{m-PVDF-HFP}	ΔH_{m}	X _c
[wt.%]	[wt.%]	[wt.%]	[°C]	[°C]	[J g⁻¹]	[%]
Variation of (<i>net</i> -PVDF-HFP)- <i>sipn</i> -PSx						
100	0		-	133	24.6	24
0	100		-94	-	-	-
50	50		-85	132	17.3	17
40	60		-86	134	10.8	10
30	70		-85	131	8.1	8
Variation of LiTFSI in semi-IPNs						
38	57	5	-78	130	7.3	7
36	54	10	-64	130	6.6	6
34	51	15	-55	125	7.1	7
32	48	20	-43	125	7.1	7
30	45	25	-40	125	7.1	7

Electrochemical Analysis

Addition of PSx to PVDF-HFP matrix results in a noticeable b) 40 change in tensile strain and stress.

Stress-strain tests of PVDF-HFP and (net-PVDF-HFP)-sipn-PSx membrane.

 $\frac{\sigma_0}{\sigma_{sIPN}} \cdot \phi$

 \tilde{v} = 2950-2750 and 890-865 cm⁻¹. AU: arbitrary absorbance unit.

FTIR spectra of pure PVDF-HFP, PSx and a (*net*-PVDF-HFP)-*sipn*-PSx network with integrals (black frames) used for FTIR mapping.

Properties of semi-IPN electrolyte membrane with LiTFSI.semi-IPN-10semi-IPN-15semi-IPN-20semi-IPN-25 N_M 1.61.61.38.2 $\boldsymbol{\Phi}$ 0.450.450.450.450.45

• Calculation of $\sigma_{eff.}$ to distinguish the effective contribution of PSx and PVDF-HFP to the overall ionic transport.

Calculated tortuosity values τ<1 consider an explicit
 or implicit contribution of PVDF-HFP on ion

Outlook

a) Modification of polysiloxane

- for higher Li⁺ ion mobility.
- to increase miscibility between PVDF-HFP and polysiloxane.

$\sigma_{\text{eff.}}$	effective conductivity
N _M	MACMULLIN-number
Φ	porosity
т	totuosity
σ_0	conductivity PSx-LiTFSI
$\sigma_{\sf sIPN}$	conductivity semi-IPN
8	volume fraction

 $\tau = \frac{1}{(N_M \cdot \phi)} -$

Interpretation of ion transport

 $\sigma_{eff.} =$

т	1.16	0.72	0.94	0.58	
σ ₀ [S cm ⁻¹]	1.3×10 ⁻⁴	1.2×10 ⁻⁴	4.0×10 ⁻⁵	2.5×10 ⁻⁵	
σ _{sIPN} [S cm ⁻¹]	5.2×10 ⁻⁵	7.7×10 ⁻⁵	4.7×10 ⁻⁵	3.0×10 ⁻⁵	
σ _{eff.} [S cm ⁻¹]	7.5×10 ⁻⁵	1.1×10 ⁻⁴	6.6×10 ⁻⁵	4.4×10 ⁻⁵	

transport.

Since no PVDF-HFP/Li⁺ interactions are observed from FTIR, an implicit contribution of PVDF-HFP is implied, e.g. by improving salt dissociation due to its high dielectric constant of 11.4.

b) Modification of host matrix

Crosslinking of host matrix and polysiloxane.

c) <u>Electrochemical measurements</u>

- Cycling performance tests.
- C-rate tests.

<u>References</u>

- Cznotka, E.; Jeschke, S.; Vettikuzha, P.; Wiemhöfer, H.-D. Solid State Ion. 2015, 274, 55–63.
- Cznotka, E.; Jeschke, S.; Wiemhöfer, H.-D. J. Membr. Sci. 2015, submitted.

Acknowledgements:

We like to thank the DFG for financial support within our projects.

